Vol 24, No 3 (2024)
- Year: 2024
- Articles: 8
- URL: https://rjsocmed.com/1871-5206/issue/view/9984
Oncology
A Comprehensive Review on Nanoparticles as a Targeted Delivery System for the Treatment of Lung Cancer
Abstract
The second most common type of cancer is lung cancer, impacting the human population. Lung cancer is treated with a number of surgical and non-surgical therapies, including radiation, chemotherapy, and photodynamic treatment. However, the bulk of these procedures are costly, difficult, and hostile to patients. Chemotherapy is distinguished by inadequate tumour targeting, low drug solubility, and insufficient drug transport to the tumour site. In order to deal with the issues related to chemotherapy, extensive efforts are underway to develop and investigate various types of nanoparticles, both organic and inorganic, for the treatment of lung cancer. The subject of this review is the advancements in research pertaining to active targeted lung cancer nano-drug delivery systems treatment, with a specific emphasis on receptors or targets. The findings of this study are expected to assist biomedical researchers in utilizing nanoparticles [NPs] as innovative tools for lung cancer treatment, offering new methods for delivering drugs and reliable solid ligands.



CRD-BP as a Tumor Marker of Colorectal Cancer
Abstract
The National Cancer Center published a comparative report on cancer data between China and the United States in the Chinese Medical Journal, which shows that colorectal cancer (CRC) ranks second in China and fourth in the United States. It is worth noting that since 2000, the case fatality rate of CRC in China has skyrocketed, while the United States has gradually declined. Finding tumor markers with high sensitivity and specificity is our primary goal to reduce the case fatality rate of CRC. Studies have shown that CRD-BP (Insulin-like growth factor 2 mRNA-binding protein 1)can affect a variety of signaling pathways, such as Wnt、nuclear factor KB (NF-κB), and Hedgehog, and has good biological effects as a therapeutic target for CRC. CRD-BP is expected to become a tumor marker with high sensitivity and specificity of CRC. This paper reviews the research on CRD-BP as a tumor marker of CRC.



Research on the Inhibitory Effect of Doxorubicin-loaded Liposomes Targeting GFAP for Glioma Cells
Abstract
Background:Glioma is the most common and devastating brain tumor. In recent years, doxorubicin (DOX) is one of the drugs used in the treatment of gliomas, but it has side effects and poor clinical outcomes. Therefore, the delivery of drugs to the tumor site by targeted transport is a new approach to tumor treatment.
Objective:This study focuses on the anti-tumor effects of GFAP-modified drug-carrying liposomes loaded with DOX (GFAP-DOX-LPs) on gliomas.
Methods:GFAP-DOX-LPs were prepared by solvent evaporation method. After characterization analysis of GFAP-DOX-LPs, the encapsulation efficiency, the drug loading capacity and in vitro release performance were determined. Then, the MTT method was used to investigate the cytotoxicity and proliferative behavior of U251 and U87 cell lines. After that, flow cytometry was used to investigate the effect of the drug administration group on tumor cell apoptosis. Eventually, the anti-tumor activity was tested in vivo.
Results:The average particle size of GFAP-DOX-LPs was determined to be 116.3 ± 6.2 nm, and the average potential was displayed as 22.8 ± 7.2 mv. Besides, the morphology of the particle indicated a spherical shape. The encapsulation rate and drug loading were calculated and determined, which were 91.84 ± 0.41% and 9.27 ± 0.55%. In an acidic medium, the DOX release rate reached about 87%. GFAP-DOX-LPs could target glioma cells with low cytotoxicity and inhibit glioma cell proliferation with high efficiency, resulting in promoting apoptosis. The anti-tumor effect of GFAP-DOX-LPs was significantly enhanced. At the same time, the number of GFAPpositive cells in tumor tissues was significantly lower after treatment. Therefore, the overall survival time could be significantly prolonged.
Conclusion:The prepared GFAP-DOX-LPs had good targeting and glioma cell inhibition ability. This demonstrated the promising application of the prepared liposomes in tumor targeting, especially in the field of targeted drug delivery for the treatment of brain tumor.



Anticancer Potential of a Synthetic Quinoline, 9IV-c, by Inducing Apoptosis in A549 Cell and In vivo BALB/c Mice Models
Abstract
Background:In a previous work from the author of this study, the compound of 9IV-c, ((E)-2-(3,4- dimethoxystyryl)-6,7,8-trimethoxy-N-(3,4,5-trimethoxyphenyl)quinoline-4-amine) was synthesized, and the effects of potent activity on the multiple human tumor cell lines were evaluated considering the spindle formation together with the microtubule network.
Methods:Accordingly, cytotoxic activity, apoptotic effects, and the therapeutic efficiency of compound 9IV-c on A549 and C26 cell lines were investigated in this study.
Results:The compound 9IV-c demonstrated high cytotoxicity against A549 and C26 cell lines with IC50 = 1.66 and 1.21 µM, respectively. The flow cytometric analysis of the A549 cancer cell line treated with compounds 9IV-c showed that these compounds induced cell cycle arrest at the G2/M phase and apoptosis. Western blotting analysis displayed that compound 9IV-c also elevated the Bax/Bcl-2 ratio and increased the activation of caspase- 9 and -3 but not caspase -8.
Conclusion:These data presented that the intrinsic pathway was responsible for 9IV-c -induced cell apoptosis. In vivo studies demonstrated that treatment with the compound of 9IV-c at 10 mg/kg dose led to a decrease in tumor growth compared to the control group. It was found that there was not any apparent body weight loss in the period of treatment. Also, in the vital organs of the BALB/c mice, observable pathologic changes were not detected.



Antitumor Activity of a Lectin Purified from Punica granatum Pulps against Ehrlich Ascites Carcinoma (EAC) Cells
Abstract
Background:Lectins are carbohydrate-binding proteins with various pharmacological activities, such as antimicrobial, antidiabetic, antioxidant, and anticancer. Punica granatum fruit extract has traditional uses, however, the anti-cancer activity of purified lectin isolated from P. granatum pulp is yet to be reported.
Objective:The goals of this study are purification, characterization of the lectin from P. granatum, and examination of the purified lectin's anticancer potential.
Methods:Diethylaminoethyl (DEAE) ion-exchange chromatography was used to purify the lectin, and SDSPAGE was used to check the purity and homogeneity of the lectin. Spectrometric and chemical analysis were used to characterize the lectin. The anticancer activity of the lectin was examined using in vivo and in vitro functional assays.
Results:A lectin, designated as PgL of 28.0 ± 1.0 kDa molecular mass, was isolated and purified from the pulps of P. granatum and the lectin contains 40% sugar. Also, it is a bivalent ion-dependent lectin and lost its 75% activity in the presence of urea (8M). The lectin agglutinated blood cells of humans and rats, and sugar molecules such as 4-nitrophenyl-α-D-manopyranoside and 2- nitrophenyl -β- D-glucopyranoside inhibited PgLs hemagglutination activity. At pH ranges of 6.0-8.0 and temperature ranges of 30°C -80°C, PgL exhibited the highest agglutination activity. In vitro MTT assay showed that PgL inhibited Ehrlich ascites carcinoma (EAC) cell growth in a dose-dependent manner. PgL exhibited 39 % and 58.52 % growth inhibition of EAC cells in the mice model at 1.5 and 3.0 mg/kg/day (i.p.), respectively. In addition, PgL significantly increased the survival time (32.0 % and 49.3 %) of EAC-bearing mice at 1.5 and 3.0 mg/kg/day doses (i.p.), respectively, in comparison to untreated EAC-bearing animals (p < 0.01). Also, PgL reduced the tumor weight of EAC-bearing mice (66.6 versus 39.13%; p < 0.01) at the dose of 3.0 mg/kg/day treatment. Furthermore, supplementation of PgL restored the haematological parameters toward normal levels deteriorated in EAC-bearing animals by the toxicity of EAC cells.
Conclusion:The results indicated that the purified lectin has anticancer activity and has the potential to be developed as an effective chemotherapy agent.



An Active Compound from the Pyrazine Family Induces Apoptosis by Targeting the Bax/Bcl2 and Survivin Expression in Chronic Myeloid Leukemia K562 Cells
Abstract
Background:It has been established that pyrazine derivatives, which have widespread bioactivities, can effectively treat cancer.
Objectives:In this study, we investigated the effects of 2-methoxy-5-(oxiran-2-ylmethyl) phenyl pyrazine-2- carboxylate (2-mOPP), a new pyrazine derivative, on proliferation, viability, and apoptosis induction in human leukemia K562 cells.
Methods::For this purpose, the K562 cells were treated with various concentrations (20-120 µM) of the 2-mOPP for 24-72 hours. Cell viability was determined by MTT growth inhibition assay. Apoptotic activity of 2-mOPP was investigated morphologically by Hoechst staining, cell surface expression assay of phosphatidylserine by Annexin-V/PI technique, as well as DNA fragmentation assay. The effect of 2-mOPP on the K562 cell cycle was studied by flow cytometry. To determine the impact of 2-mOPP on the expression of intrinsic apoptosis-related genes, Bcl2 (anti-apoptotic), Bax (pro-apoptotic), and Survivin genes expression levels were evaluated before and after treatment with 2-mOPP through Real-Time PCR analysis.
Results::The results revealed that 2-mOPP inhibited viability with IC50 of 25µM in 72 h. Morphological changes assessment by fluorescence microscopy, Annexin V/PI double staining by flow cytometry, and DNA ladders formation upon cell treatment with the 2-mOPP showed that this compound induces apoptosis at IC50 value. Cell cycle arrest was observed in the G0/G1 phase, and the sub-G1 cell population (the sign of apoptosis) increased in a time-dependent manner. Low expression levels of Bcl2 and Survivin in K562 cells were observed 24-72 h after treatment. Along with the down-regulation of Survivin and Bcl2, the expression of Bax was increased after treatment with 2-mOPP.
Conclusion:These findings demonstrate that the new pyrazine derivative plays a crucial role in blocking the proliferation of the leukemic cells by inducing cell cycle arrest and apoptosis.



Bunium persicum Seeds Extract in Combination with Vincristine Mediates Apoptosis in MCF-7 Cells through Regulation of Involved Genes and Proteins Expression
Abstract
Background::Bunium persicum seeds, a member of the Apiaceae family, have historically been consumed as part of the Iranian diet.
Objective::While many of this herb's biological properties have been fully investigated, there is currently no reliable information about its anticancer/cytotoxic properties.
Methods::Herein, we first determined the major bioactive compounds of B. persicum seed extract (BPSE) via GC-Mass analysis. We evaluated the cytotoxicity of the extract alone as well as in combination with vincristine (VCR), a commonly used chemotherapy drug, using MTT assays on two breast cancer cell lines, MCF-7 and MDA-MB-231, as well as a normal breast cancer cell line, MCF-10A. Moreover, these compounds were evaluated in vitro for their anticancer activity using ROS assays, Real-Time PCR, Western blots, flow cytometry, and cell cycle assays.
Results::As a result of our investigation, it was determined that the extract significantly reduced the viability of cancerous cells while remaining harmless to normal cells. The combination of BPSE and VCR also resulted in synergistic effects. BPSE and/or BPSE-VCR treatment increased the intracellular ROS of MCF-7 cells by over twofold. Moreover, the IC30 of BPSE (100 µg/ml) significantly increased the BAX/BCL-2 and P53 gene expression while reducing the expression of the MYC gene. Moreover, treated cells were arrested in the G2 phase of the cell cycle. The BPSE-VCR combination synergistically reduced the NF-κB and increased the Caspase-7 proteins expression. The percent of apoptosis in the cells treated with the extract, VCR, and their combination was 27, 11, and 50, respectively.
Conclusions::The present study demonstrated the anticancer activity of the BPSE and its potential for application in combination therapy with VCR.



Novel Anti-tumor Strategy for Breast Cancer: Synergistic Role of Oleuropein with Paclitaxel Therapeutic in MCF-7 Cells
Abstract
Background:The side effects of conventional therapeutics pose a problem for cancer treatment. Recently, combination treatments with natural compounds have attracted attention regarding limiting the side effects of treatment. Oleuropein is a natural polyphenol in olives that has antioxidant and anticancer effects
Objective:This study aimed to investigate the oxidative stress effect of a combination of Paclitaxel, a chemotherapeutic agent, and Oleuropein in the MCF-7 cell line.
Method:The xCELLigence RTCA method was used to determine the cytotoxic effects of Oleuropein and Paclitaxel in the MCF-7 cell line. The Total Oxidant and Total Antioxidant Status were analyzed using a kit. The Oxidative Stress Index was calculated by measuring Total Oxidant and Total Antioxidant states. The levels of superoxide dismutase, reduced glutathione and malondialdehyde, which are oxidative stress markers, were also measured by ELISA assay kit.
Results:As a result of the measurement, IC50 doses of Oleuropein and Paclitaxel were determined as 230 µM and 7.5 µM, respectively. Different percentages of combination ratios were generated from the obtained IC50 values. The effect of oxidative stress was investigated at the combination rates of 10%, 20%, 30%, and 40% which were determined to be synergistic. In terms of the combined use of Oleuropein and Paclitaxel on oxidative stress, antioxidant defense increased, and Oxidative Stress Index levels decreased.
Conclusion:These findings demonstrate that the doses administered to the Oleuropein+Paclitaxel combination group were lower than those administered to groups using one agent alone (e.g. Paclitaxel), the results of which reduce the possibility of administering toxic doses.


