Chalcones as Potential Cyclooxygenase-2 Inhibitors: A Review


Cite item

Full Text

Abstract

Cyclooxygenases (COXs) play a pivotal role in inflammation, a complex phenomenon required in human defense, but also involved in the emergence of insidious human disorders. Currently-used COX-1 inhibitors (Non-Steroidal Anti-Inflammatory Drugs-NSAIDs), as the most frequent choices for the treatment of chronic inflammatory diseases, have been identified to be associated with a variety of adverse drug reactions, especially dyspepsia, as well as peptic ulcer, which lead to diminished output. Moreover, the structural similarities of COX- 1 and -2, along with the availability of comprehensive information about the three-dimensional structure of COX- 2, co-crystallized with various inhibitors, search selective COX-2 inhibitors a formidable challenge. COX-2 inhibitors were shown to minimize the incidence of metastasis in cancer patients when administered preoperatively. Developing selective COX-2 inhibitors to tackle both cancer and chronic inflammatory illnesses has been identified as a promising research direction in recent decades. Identifying innovative scaffolds to integrate as the major component of future COX-2 inhibitors is critical in this regard. The presence of a central, ɑ, β-unsaturated carbonyl- containing scaffold, as a characteristic structural pattern in many selective COX-2 inhibitors, along with a huge count of chalcone-based anticancer agents representing the basic idea of this review; providing a survey of the most recently published literature concerning development of chalcone analogs as novel COX-2 inhibitors until 2022 with efficient anticancer activity. A brief overview of the most recent developments concerning structure- activity relationship insights and mechanisms is also reported, helping pave the road for additional investigation.

About the authors

Mohammad Mahboubi-Rabbani

Department of Medicinal Chemistry, School of Pharmacy, Islamic Azad University,

Email: info@benthamscience.net

Rosa Zarei

Department of Medicinal Chemistry, School of Pharmacy, Islamic Azad University

Email: info@benthamscience.net

Mehdi Baradaran

Department of Medicinal Chemistry, School of Pharmacy,, Islamic Azad University,

Email: info@benthamscience.net

Maryam Bayanati

Department of Food Technology Research, Faculty of Nutrition Sciences and Food Technology/National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences

Email: info@benthamscience.net

Afshin Zarghi

Department of Medicinal Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences

Author for correspondence.
Email: info@benthamscience.net

References

  1. Bukowski, K.; Kciuk, M.; Kontek, R. Mechanisms of multidrug resistance in cancer chemotherapy. Int. J. Mol. Sci., 2020, 21(9), 3233. doi: 10.3390/ijms21093233 PMID: 32370233
  2. Housman, G.; Byler, S.; Heerboth, S.; Lapinska, K.; Longacre, M.; Snyder, N.; Sarkar, S. Drug resistance in cancer: An overview. Cancers, 2014, 6(3), 1769-1792. doi: 10.3390/cancers6031769 PMID: 25198391
  3. de Souza, P.S.; Bibá, G.C.C.; Melo, E.D.N.; Muzitano, M.F. Chalcones against the hallmarks of cancer: A mini-review. Nat. Prod. Res., 2022, 36(18), 4803-4820. doi: 10.1080/14786419.2021.2000980 PMID: 34865580
  4. Dempke, W.; Rie, C.; Grothey, A.; Schmoll, H.J. Cyclooxygenase-2: A novel target for cancer chemotherapy? J. Cancer Res. Clin. Oncol., 2001, 127(7), 411-417. doi: 10.1007/s004320000225 PMID: 11469677
  5. Ricciotti, E.; FitzGerald, G.A. Prostaglandins and Inflammation. Arterioscler. Thromb. Vasc. Biol., 2011, 31(5), 986-1000. doi: 10.1161/ATVBAHA.110.207449 PMID: 21508345
  6. Méric, J.B.; Rottey, S.; Olaussen, K.; Soria, J.C.; Khayat, D.; Rixe, O.; Spano, J.P. Cyclooxygenase-2 as a target for anticancer drug development. Crit. Rev. Oncol. Hematol., 2006, 59(1), 51-64. doi: 10.1016/j.critrevonc.2006.01.003 PMID: 16531064
  7. Sales, K.J.; Jabbour, H.N. Cyclooxygenase enzymes and prostaglandins in pathology of the endometrium. Reproduction, 2003, 126(5), 559-567. doi: 10.1530/rep.0.1260559 PMID: 14611628
  8. Heasley, L.E. Autocrine and paracrine signaling through neuropeptide receptors in human cancer. Oncogene, 2001, 20(13), 1563-1569. doi: 10.1038/sj.onc.1204183 PMID: 11313903
  9. Reader, J.; Holt, D.; Fulton, A. Prostaglandin E2 EP receptors as therapeutic targets in breast cancer. Cancer Metastasis Rev., 2011, 30(3-4), 449-463. doi: 10.1007/s10555-011-9303-2 PMID: 22002714
  10. Puurunen, J. Central nervous system effects of arachidonic acid, PGE2, PGF2α PGD2 and PGI2 on gastric secretion in the rat. Br. J. Pharmacol., 1983, 80(2), 255-262. doi: 10.1111/j.1476-5381.1983.tb10028.x PMID: 6360279
  11. Sugita, R.; Kuwabara, H.; Kubota, K.; Sugimoto, K.; Kiho, T.; Tengeiji, A.; Kawakami, K.; Shimada, K. Simultaneous inhibition of PGE 2 and PGI 2 signals is necessary to suppress hyperalgesia in rat inflammatory pain models. Mediators Inflamm., 2016, 2016, 1-10. doi: 10.1155/2016/9847840 PMID: 27478311
  12. Vane, J.R.; Botting, R.M. Mechanism of action of nonsteroidal anti-inflammatory drugs. Am. J. Med., 1998, 104(3), 2S-8S. doi: 10.1016/S0002-9343(97)00203-9 PMID: 9572314
  13. Mitchell, J.A.; Warner, T.D. Cyclo-oxygenase-2: Pharmacology, physiology, biochemistry and relevance to NSAID therapy. Br. J. Pharmacol., 1999, 128(6), 1121-1132. doi: 10.1038/sj.bjp.0702897 PMID: 10578123
  14. Simmons, D.L.; Wagner, D.; Westover, K. Nonsteroidal anti-inflammatory drugs, acetaminophen, cyclooxygenase 2, and fever. Clin. Infect. Dis., 2000, 31(Suppl. 5), S211-S218. doi: 10.1086/317517 PMID: 11113025
  15. Zidar, N.; Odar, K.; Glavac, D.; Jerse, M.; Zupanc, T.; Stajer, D. Cyclooxygenase in normal human tissues – is COX-1 really a constitutive isoform, and COX-2 an inducible isoform? J. Cell. Mol. Med., 2009, 13(9b), 3753-3763. doi: 10.1111/j.1582-4934.2008.00430.x PMID: 18657230
  16. Grosser, T.; Fries, S.; FitzGerald, G.A. Biological basis for the cardiovascular consequences of COX-2 inhibition: therapeutic challenges and opportunities. J. Clin. Invest., 2005, 116(1), 4-15. doi: 10.1172/JCI27291 PMID: 16395396
  17. Orlando, B.J.; McDougle, D.R.; Lucido, M.J.; Eng, E.T.; Graham, L.A.; Schneider, C.; Stokes, D.L.; Das, A.; Malkowski, M.G. Cyclooxygenase-2 catalysis and inhibition in lipid bilayer nanodiscs. Arch. Biochem. Biophys., 2014, 546, 33-40. doi: 10.1016/j.abb.2014.01.026 PMID: 24503478
  18. Attiq, A.; Jalil, J.; Husain, K.; Ahmad, W. Raging the war against inflammation with natural products. Front. Pharmacol., 2018, 9, 976. doi: 10.3389/fphar.2018.00976 PMID: 30245627
  19. Rouzer, C.A.; Marnett, L.J. Cyclooxygenases: Structural and functional insights. J. Lipid Res., 2009, 50, S29-S34. doi: 10.1194/jlr.R800042-JLR200
  20. Ghanghas, P.; Jain, S.; Rana, C.; Sanyal, S.N. Chemopreventive action of non-steroidal anti-inflammatory drugs on the inflammatory pathways in colon cancer. Biomed. Pharmacother., 2016, 78, 239-247. doi: 10.1016/j.biopha.2016.01.024
  21. Chan, A.T. Aspirin and familial adenomatous polyposis: Coming full circle. Cancer Prev. Res., 2011, 4(5), 623-627. doi: 10.1158/1940-6207.CAPR-11-0157 PMID: 21543340
  22. Sostres, C.; Gargallo, C.J.; Lanas, A. Aspirin, cyclooxygenase inhibition and colorectal cancer. World J. Gastrointest. Pharmacol. Ther., 2014, 5(1), 40-49. doi: 10.4292/wjgpt.v5.i1.40 PMID: 24605250
  23. Maniewska, J. Jeżewska, D. Non-steroidal anti-inflammatory drugs in colorectal cancer chemoprevention. Cancers, 2021, 13(4), 594. doi: 10.3390/cancers13040594 PMID: 33546238
  24. Pannunzio, A.; Coluccia, M. Cyclooxygenase-1 (COX-1) and COX-1 Inhibitors in Cancer: A review of oncology and medicinal chemistry literature. Pharmaceuticals, 2018, 11(4), 101. doi: 10.3390/ph11040101 PMID: 30314310
  25. Frejborg, E.; Salo, T.; Salem, A. Role of cyclooxygenase-2 in head and neck tumorigenesis. Int. J. Mol. Sci., 2020, 21(23), 9246. doi: 10.3390/ijms21239246 PMID: 33287464
  26. Craig, R.; Larkin, A.; Mingo, A.M.; Thuerauf, D.J.; Andrews, C.; McDonough, P.M.; Glembotski, C.C. p38 MAPK and NF-kappa B collaborate to induce interleukin-6 gene expression and release. Evidence for a cytoprotective autocrine signaling pathway in a cardiac myocyte model system. J. Biol. Chem., 2000, 275(31), 23814-23824. doi: 10.1074/jbc.M909695199 PMID: 10781614
  27. Yuen, H.F.; Chan, Y.K.; Grills, C.; McCrudden, C.M.; Gunasekharan, V.; Shi, Z.; Wong, A.S.Y.; Lappin, T.R.; Chan, K.W.; Fennell, D.A.; Khoo, U.S.; Johnston, P.G.; El-Tanani, M. Polyomavirus enhancer activator 3 protein promotes breast cancer metastatic progression through Snail-induced epithelial-mesenchymal transition. J. Pathol., 2011, 224(1), 78-89. doi: 10.1002/path.2859 PMID: 21404275
  28. Hoesel, B.; Schmid, J.A. The complexity of NF-κB signaling in inflammation and cancer. Mol. Cancer, 2013, 12(1), 86. doi: 10.1186/1476-4598-12-86 PMID: 23915189
  29. Liu, Y.; Borchert, G.L.; Surazynski, A.; Phang, J.M. Proline oxidase, a p53-induced gene, targets COX-2/PGE2 signaling to induce apoptosis and inhibit tumor growth in colorectal cancers. Oncogene, 2008, 27(53), 6729-6737. doi: 10.1038/onc.2008.322 PMID: 18794809
  30. Dixon, D.A.; Blanco, F.F.; Bruno, A.; Patrignani, P. Mechanistic aspects of COX-2 expression in colorectal neoplasia. Recent Results Cancer Res., 2013, 191, 7-37. doi: 10.1007/978-3-642-30331-9_2 PMID: 22893198
  31. Szweda, M.; Rychlik, A. Babińska, I.; Pomianowski, A. Significance of cyclooxygenase-2 in oncogenesis. J. Vet. Res., 2019, 63(2), 215-224. doi: 10.2478/jvetres-2019-0030 PMID: 31276061
  32. Ding, X.Z.; Hennig, R.; Adrian, T.E. Lipoxygenase and cyclooxygenase metabolism: New insights in treatment and chemoprevention of pancreatic cancer. Mol. Cancer, 2003, 2(1), 10. doi: 10.1186/1476-4598-2-10 PMID: 12575899
  33. Esteves, F.; Rueff, J.; Kranendonk, M. The central role of cytochrome P450 in xenobiotic metabolism—A brief review on a fascinating enzyme family. J. Xenobiot., 2021, 11(3), 94-114. doi: 10.3390/jox11030007 PMID: 34206277
  34. Jara-Gutiérrez, Á.; Baladrón, V. The role of prostaglandins in different types of cancer. Cells, 2021, 10(6), 1487. doi: 10.3390/cells10061487 PMID: 34199169
  35. Finetti, F.; Travelli, C.; Ercoli, J.; Colombo, G.; Buoso, E.; Trabalzini, L. Prostaglandin E2 and cancer: Insight into tumor progression and immunity. Biology, 2020, 9(12), 434. doi: 10.3390/biology9120434 PMID: 33271839
  36. Zarghi, A.; Arfaei, S. Selective COX-2 inhibitors: A review of their structure-activity relationships. Iran. J. Pharm. Res., 2011, 10(4), 655-683. PMID: 24250402
  37. Wong, R.S. Apoptosis in cancer: From pathogenesis to treatment. J. Exp. Clin. Cancer Res., 2011, 30(1), 87.
  38. Cui, J.; Zhao, S.; Li, Y.; Zhang, D.; Wang, B.; Xie, J.; Wang, J. Regulated cell death: Discovery, features and implications for neurodegenerative diseases. Cell Commun. Signal., 2021, 19(1), 120. doi: 10.1186/s12964-021-00799-8 PMID: 34922574
  39. Sun, Y.; Tang, X.M.; Half, E.; Kuo, M.T.; Sinicrope, F.A. Cyclooxygenase-2 overexpression reduces apoptotic susceptibility by inhibiting the cytochrome c-dependent apoptotic pathway in human colon cancer cells. Cancer Res., 2002, 62(21), 6323-6328. PMID: 12414664
  40. Yadav, N.; Kumar, S.; Marlowe, T.; Chaudhary, A.K.; Kumar, R.; Wang, J. Oxidative phosphorylation-dependent regulation of cancer cell apoptosis in response to anticancer agents. Cell Death Dis., 2015, 6(11), e1969. doi: 10.1038/cddis.2015.305
  41. Youssef, J.; Badr, M. Peroxisome proliferator-activated receptors and cancer: Challenges and opportunities. Br. J. Pharmacol., 2011, 164(1), 68-82. doi: 10.1111/j.1476-5381.2011.01383.x PMID: 21449912
  42. Martinasso, G.; Oraldi, M.; Trombetta, A.; Maggiora, M.; Bertetto, O.; Canuto, R.A.; Muzio, G. Involvement of PPARs in cell proliferation and apoptosis in human colon cancer specimens and in normal and cancer cell lines. PPAR Res., 2007, 2007, 1-9. doi: 10.1155/2007/93416 PMID: 17389773
  43. Peters, J.M.; Shah, Y.M.; Gonzalez, F.J. The role of peroxisome proliferator-activated receptors in carcinogenesis and chemoprevention. Nat. Rev. Cancer, 2012, 12(3), 181-195. doi: 10.1038/nrc3214 PMID: 22318237
  44. Wagner, N.; Wagner, K.D. PPAR beta/delta and the hallmarks of cancer. Cells, 2020, 9(5), 1133. doi: 10.3390/cells9051133 PMID: 32375405
  45. Elrod, H.A.; Sun, S.Y. PPAR γ and apoptosis in cancer. PPAR Res., 2008, 2008, 1-12. doi: 10.1155/2008/704165 PMID: 18615184
  46. Sobolewski, C.; Cerella, C.; Dicato, M.; Ghibelli, L.; Diederich, M. The role of cyclooxygenase-2 in cell proliferation and cell death in human malignancies. Int. J. Cell Biol., 2010, 2010, 1-21. doi: 10.1155/2010/215158 PMID: 20339581
  47. Baghban, R.; Roshangar, L.; Jahanban-Esfahlan, R.; Seidi, K.; Ebrahimi-Kalan, A.; Jaymand, M.; Kolahian, S.; Javaheri, T.; Zare, P. Tumor microenvironment complexity and therapeutic implications at a glance. Cell Commun. Signal., 2020, 18(1), 59. doi: 10.1186/s12964-020-0530-4 PMID: 32264958
  48. Winkler, J.; Abisoye-Ogunniyan, A.; Metcalf, K.J.; Werb, Z. Concepts of extracellular matrix remodelling in tumour progression and metastasis. Nat. Commun., 2020, 11(1), 5120. doi: 10.1038/s41467-020-18794-x PMID: 33037194
  49. Wells, A.; Grahovac, J.; Wheeler, S.; Ma, B.; Lauffenburger, D. Targeting tumor cell motility as a strategy against invasion and metastasis. Trends Pharmacol. Sci., 2013, 34(5), 283-289. doi: 10.1016/j.tips.2013.03.001 PMID: 23571046
  50. Sheng, J.; Sun, H.; Yu, F.B.; Li, B.; Zhang, Y.; Zhu, Y.T. The role of cyclooxygenase-2 in colorectal cancer. Int. J. Med. Sci., 2020, 17(8), 1095-1101. doi: 10.7150/ijms.44439 PMID: 32410839
  51. Nishida, N.; Yano, H.; Nishida, T.; Kamura, T.; Kojiro, M. Angiogenesis in cancer. Vasc. Health Risk Manag., 2006, 2(3), 213-219. doi: 10.2147/vhrm.2006.2.3.213 PMID: 17326328
  52. Ramanujan, S.; Koenig, G.C.; Padera, T.P.; Stoll, B.R.; Jain, R.K. Local imbalance of proangiogenic and antiangiogenic factors: A potential mechanism of focal necrosis and dormancy in tumors. Cancer Res., 2000, 60(5), 1442-1448. PMID: 10728711
  53. Gupta, M.K.; Qin, R.Y. Mechanism and its regulation of tumor-induced angiogenesis. World J. Gastroenterol., 2003, 9(6), 1144-1155. doi: 10.3748/wjg.v9.i6.1144 PMID: 12800214
  54. Gately, S. The contributions of cyclooxygenase-2 to tumor angiogenesis. Cancer Metastasis Rev., 2000, 19(1/2), 19-27. doi: 10.1023/A:1026575610124 PMID: 11191059
  55. Gonzalez, H.; Hagerling, C.; Werb, Z. Roles of the immune system in cancer: from tumor initiation to metastatic progression. Genes Dev., 2018, 32(19-20), 1267-1284. doi: 10.1101/gad.314617.118 PMID: 30275043
  56. Frank, K.; Paust, S. Dynamic natural killer cell and T cell responses to influenza infection. Front. Cell. Infect. Microbiol., 2020, 10, 425. doi: 10.3389/fcimb.2020.00425 PMID: 32974217
  57. Blobaum, A.L.; Marnett, L.J. Structural and functional basis of cyclooxygenase inhibition. J. Med. Chem., 2007, 50(7), 1425-1441. doi: 10.1021/jm0613166 PMID: 17341061
  58. Linn, S.C.; Giaccone, G. MDR1/P-glycoprotein expression in colorectal cancer. Eur. J. Cancer, 1995, 31a(7-8), 1291-1294.
  59. Sui, H.; Zhou, S.; Wang, Y.; Liu, X.; Zhou, L.; Yin, P.; Fan, Z.; Li, Q. COX-2 contributes to P-glycoprotein-mediated multidrug resistance via phosphorylation of c-Jun at Ser63/73 in colorectal cancer. Carcinogenesis, 2011, 32(5), 667-675. doi: 10.1093/carcin/bgr016 PMID: 21296766
  60. Waghray, D.; Zhang, Q. Inhibit or evade multidrug resistance p-glycoprotein in cancer treatment. J. Med. Chem., 2018, 61(12), 5108-5121. doi: 10.1021/acs.jmedchem.7b01457 PMID: 29251920
  61. Zhao, H.; Zhou, L.; Shangguan, A.J.; Bulun, S.E. Aromatase expression and regulation in breast and endometrial cancer. J. Mol. Endocrinol., 2016, 57(1), R19-R33. doi: 10.1530/JME-15-0310 PMID: 27067638
  62. Chan, H.J.; Petrossian, K.; Chen, S. Structural and functional characterization of aromatase, estrogen receptor, and their genes in endocrine-responsive and –resistant breast cancer cells. J. Steroid Biochem. Mol. Biol., 2016, 161, 73-83. doi: 10.1016/j.jsbmb.2015.07.018 PMID: 26277097
  63. Konturek, P.C.; Kania, J.; Burnat, G.; Hahn, E.G.; Konturek, S.J. Prostaglandins as mediators of COX-2 derived carcinogenesis in gastrointestinal tract. J. Physiol. Pharmacol., 2005, 56(S5), 57-73.
  64. Kinney, J.W.; Bemiller, S.M.; Murtishaw, A.S.; Leisgang, A.M.; Salazar, A.M.; Lamb, B.T. Inflammation as a central mechanism in Alzheimer’s disease. Alzheimers Dement., 2018, 4, 575-590. doi: 10.1016/j.trci.2018.06.014
  65. Amor, S.; Puentes, F.; Baker, D.; van der Valk, P. Inflammation in neurodegenerative diseases. Immunology, 2010, 129(2), 154-169. doi: 10.1111/j.1365-2567.2009.03225.x PMID: 20561356
  66. Wang, J.; Tan, L.; Wang, H.F.; Tan, C.C.; Meng, X.F.; Wang, C.; Tang, S.W.; Yu, J.T. Anti-inflammatory drugs and risk of Alzheimer’s disease: An updated systematic review and meta-analysis. J. Alzheimers Dis., 2015, 44(2), 385-396. doi: 10.3233/JAD-141506 PMID: 25227314
  67. Imbimbo, B.P.; Solfrizzi, V.; Panza, F. Are NSAIDs useful to treat Alzheimer’s disease or mild cognitive impairment? Front. Aging Neurosci., 2010, 2, 2. doi: 10.3389/fnagi.2010.00019 PMID: 20725517
  68. Bindu, S.; Mazumder, S.; Bandyopadhyay, U. Non-steroidal anti-inflammatory drugs (NSAIDs) and organ damage: A current perspective. Biochem. Pharmacol., 2020, 180, 114147. doi: 10.1016/j.bcp.2020.114147 PMID: 32653589
  69. Heneka, M.T.; Klockgether, T.; Feinstein, D.L. Peroxisome proliferator-activated receptor-gamma ligands reduce neuronal inducible nitric oxide synthase expression and cell death in vivo. J. Neurosci., 2000, 20(18), 6862-6867. doi: 10.1523/JNEUROSCI.20-18-06862.2000 PMID: 10995830
  70. Youssef, J.; Badr, M. Role of peroxisome proliferator-activated receptors in inflammation control. J. Biomed. Biotechnol., 2004, 2004(3), 156-166. doi: 10.1155/S1110724304308065 PMID: 15292582
  71. Wang, W.Y.; Tan, M.S.; Yu, J.T.; Tan, L. Role of pro-inflammatory cytokines released from microglia in Alzheimer’s disease. Ann. Transl. Med., 2015, 3(10), 136. PMID: 26207229
  72. Hemonnot, A.L.; Hua, J.; Ulmann, L.; Hirbec, H. Microglia in alzheimer disease: Well-known targets and new opportunities. Front. Aging Neurosci., 2019, 11, 233. doi: 10.3389/fnagi.2019.00233 PMID: 31543810
  73. Gao, C.; Shen, X.; Tan, Y.; Chen, S. Pathogenesis, therapeutic strategies and biomarker development based on "omics" analysis related to microglia in Alzheimer’s disease. J. Neuroinflammation, 2022, 19(1), 215. doi: 10.1186/s12974-022-02580-1 PMID: 36058959
  74. Gagne, J.J.; Power, M.C. Anti-inflammatory drugs and risk of Parkinson disease: A meta-analysis. Neurology, 2010, 74(12), 995-1002. doi: 10.1212/WNL.0b013e3181d5a4a3 PMID: 20308684
  75. Brakedal, B.; Tzoulis, C.; Tysnes, O.B.; Haugarvoll, K. NSAID use is not associated with Parkinson’s disease incidence: A Norwegian Prescription Database study. PLoS One, 2021, 16(9), e0256602. doi: 10.1371/journal.pone.0256602 PMID: 34492069
  76. Chen, H.; Zhang, S.M.; Hernán, M.A.; Schwarzschild, M.A.; Willett, W.C.; Colditz, G.A.; Speizer, F.E.; Ascherio, A. Nonsteroidal anti-inflammatory drugs and the risk of Parkinson disease. Arch. Neurol., 2003, 60(8), 1059-1064. doi: 10.1001/archneur.60.8.1059 PMID: 12925360
  77. Tansey, M.G.; Wallings, R.L.; Houser, M.C.; Herrick, M.K.; Keating, C.E.; Joers, V. Inflammation and immune dysfunction in Parkinson disease. Nat. Rev. Immunol., 2022, 22(11), 657-673. doi: 10.1038/s41577-022-00684-6 PMID: 35246670
  78. Królicka, E. Kieć-Kononowicz, K.; Łażewska, D. Chalcones as potential ligands for the treatment of parkinson’s disease. Pharmaceuticals, 2022, 15(7), 847. doi: 10.3390/ph15070847 PMID: 35890146
  79. Jawabrah Al-Hourani, B.; Sharma, S.K.; Suresh, M.; Wuest, F. Cyclooxygenase-2 inhibitors: A literature and patent review (2009 – 2010). Expert Opin. Ther. Pat., 2011, 21(9), 1339-1432. doi: 10.1517/13543776.2011.593510 PMID: 21714592
  80. Kim, Y.H.; Kim, J.; Park, H.; Kim, H.P. Anti-inflammatory activity of the synthetic chalcone derivatives: Inhibition of inducible nitric oxide synthase-catalyzed nitric oxide production from lipopolysaccharide-treated RAW 264.7 cells. Biol. Pharm. Bull., 2007, 30(8), 1450-1455. doi: 10.1248/bpb.30.1450 PMID: 17666802
  81. Ouyang, Y.; Li, J.; Chen, X.; Fu, X.; Sun, S.; Wu, Q. Chalcone derivatives: Role in anticancer therapy. Biomolecules, 2021, 11(6), 894. doi: 10.3390/biom11060894 PMID: 34208562
  82. Zarghi, A.; Arfaee, S.; Rao, P.N.P.; Knaus, E.E. Design, synthesis, and biological evaluation of 1,3-diarylprop-2-en-1-ones: A novel class of cyclooxygenase-2 inhibitors. Bioorg. Med. Chem., 2006, 14(8), 2600-2605. doi: 10.1016/j.bmc.2005.11.041 PMID: 16356730
  83. Abolhasani, H.; Zarghi, A.; Komeili Movahhed, T.; Abolhasani, A.; Daraei, B.; Dastmalchi, S. Design, synthesis and biological evaluation of novel indanone containing spiroisoxazoline derivatives with selective COX-2 inhibition as anticancer agents. Bioorg. Med. Chem., 2021, 32, 115960. doi: 10.1016/j.bmc.2020.115960 PMID: 33477020
  84. Zarghi, A.; Zebardast, T.; Hakimion, F.; Shirazi, F.H.; Praveen Rao, P.N.; Knaus, E.E. Synthesis and biological evaluation of 1,3-diphenylprop-2-en-1-ones possessing a methanesulfonamido or an azido pharmacophore as cyclooxygenase-1/-2 inhibitors. Bioorg. Med. Chem., 2006, 14(20), 7044-7050. doi: 10.1016/j.bmc.2006.06.022 PMID: 16798002
  85. Zebardast, T.; Zarghi, A.; Daraie, B.; Hedayati, M.; Dadrass, O.G. Design and synthesis of 3-alkyl-2-aryl-1,3-thiazinan-4-one derivatives as selective cyclooxygenase (COX-2) inhibitors. Bioorg. Med. Chem. Lett., 2009, 19(12), 3162-3165. doi: 10.1016/j.bmcl.2009.04.125 PMID: 19447036
  86. Zarghi, A.; Zebardast, T.; Daraie, B.; Hedayati, M. Design and synthesis of new 1,3-benzthiazinan-4-one derivatives as selective cyclooxygenase (COX-2) inhibitors. Bioorg. Med. Chem., 2009, 17(15), 5369-5373. doi: 10.1016/j.bmc.2009.06.056 PMID: 19596198
  87. Ju, Z.; Li, M.; Xu, J.; Howell, D.C.; Li, Z.; Chen, F.E. Recent development on COX-2 inhibitors as promising anti-inflammatory agents: The past 10 years. Acta Pharm. Sin. B, 2022, 12(6), 2790-2807. doi: 10.1016/j.apsb.2022.01.002 PMID: 35755295
  88. Huang, Z.H.; Yin, L.Q.; Guan, L.P.; Li, Z.H.; Tan, C. Screening of chalcone analogs with anti-depressant, anti-inflammatory, analgesic, and COX-2-inhibiting effects. Bioorg. Med. Chem. Lett., 2020, 30(11), 127173. doi: 10.1016/j.bmcl.2020.127173 PMID: 32278513
  89. Padhye, S.; Ahmad, A.; Oswal, N.; Sarkar, F.H. Emerging role of Garcinol, the antioxidant chalcone from Garcinia indica Choisy and its synthetic analogs. J. Hematol. Oncol., 2009, 2(1), 38. doi: 10.1186/1756-8722-2-38 PMID: 19725977
  90. Orlikova, B.; Tasdemir, D.; Golais, F.; Dicato, M.; Diederich, M. Dietary chalcones with chemopreventive and chemotherapeutic potential. Genes Nutr., 2011, 6(2), 125-147. doi: 10.1007/s12263-011-0210-5 PMID: 21484163
  91. Salehi, B.; Quispe, C.; Chamkhi, I.; El Omari, N.; Balahbib, A.; Sharifi-Rad, J.; Bouyahya, A.; Akram, M.; Iqbal, M.; Docea, A.O.; Caruntu, C.; Leyva-Gómez, G.; Dey, A.; Martorell, M.; Calina, D.; López, V.; Les, F. Pharmacological properties of chalcones: A review of preclinical including molecular mechanisms and clinical evidence. Front. Pharmacol., 2021, 11, 592654. doi: 10.3389/fphar.2020.592654 PMID: 33536909
  92. Li, Q.S.; Li, C.Y.; Lu, X.; Zhang, H.; Zhu, H.L. Design, synthesis and biological evaluation of novel (E)-α-benzylsulfonyl chalcone derivatives as potential BRAF inhibitors. Eur. J. Med. Chem., 2012, 50, 288-295. doi: 10.1016/j.ejmech.2012.02.007 PMID: 22361686
  93. Elkhalifa, D.; Siddique, A.B.; Qusa, M.; Cyprian, F.S.; El Sayed, K.; Alali, F.; Al Moustafa, A.E.; Khalil, A. Design, synthesis, and validation of novel nitrogen-based chalcone analogs against triple negative breast cancer. Eur. J. Med. Chem., 2020, 187, 111954. doi: 10.1016/j.ejmech.2019.111954 PMID: 31838326
  94. Eldehna, W.M.; Abo-Ashour, M.F.; Ibrahim, H.S.; Al-Ansary, G.H.; Ghabbour, H.A.; Elaasser, M.M.; Ahmed, H.Y.A.; Safwat, N.A. Novel (3-indolylmethylene)hydrazonoindolin-2-ones as apoptotic anti-proliferative agents: design, synthesis and in vitro biological evaluation. J. Enzyme Inhib. Med. Chem., 2018, 33(1), 686-700. doi: 10.1080/14756366.2017.1421181 PMID: 29560733
  95. Alswah, M.; Bayoumi, A.; Elgamal, K.; Elmorsy, A.; Ihmaid, S.; Ahmed, H. Design, synthesis and cytotoxic evaluation of novel chalcone derivatives bearing triazolo4,3-a-quinoxaline moieties as potent anticancer agents with dual egfr kinase and tubulin polymerization inhibitory effects. Molecules, 2017, 23(1), 48. doi: 10.3390/molecules23010048 PMID: 29280968
  96. Zhang, S.Y.; Fu, D.J.; Yue, X.X.; Liu, Y.C.; Song, J.; Sun, H.H.; Liu, H.M.; Zhang, Y.B. Design, synthesis and structure-activity relationships of novel chalcone-1,2,3-triazole-azole derivates as antiproliferative agents. Molecules, 2016, 21(5), 653. doi: 10.3390/molecules21050653 PMID: 27213317
  97. Hartinger, C.G.; Metzler-Nolte, N.; Dyson, P.J. Challenges and opportunities in the development of organometallic anticancer drugs. Organometallics, 2012, 31(16), 5677-5685. doi: 10.1021/om300373t
  98. Parveen, S.; Arjmand, F.; Tabassum, S. Development and future prospects of selective organometallic compounds as anticancer drug candidates exhibiting novel modes of action. Eur. J. Med. Chem., 2019, 175, 269-286. doi: 10.1016/j.ejmech.2019.04.062 PMID: 31096151
  99. Farzaneh, S.; Zeinalzadeh, E.; Daraei, B.; Shahhosseini, S.; Zarghi, A. New ferrocene compounds as selective cyclooxygenase (COX-2) inhibitors: Design, synthesis, cytotoxicity and enzyme-inhibitory activity. Anticancer. Agents Med. Chem., 2018, 18(2), 295-301. doi: 10.2174/1871520617666171003145533 PMID: 28971779
  100. Noori, S.; Nourbakhsh, M.; Farzaneh, S.; Zarghi, A. A ferrocene derivative reduces cisplatin resistance in breast cancer cells through suppression of MDR-1 expression and modulation of JAK2/STAT3 signaling pathway. Anticancer. Agents Med. Chem., 2020, 20(18), 2285-2292.
  101. Mourad, A.A.E.; Mourad, M.A.E.; Jones, P.G. Novel HDAC/tubulin dual inhibitor: Design, synthesis and docking studies of α-phthalimido-chalcone hybrids as potential anticancer agents with apoptosis-inducing activity. Drug Des. Devel. Ther., 2020, 14, 3111-3130. doi: 10.2147/DDDT.S256756 PMID: 32848361
  102. Sivapriya, S.; Sivakumar, K.; Manikandan, H. Anticancer effects of chalcone-benzoxadiazole hybrids on KB human cancer cells. Chemical Data Collections, 2021, 35, 100762. doi: 10.1016/j.cdc.2021.100762
  103. Fayed, E.A.; Eldin, R.R.E.; Mehany, A.B.M.; Bayoumi, A.H.; Ammar, Y.A. Isatin-Schiff’s base and chalcone hybrids as chemically apoptotic inducers and EGFR inhibitors; design, synthesis, anti-proliferative activities and in silico evaluation. J. Mol. Struct., 2021, 1234, 130159. doi: 10.1016/j.molstruc.2021.130159
  104. Bayanati, M.; Shahhosseini, S.; Shirazi, F.H.; Farnam, G.; Zarghi, A. Design, synthesis and biological evaluation of 1,3-diphenyl-3-(phenylthio)propan-1-ones as new cytotoxic agents. Iran. J. Pharm. Res., 2021, 20(4), 229-237. PMID: 35194442
  105. Anil, D.A.; Polat, M.F.; Saglamtas, R.; Tarikogullari, A.H.; Alagoz, M.A.; Gulcin, I.; Algul, O.; Burmaoglu, S. Exploring enzyme inhibition profiles of novel halogenated chalcone derivatives on some metabolic enzymes: Synthesis, characterization and molecular modeling studies. Comput. Biol. Chem., 2022, 100, 107748. doi: 10.1016/j.compbiolchem.2022.107748 PMID: 35917597
  106. Ahmed, A.H.H.; Mohamed, M.F.A.; Allam, R.M.; Nafady, A.; Mohamed, S.K.; Gouda, A.E.; Beshr, E.A.M. Design, synthesis, and molecular docking of novel pyrazole-chalcone analogs of lonazolac as 5-LOX, iNOS and tubulin polymerization inhibitors with potential anticancer and anti-inflammatory activities. Bioorg. Chem., 2022, 129, 106171. doi: 10.1016/j.bioorg.2022.106171 PMID: 36166898
  107. Guan, Y.F.; Liu, X.J.; Yuan, X.Y.; Liu, W.B.; Li, Y.R.; Yu, G.X.; Tian, X.Y.; Zhang, Y.B.; Song, J.; Li, W.; Zhang, S.Y. Design, synthesis, and anticancer activity studies of novel quinoline-chalcone derivatives. Molecules, 2021, 26(16), 4899. doi: 10.3390/molecules26164899 PMID: 34443487
  108. Patel, S.; Challagundla, N.; Rajput, R.A.; Mishra, S. Design, synthesis, characterization and anticancer activity evaluation of deoxycholic acid-chalcone conjugates. Bioorg. Chem., 2022, 127, 106036. doi: 10.1016/j.bioorg.2022.106036 PMID: 35878450
  109. Sunkari, Y.M.J.; Eppakayala, L. Design, synthesis and anticancer evaluation of chalcone based thieno2,3-dthiazoles as anticancer agents. Chemical Data Collections, 2021, 34, 100742. doi: 10.1016/j.cdc.2021.100742
  110. Fathi, E.M.; Sroor, F.M.; Mahrous, K.F.; Mohamed, M.F.; Mahmoud, K.; Emara, M.; Elwahy, A.H.M.; Abdelhamid, I.A. Design, synthesis, in silico and in vitro anticancer activity of novel bis-furanyl-chalcone derivatives linked through alkyl spacers. ChemistrySelect, 2021, 6(24), 6202-6211. doi: 10.1002/slct.202100884
  111. Abbas, S.H.; Abd El-Hafeez, A.A.; Shoman, M.E.; Montano, M.M.; Hassan, H.A. New quinoline/chalcone hybrids as anti-cancer agents: Design, synthesis, and evaluations of cytotoxicity and PI3K inhibitory activity. Bioorg. Chem., 2019, 82, 360-377. doi: 10.1016/j.bioorg.2018.10.064 PMID: 30428415
  112. Abu Bakar, A.; Akhtar, M.; Mohd Ali, N.; Yeap, S.; Quah, C.; Loh, W.S.; Alitheen, N.; Zareen, S.; Ul-Haq, Z.; Shah, S. Design, synthesis and docking studies of flavokawain b type chalcones and their cytotoxic effects on MCF-7 and MDA-MB-231 cell lines. Molecules, 2018, 23(3), 616. doi: 10.3390/molecules23030616 PMID: 29518053
  113. Zhao, T.Q.; Zhao, Y.D.; Liu, X.Y.; Li, Z.H.; Wang, B.; Zhang, X.H.; Cao, Y.Q.; Ma, L.Y.; Liu, H.M. Novel 3-(2,6,9-trisubstituted-9H-purine)-8-chalcone derivatives as potent anti-gastric cancer agents: Design, synthesis and structural optimization. Eur. J. Med. Chem., 2019, 161, 493-505. doi: 10.1016/j.ejmech.2018.10.058 PMID: 30388465
  114. Ahmed, M.F.; Santali, E.Y.; El-Haggar, R. Novel piperazine–chalcone hybrids and related pyrazoline analogues targeting VEGFR-2 kinase; design, synthesis, molecular docking studies, and anticancer evaluation. J. Enzyme Inhib. Med. Chem., 2021, 36(1), 308-319. doi: 10.1080/14756366.2020.1861606 PMID: 33349069
  115. Alam, M.J.; Alam, O.; Perwez, A.; Rizvi, M.A.; Naim, M.J.; Naidu, V.; Imran, M.; Ghoneim, M.M.; Alshehri, S.; Shakeel, F. Design, synthesis, molecular docking, and biological evaluation of pyrazole hybrid chalcone conjugates as potential anticancer agents and tubulin polymerization inhibitors. Pharmaceuticals, 2022, 15(3), 280. doi: 10.3390/ph15030280 PMID: 35337078
  116. Musa, A.; Mostafa, E.M.; Bukhari, S.N.A.; Alotaibi, N.H.; El-Ghorab, A.H.; Farouk, A.; Nayl, A.A.; Ghoneim, M.M.; Abdelgawad, M.A. EGFR and COX-2 dual inhibitor: The design, synthesis, and biological evaluation of novel chalcones. Molecules, 2022, 27(4), 1158. doi: 10.3390/molecules27041158 PMID: 35208952
  117. Farzaneh, S.; Shahhosseini, S.; Arefi, H.; Daraei, B.; Esfahanizadeh, M.; Zarghi, A. Design, synthesis and biological evaluation of new 1, 3-diphenyl-3-(phenylamino) propan-1-ones as selective cyclooxygenase (COX-2) inhibitors. Med. Chem., 2018, 14(7), 652-659. doi: 10.2174/1573406414666180525133221 PMID: 29804536
  118. Bayanati, M.; Daraei, B.; Zarghi, A. Design, synthesis, docking studies, enzyme inhibitory and antiplatelet aggregation activities of New 1, 3-Diphenyl-3-(Phenylthio) propan-1-one derivatives as selective cox-2 inhibitors. Anticancer. Agents Med. Chem., 2022. PMID: 35692149
  119. Rudrapal, M.; Khan, J.; Dukhyil, A.A.B.; Alarousy, R.M.I.I.; Attah, E.I.; Sharma, T.; Khairnar, S.J.; Bendale, A.R. Chalcone scaffolds, bioprecursors of flavonoids: Chemistry, bioactivities, and pharmacokinetics. Molecules, 2021, 26(23), 7177. doi: 10.3390/molecules26237177 PMID: 34885754
  120. Berning, L.; Scharf, L.; Aplak, E.; Stucki, D.; von Montfort, C.; Reichert, A.S.; Stahl, W.; Brenneisen, P. In vitro selective cytotoxicity of the dietary chalcone cardamonin (CD) on melanoma compared to healthy cells is mediated by apoptosis. PLoS One, 2019, 14(9), e0222267. doi: 10.1371/journal.pone.0222267 PMID: 31553748
  121. Delor, R.A.; Petering, H.G. The action of pteroylglutamic acid on blood dyscrasias induced by thiouracil and propylthiouracil. Blood, 1950, 5(2), 155-160. doi: 10.1182/blood.V5.2.155.155 PMID: 15402271

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers