CRD-BP as a Tumor Marker of Colorectal Cancer


Cite item

Full Text

Abstract

The National Cancer Center published a comparative report on cancer data between China and the United States in the Chinese Medical Journal, which shows that colorectal cancer (CRC) ranks second in China and fourth in the United States. It is worth noting that since 2000, the case fatality rate of CRC in China has skyrocketed, while the United States has gradually declined. Finding tumor markers with high sensitivity and specificity is our primary goal to reduce the case fatality rate of CRC. Studies have shown that CRD-BP (Insulin-like growth factor 2 mRNA-binding protein 1)can affect a variety of signaling pathways, such as Wnt、nuclear factor KB (NF-κB), and Hedgehog, and has good biological effects as a therapeutic target for CRC. CRD-BP is expected to become a tumor marker with high sensitivity and specificity of CRC. This paper reviews the research on CRD-BP as a tumor marker of CRC.

About the authors

Fen-Xu

Department of Gastroenterology, Xinhua Hospital Affiliated to Dalian University

Email: info@benthamscience.net

Liang-Hong Jiang

Department of Gastroenterology, Xinhua Hospital Affiliated to Dalian University

Email: info@benthamscience.net

Chen-Fu

Department of Gastroenterology, Xinhua Hospital Affiliated to Dalian University, Liaoning Command

Email: info@benthamscience.net

Wei-Wei Feng

Department of Gastroenterology, Xinhua Hospital Affiliated to Dalian University

Email: info@benthamscience.net

Chang-Jiang Zhou

Department of Gastroenterology, Xinhua Hospital Affiliated to Dalian University

Author for correspondence.
Email: info@benthamscience.net

References

  1. Liu, X.; Song, X.; Li, H. Transcription elongation factor A-like 7, regulated by miR-758-3p inhibits the progression of melanoma through decreasing the expression levels of c-Myc and AKT1. Cancer Cell Int., 2021, 21(1), 43. doi: 10.1186/s12935-020-01737-3 PMID: 33430878
  2. Doyle, G.A.R.; Leeds, P.F.; Fleisig, A.J.; Ross, J.; Betz, N.A.; Prokipcak, R.D. The c-myc coding region determinant-binding protein: A member of a family of KH domain RNA-binding proteins. Nucleic Acids Res., 1998, 26(22), 5036-5044. doi: 10.1093/nar/26.22.5036 PMID: 9801297
  3. Brewer, G. Evidence for a 3′-5′ decay pathway for c-myc mRNA in mammalian cells. J. Biol. Chem., 1999, 274(23), 16174-16179. doi: 10.1074/jbc.274.23.16174 PMID: 10347171
  4. Lemm, I.; Ross, J. Regulation of c-myc mRNA decay by translational pausing in a coding region instability determinant. Mol. Cell. Biol., 2002, 22(12), 3959-3969. doi: 10.1128/MCB.22.12.3959-3969.2002 PMID: 12024010
  5. Huang, X.; Zhang, H.; Guo, X.; Zhu, Z.; Cai, H.; Kong, X. Insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1) in cancer. J. Hematol. Oncol., 2018, 11(1), 88. doi: 10.1186/s13045-018-0628-y PMID: 29954406
  6. Du, Q.Y.; Zhu, Z.M.; Pei, D.S. The biological function of IGF2BPs and their role in tumorigenesis. Invest. New Drugs, 2021, 39(6), 1682-1693. doi: 10.1007/s10637-021-01148-9 PMID: 34251559
  7. Prokipcak, R.D.; Herrick, D.J.; Ross, J. Purification and properties of a protein that binds to the C-terminal coding region of human c-myc mRNA. J. Biol. Chem., 1994, 269(12), 9261-9269. doi: 10.1016/S0021-9258(17)37102-8 PMID: 8132663
  8. Nielsen, J.; Christiansen, J.; Lykke-Andersen, J.; Johnsen, A.H.; Wewer, U.M.; Nielsen, F.C. A family of insulin-like growth factor II mRNA-binding proteins represses translation in late development. Mol. Cell. Biol., 1999, 19(2), 1262-1270. doi: 10.1128/MCB.19.2.1262 PMID: 9891060
  9. Bell, J.L.; Wächter, K.; Mühleck, B.; Pazaitis, N.; Köhn, M.; Lederer, M.; Hüttelmaier, S. Insulin-like growth factor 2 mRNA-binding proteins (IGF2BPs): Post-transcriptional drivers of cancer progression? Cell. Mol. Life Sci., 2013, 70(15), 2657-2675. doi: 10.1007/s00018-012-1186-z PMID: 23069990
  10. Hansen, T.V.O.; Hammer, N.A.; Nielsen, J.; Madsen, M.; Dalbaeck, C.; Wewer, U.M.; Christiansen, J.; Nielsen, F.C. Dwarfism and impaired gut development in insulin-like growth factor II mRNA-binding protein 1-deficient mice. Mol. Cell. Biol., 2004, 24(10), 4448-4464. doi: 10.1128/MCB.24.10.4448-4464.2004 PMID: 15121863
  11. Chatterji, P.; Williams, P.A.; Whelan, K.A.; Samper, F.C.; Andres, S.F.; Simon, L.A.; Parham, L.R.; Mizuno, R.; Lundsmith, E.T.; Lee, D.S.M.; Liang, S.; Wijeratne, H.R.S.; Marti, S.; Chau, L.; Giroux, V.; Wilkins, B.J.; Wu, G.D.; Shah, P.; Tartaglia, G.G.; Hamilton, K.E. Posttranscriptional regulation of colonic epithelial repair by RNA binding protein IMP 1/IGF 2 BP 1. EMBO Rep., 2019, 20(6), e47074. doi: 10.15252/embr.201847074 PMID: 31061170
  12. Manieri, N.A.; Drylewicz, M.R.; Miyoshi, H.; Stappenbeck, T.S. Igf2bp1 is required for full induction of Ptgs2 mRNA in colonic mesenchymal stem cells in mice. Gastroenterology, 2012, 143(1), 110-121.e10. doi: 10.1053/j.gastro.2012.03.037 PMID: 22465430
  13. Dimitriadis, E.; Trangas, T.; Milatos, S.; Foukas, P.G.; Gioulbasanis, I.; Courtis, N.; Nielsen, F.C.; Pandis, N.; Dafni, U.; Bardi, G.; Ioannidis, P. Expression of oncofetal RNA-binding protein CRD-BP/IMP1 predicts clinical outcome in colon cancer. Int. J. Cancer, 2007, 121(3), 486-494. doi: 10.1002/ijc.22716 PMID: 17415713
  14. Singh, V.; Gowda, C.P.; Singh, V.; Ganapathy, A.S.; Karamchandani, D.M.; Eshelman, M.A.; Yochum, G.S.; Nighot, P.; Spiegelman, V.S. The mRNA-binding protein IGF2BP1 maintains intestinal barrier function by up-regulating occludin expression. J. Biol. Chem., 2020, 295(25), 8602-8612. doi: 10.1074/jbc.AC120.013646 PMID: 32385106
  15. Noubissi, F.K.; Nikiforov, M.A.; Colburn, N.; Spiegelman, V.S. Transcriptional Regulation of CRD-BP by c-myc: Implications for c-myc Functions. Genes Cancer, 2010, 1(10), 1074-1082. doi: 10.1177/1947601910395581 PMID: 21779431
  16. Chen, H.M.; Lin, C.C.; Chen, W.S.; Jiang, J.K.; Yang, S.H.; Chang, S.C.; Ho, C.L.; Yang, C.C.; Huang, S.C.; Chao, Y.; Liao, T.T.; Hwang, W.L.; Teng, H.W. Insulin-like growth factor 2 mRNA-Binding Protein 1 (IGF2BP1) is a prognostic biomarker and associated with chemotherapy responsiveness in colorectal cancer. Int. J. Mol. Sci., 2021, 22(13), 6940. doi: 10.3390/ijms22136940 PMID: 34203267
  17. Chen, M.; Tian, B.; Hu, G.; Guo, Y. METTL3-Modulated circUHRF2 promotes colorectal cancer stemness and metastasis through increasing DDX27 mRNA Stability by Recruiting IGF2BP1. Cancers, 2023, 15(12), 3148. doi: 10.3390/cancers15123148 PMID: 37370759
  18. Hagemann, S.; Misiak, D.; Bell, J.L.; Fuchs, T.; Lederer, M.I.; Bley, N.; Hämmerle, M.; Ghazy, E.; Sippl, W.; Schulte, J.H.; Hüttelmaier, S. IGF2BP1 induces neuroblastoma via a druggable feedforward loop with MYCN promoting 17q oncogene expression. Mol. Cancer, 2023, 22(1), 88. doi: 10.1186/s12943-023-01792-0 PMID: 37246217
  19. Dhamdhere, M.R.; Gowda, C.P.; Singh, V.; Liu, Z.; Carruthers, N.; Grant, C.N.; Sharma, A.; Dovat, S.; Sundstrom, J.M.; Wang, H.G.; Spiegelman, V.S. IGF2BP1 regulates the cargo of extracellular vesicles and promotes neuroblastoma metastasis. Oncogene, 2023, 42(19), 1558-1571. doi: 10.1038/s41388-023-02671-0 PMID: 36973517
  20. Xi, Y.; Wang, Y. IGF2BP1, a new target to overcome drug resistance in melanoma? Front. Pharmacol., 2022, 13, 947363. doi: 10.3389/fphar.2022.947363 PMID: 35935853
  21. Ghoshal, A.; Rodrigues, L.C.; Gowda, C.P.; Elcheva, I.A.; Liu, Z.; Abraham, T.; Spiegelman, V.S. Extracellular vesicle-dependent effect of RNA-binding protein IGF2BP1 on melanoma metastasis. Oncogene, 2019, 38(21), 4182-4196. doi: 10.1038/s41388-019-0797-3 PMID: 30936459
  22. Cai, X.; Chen, Y.; Man, D.; Yang, B.; Feng, X.; Zhang, D.; Chen, J.; Wu, J. RBM15 promotes hepatocellular carcinoma progression by regulating N6-methyladenosine modification of YES1 mRNA in an IGF2BP1-dependent manner. Cell Death Discov., 2021, 7(1), 315. doi: 10.1038/s41420-021-00703-w PMID: 34707107
  23. Xu, Y.; Zheng, Y.; Liu, H.; Li, T. Modulation of IGF2BP1 by long non-coding RNA HCG11 suppresses apoptosis of hepatocellular carcinoma cells via MAPK signaling transduction. Int. J. Oncol., 2017, 51(3), 791-800. doi: 10.3892/ijo.2017.4066 PMID: 28677801
  24. Qiao, Y.S.; Zhou, J.H.; Jin, B.H.; Wu, Y.Q.; Zhao, B. LINC00483 is regulated by IGF2BP1 and participates in the progression of breast cancer. Eur. Rev. Med. Pharmacol. Sci., 2021, 25(3), 1379-1386. PMID: 33629308
  25. Shi, J.; Zhang, Q.; Yin, X.; Ye, J.; Gao, S.; Chen, C.; Yang, Y.; Wu, B.; Fu, Y.; Zhang, H.; Wang, Z.; Wang, B.; Zhu, Y.; Wu, H.; Yao, Y.; Xu, G.; Wang, Q.; Wang, S.; Zhang, W. Stabilization of IGF2BP1 by USP10 promotes breast cancer metastasis via CPT1A in an m6A-dependent manner. Int. J. Biol. Sci., 2023, 19(2), 449-464. doi: 10.7150/ijbs.76798 PMID: 36632454
  26. Bley, N.; Schott, A.; Müller, S.; Misiak, D.; Lederer, M.; Fuchs, T.; Aßmann, C.; Glaß, M.; Ihling, C.; Sinz, A.; Pazaitis, N.; Wickenhauser, C.; Vetter, M.; Ungurs, O.; Strauss, H.G.; Thomssen, C.; Hüttelmaier, S. IGF2BP1 is a targetable SRC/MAPK-dependent driver of invasive growth in ovarian cancer. RNA Biol., 2021, 18(3), 391-403. doi: 10.1080/15476286.2020.1812894 PMID: 32876513
  27. Jin, Y.; Qiu, J.; Lu, X.; Ma, Y.; Li, G. LncRNA CACNA1G-AS1 up-regulates FTH1 to inhibit ferroptosis and promote malignant phenotypes in ovarian cancer cells. Oncol. Res., 2023, 31(2), 169-179. doi: 10.32604/or.2023.027815 PMID: 37304234
  28. Sperling, F.; Misiak, D.; Hüttelmaier, S.; Michl, P.; Griesmann, H. IGF2BP1 promotes proliferation of neuroendocrine neoplasms by post-transcriptional enhancement of EZH2. Cancers, 2022, 14(9), 2121. doi: 10.3390/cancers14092121 PMID: 35565249
  29. Barazeghi, E.; Hellman, P.; Norlén, O.; Westin, G.; Stålberg, P. EZH2 presents a therapeutic target for neuroendocrine tumors of the small intestine. Sci. Rep., 2021, 11(1), 22733. doi: 10.1038/s41598-021-02181-7 PMID: 34815475
  30. Rensburg, G.; Mackedenski, S.; Lee, C.H. Characterizing the coding region determinant-binding protein (CRD-BP)-microphthalmia-associated transcription factor (MITF) mRNA interaction. PLoS One, 2017, 12(2), e0171196. doi: 10.1371/journal.pone.0171196 PMID: 28182633
  31. Noubissi, F.K.; Goswami, S.; Sanek, N.A.; Kawakami, K.; Minamoto, T.; Moser, A.; Grinblat, Y.; Spiegelman, V.S. Wnt signaling stimulates transcriptional outcome of the Hedgehog pathway by stabilizing GLI1 mRNA. Cancer Res., 2009, 69(22), 8572-8578. doi: 10.1158/0008-5472.CAN-09-1500 PMID: 19887615
  32. Wallis, N.; Oberman, F.; Shurrush, K.; Germain, N.; Greenwald, G.; Gershon, T.; Pearl, T.; Abis, G.; Singh, V.; Singh, A.; Sharma, A.K.; Barr, H.M.; Ramos, A.; Spiegelman, V.S.; Yisraeli, J.K. Small molecule inhibitor of Igf2bp1 represses Kras and a pro-oncogenic phenotype in cancer cells. RNA Biol., 2022, 19(1), 26-43. doi: 10.1080/15476286.2021.2010983 PMID: 34895045
  33. Vikesaa, J.; Hansen, T.V.O.; Jønson, L.; Borup, R.; Wewer, U.M.; Christiansen, J.; Nielsen, F.C. RNA-binding IMPs promote cell adhesion and invadopodia formation. EMBO J., 2006, 25(7), 1456-1468. doi: 10.1038/sj.emboj.7601039 PMID: 16541107
  34. Runge, S.; Nielsen, F.C.; Nielsen, J.; Lykke-Andersen, J.; Wewer, U.M.; Christiansen, J. H19 RNA binds four molecules of insulin-like growth factor II mRNA-binding protein. J. Biol. Chem., 2000, 275(38), 29562-29569. doi: 10.1074/jbc.M001156200 PMID: 10875929
  35. Atlas, R.; Behar, L.; Elliott, E.; Ginzburg, I. The insulin-like growth factor mRNA binding-protein IMP-1 and the Ras-regulatory protein G3BP associate with tau mRNA and HuD protein in differentiated P19 neuronal cells. J. Neurochem., 2004, 89(3), 613-626. doi: 10.1111/j.1471-4159.2004.02371.x PMID: 15086518
  36. Noubissi, F.K.; Elcheva, I.; Bhatia, N.; Shakoori, A.; Ougolkov, A.; Liu, J.; Minamoto, T.; Ross, J.; Fuchs, S.Y.; Spiegelman, V.S. CRD-BP mediates stabilization of βTrCP1 and c-myc mRNA in response to β-catenin signalling. Nature, 2006, 441(7095), 898-901. doi: 10.1038/nature04839 PMID: 16778892
  37. Hosono, Y.; Niknafs, Y.S.; Prensner, J.R. Oncogenic role of THOR, a conserved cancer/testis long non-coding RNA. Cell, 2017, 171(7), 1559-1572.
  38. Mongroo, P.S.; Noubissi, F.K.; Cuatrecasas, M.; Kalabis, J.; King, C.E.; Johnstone, C.N.; Bowser, M.J.; Castells, A.; Spiegelman, V.S.; Rustgi, A.K. IMP-1 displays cross-talk with K-Ras and modulates colon cancer cell survival through the novel proapoptotic protein CYFIP2. Cancer Res., 2011, 71(6), 2172-2182. doi: 10.1158/0008-5472.CAN-10-3295 PMID: 21252116
  39. Luo, Y.; Sun, R.; Zhang, J.; Sun, T.; Liu, X.; Yang, B. miR-506 inhibits the proliferation and invasion by targeting IGF2BP1 in glioblastoma. Am. J. Transl. Res., 2015, 7(10), 2007-2014. PMID: 26692944
  40. Elcheva, I.; Goswami, S.; Noubissi, F.K.; Spiegelman, V.S. CRD-BP protects the coding region of betaTrCP1 mRNA from miR-183-mediated degradation. Mol. Cell, 2009, 35(2), 240-246. doi: 10.1016/j.molcel.2009.06.007 PMID: 19647520
  41. Zheng, Q.; Yu, J.J.; Li, C. miR-224 targets BTRC and promotes cell migration and invasion in colorectal cancer. 3 Biotech, 2020, 10(11), 485.
  42. Ougolkov, A.; Zhang, B.; Yamashita, K.; Bilim, V.; Mai, M.; Fuchs, S.Y.; Minamoto, T. Associations among beta-TrCP, an E3 ubiquitin ligase receptor, beta-catenin, and NF-kappaB in colorectal cancer. J. Natl. Cancer Inst., 2004, 96(15), 1161-1170. doi: 10.1093/jnci/djh219 PMID: 15292388
  43. Zhao, H.; Ming, T.; Tang, S.; Ren, S.; Yang, H.; Liu, M.; Tao, Q.; Xu, H. Wnt signaling in colorectal cancer: Pathogenic role and therapeutic target. Mol. Cancer, 2022, 21(1), 144. doi: 10.1186/s12943-022-01616-7 PMID: 35836256
  44. Schirosi, L. Mazzotta, A.; Opinto, G.; Pinto, R.; Graziano, G.; Tommasi, S.; Fucci, L.; Simone, G.; Mangia, A. β-catenin interaction with NHERF1 and RASSF1A methylation in metastatic colorectal cancer patients. Oncotarget, 2016, 7(42), 67841-67850. doi: 10.18632/oncotarget.12280 PMID: 27765918
  45. Hayashi, Y.; Molina, J.R.; Hamilton, S.R.; Georgescu, M.M. NHERF1/EBP50 is a new marker in colorectal cancer. Neoplasia, 2010, 12(12), 1013-IN9. doi: 10.1593/neo.10780 PMID: 21170265
  46. Shibata, T.; Chuma, M.; Kokubu, A.; Sakamoto, M.; Hirohashi, S. EBP50, a β-catenin-associating protein, enhances Wnt signaling and is over-expressed in hepatocellular carcinoma. Hepatology, 2003, 38(1), 178-186. doi: 10.1053/jhep.2003.50270 PMID: 12830000
  47. Fuchs, S.Y.; Spiegelman, V.S.; Suresh, K.K.G. The many faces of β-TrCP E3 ubiquitin ligases: Reflections in the magic mirror of cancer. Oncogene, 2004, 23(11), 2028-2036. doi: 10.1038/sj.onc.1207389 PMID: 15021890
  48. Sakamoto, K.; Maeda, S.; Hikiba, Y.; Nakagawa, H.; Hayakawa, Y.; Shibata, W.; Yanai, A.; Ogura, K.; Omata, M. Constitutive NF-kappaB activation in colorectal carcinoma plays a key role in angiogenesis, promoting tumor growth. Clin. Cancer Res., 2009, 15(7), 2248-2258. doi: 10.1158/1078-0432.CCR-08-1383 PMID: 19276252
  49. Yu, L. Li, L.; Medeiros, L.J.; Young, K.H. NF-κB signaling pathway and its potential as a target for therapy in lymphoid neoplasms. Blood Rev., 2017, 31(2), 77-92. doi: 10.1016/j.blre.2016.10.001 PMID: 27773462
  50. Melikian, M.; Eluard, B.; Bertho, G.; Baud, V.; Evrard-Todeschi, N. Model of the interaction between the NF-κB Inhibitory Protein p100 and the E3 Ubiquitin Ligase β-TrCP based on NMR and docking experiments. J. Chem. Inf. Model., 2017, 57(2), 223-233. doi: 10.1021/acs.jcim.5b00409 PMID: 28004927
  51. Lang, V.; Janzen, J.; Fischer, G.Z.; Soneji, Y.; Beinke, S.; Salmeron, A.; Allen, H.; Hay, R.T.; Ben-Neriah, Y.; Ley, S.C. betaTrCP-mediated proteolysis of NF-kappaB1 p105 requires phosphorylation of p105 serines 927 and 932. Mol. Cell. Biol., 2003, 23(1), 402-413. doi: 10.1128/MCB.23.1.402-413.2003 PMID: 12482991
  52. Lauscher, J.C.; Gröne, J.; Dullat, S.; Hotz, B.; Ritz, J.P.; Steinhoff, U.; Buhr, H.J.; Visekruna, A. Association between activation of atypical NF-kappaB1 p105 signaling pathway and nuclear beta-catenin accumulation in colorectal carcinoma. Mol. Carcinog., 2010, 49(2), 121-129. PMID: 20027638
  53. Jeng, K.S.; Chang, C.F.; Lin, S.S. Sonic hedgehog signaling in organogenesis, tumors, and tumor microenvironments. Int. J. Mol. Sci., 2020, 21(3), 758. doi: 10.3390/ijms21030758 PMID: 31979397
  54. Mehmood, K.; Akhtar, D.; Mackedenski, S.; Wang, C.; Lee, C.H. Inhibition of GLI1 expression by targeting the CRD-BP–GLI1 mRNA interaction using a specific oligonucleotide. Mol. Pharmacol., 2016, 89(6), 695-706. doi: 10.1124/mol.115.102434 PMID: 27036131
  55. Sigafoos, A.N.; Paradise, B.D.; Fernandez-Zapico, M.E. Hedgehog/GLI signaling pathway: Transduction, regulation, and implications for disease. Cancers, 2021, 13(14), 3410. doi: 10.3390/cancers13143410 PMID: 34298625
  56. Douard, R.; Moutereau, S.; Pernet, P.; Chimingqi, M.; Allory, Y.; Manivet, P.; Conti, M.; Vaubourdolle, M.; Cugnenc, P.H.; Loric, S. Sonic Hedgehog–dependent proliferation in a series of patients with colorectal cancer. Surgery, 2006, 139(5), 665-670. doi: 10.1016/j.surg.2005.10.012 PMID: 16701100
  57. Wang, D.; Hu, G.; Du, Y.; Zhang, C.; Lu, Q.; Lv, N.; Luo, S. Aberrant activation of hedgehog signaling promotes cell proliferation via the transcriptional activation of forkhead Box M1 in colorectal cancer cells. J. Exp. Clin. Cancer Res., 2017, 36(1), 23. doi: 10.1186/s13046-017-0491-7 PMID: 28148279
  58. Wang, H.; Li, Y.Y.; Wu, Y.Y.; Nie, Y.Q. Expression and clinical significance of hedgehog signaling pathway related components in colorectal cancer. Asian Pac. J. Cancer Prev., 2012, 13(5), 2319-2324. doi: 10.7314/APJCP.2012.13.5.2319 PMID: 22901214
  59. Katoh, Y.; Katoh, M. Hedgehog signaling pathway and gastrointestinal stem cell signaling network (Review). Int. J. Mol. Med., 2006, 18(6), 1019-1023. doi: 10.3892/ijmm.18.6.1019 PMID: 17089004
  60. Song, L.; Li, Z.Y.; Liu, W.P.; Zhao, M.R. Crosstalk between Wnt/β-catenin and Hedgehog/Gli signaling pathways in colon cancer and implications for therapy. Cancer Biol. Ther., 2015, 16(1), 1-7. doi: 10.4161/15384047.2014.972215 PMID: 25692617
  61. Krishnamurthy, N.; Kurzrock, R. Targeting the Wnt/beta-catenin pathway in cancer: Update on effectors and inhibitors. Cancer Treat. Rev., 2018, 62, 50-60. doi: 10.1016/j.ctrv.2017.11.002 PMID: 29169144
  62. Mazumdar, T.; DeVecchio, J.; Agyeman, A.; Shi, T.; Houghton, J.A. Blocking Hedgehog survival signaling at the level of the GLI genes induces DNA damage and extensive cell death in human colon carcinoma cells. Cancer Res., 2011, 71(17), 5904-5914. doi: 10.1158/0008-5472.CAN-10-4173 PMID: 21747117
  63. Hamilton, K.E.; Noubissi, F.K.; Katti, P.S.; Hahn, C.M.; Davey, S.R.; Lundsmith, E.T.; Klein-Szanto, A.J.; Rhim, A.D.; Spiegelman, V.S.; Rustgi, A.K. IMP1 promotes tumor growth, dissemination and a tumor-initiating cell phenotype in colorectal cancer cell xenografts. Carcinogenesis, 2013, 34(11), 2647-2654. doi: 10.1093/carcin/bgt217 PMID: 23764754
  64. Betson, N.; Hajahmed, M.; Gebretsadek, T.; Ndebele, K.; Ahmad, H.A.; Tchounwou, P.B.; Spiegelman, V.S.; Noubissi, F.K. Inhibition of insulin-like growth factor 2 MRNA -binding protein 1 sensitizes colorectal cancer cells to chemotherapeutics. FASEB Bioadv., 2022, 4(12), 816-829. doi: 10.1096/fba.2021-00069 PMID: 36479210
  65. Van Cutsem, E.; Köhne, C.H.; Láng, I.; Folprecht, G.; Nowacki, M.P.; Cascinu, S.; Shchepotin, I.; Maurel, J.; Cunningham, D.; Tejpar, S.; Schlichting, M.; Zubel, A.; Celik, I.; Rougier, P.; Ciardiello, F. Cetuximab plus irinotecan, fluorouracil, and leucovorin as first-line treatment for metastatic colorectal cancer: Updated analysis of overall survival according to tumor KRAS and BRAF mutation status. J. Clin. Oncol., 2011, 29(15), 2011-2019. doi: 10.1200/JCO.2010.33.5091 PMID: 21502544
  66. Samanta, S.; Pursell, B.; Mercurio, A.M. IMP3 protein promotes chemoresistance in breast cancer cells by regulating breast cancer resistance protein (ABCG2) expression. J. Biol. Chem., 2013, 288(18), 12569-12573. doi: 10.1074/jbc.C112.442319 PMID: 23539627
  67. Hsu, K-F.; Shen, M-R.; Huang, Y-F.; Cheng, Y-M.; Lin, S-H.; Chow, N-H.; Cheng, S-W.; Chou, C-Y.; Ho, C-L. Overexpression of the RNA-binding proteins Lin28B and IGF2BP3 (IMP3) is associated with chemoresistance and poor disease outcome in ovarian cancer. Br. J. Cancer, 2015, 113(3), 414-424. doi: 10.1038/bjc.2015.254 PMID: 26158423
  68. Faye, M.D.; Beug, S.T.; Graber, T.E.; Earl, N.; Xiang, X.; Wild, B.; Langlois, S.; Michaud, J.; Cowan, K.N.; Korneluk, R.G.; Holcik, M. IGF2BP1 controls cell death and drug resistance in rhabdomyosarcomas by regulating translation of cIAP1. Oncogene, 2015, 34(12), 1532-1541. doi: 10.1038/onc.2014.90 PMID: 24704827
  69. Kim, T.; Havighurst, T.; Kim, K.; Albertini, M.; Xu, Y.G.; Spiegelman, V.S. Targeting insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1) in metastatic melanoma to increase efficacy of BRAF V600E inhibitors. Mol. Carcinog., 2018, 57(5), 678-683. doi: 10.1002/mc.22786 PMID: 29369405
  70. Maniotis, A.J.; Folberg, R.; Hess, A.; Seftor, E.A.; Gardner, L.M.G.; Pe’er, J.; Trent, J.M.; Meltzer, P.S.; Hendrix, M.J.C. Vascular channel formation by human melanoma cells in vivo and in vitro: vasculogenic mimicry. Am. J. Pathol., 1999, 155(3), 739-752. doi: 10.1016/S0002-9440(10)65173-5 PMID: 10487832
  71. Ge, H.; Luo, H. Overview of advances in vasculogenic mimicry – a potential target for tumor therapy. Cancer Manag. Res., 2018, 10, 2429-2437. doi: 10.2147/CMAR.S164675 PMID: 30122992
  72. Li, W.; Zong, S.; Shi, Q.; Li, H.; Xu, J.; Hou, F. Hypoxia-induced vasculogenic mimicry formation in human colorectal cancer cells: Involvement of HIF-1a, Claudin-4, and E-cadherin and Vimentin. Sci. Rep., 2016, 6(1), 37534. doi: 10.1038/srep37534 PMID: 27869227
  73. Liu, X.; He, H.; Zhang, F.; Hu, X.; Bi, F.; Li, K.; Yu, H.; Zhao, Y.; Teng, X.; Li, J.; Wang, L.; Zhang, Y.; Wu, Q. m6A methylated EphA2 and VEGFA through IGF2BP2/3 regulation promotes vasculogenic mimicry in colorectal cancer via PI3K/AKT and ERK1/2 signaling. Cell Death Dis., 2022, 13(5), 483. doi: 10.1038/s41419-022-04950-2 PMID: 35595748
  74. Mahapatra, L.; Andruska, N.; Mao, C.; Le, J.; Shapiro, D.J. A Novel IMP1 Inhibitor, BTYNB, Targets c-Myc and inhibits melanoma and ovarian cancer cell proliferation. Transl. Oncol., 2017, 10(5), 818-827. doi: 10.1016/j.tranon.2017.07.008 PMID: 28846937
  75. Müller, S.; Bley, N.; Busch, B.; Glaß, M.; Lederer, M.; Misiak, C.; Fuchs, T.; Wedler, A.; Haase, J.; Bertoldo, J.B.; Michl, P.; Hüttelmaier, S. The oncofetal RNA-binding protein IGF2BP1 is a druggable, post-transcriptional super-enhancer of E2F-driven gene expression in cancer. Nucleic Acids Res., 2020, 48(15), 8576-8590. doi: 10.1093/nar/gkaa653 PMID: 32761127
  76. Liu, Y.; Guo, Q.; Yang, H.; Zhang, X.W.; Feng, N.; Wang, J.K.; Liu, T.T.; Zeng, K.W.; Tu, P.F. Allosteric regulation of IGF2BP1 as a novel strategy for the activation of tumor immune microenvironment. ACS Cent. Sci., 2022, 8(8), 1102-1115. doi: 10.1021/acscentsci.2c00107 PMID: 36032766

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers