Chalcones as Potential Cyclooxygenase-2 Inhibitors: A Review

  • Авторлар: Mahboubi-Rabbani M.1, Zarei R.2, Baradaran M.3, Bayanati M.4, Zarghi A.5
  • Мекемелер:
    1. Department of Medicinal Chemistry, School of Pharmacy, Islamic Azad University,
    2. Department of Medicinal Chemistry, School of Pharmacy, Islamic Azad University
    3. Department of Medicinal Chemistry, School of Pharmacy,, Islamic Azad University,
    4. Department of Food Technology Research, Faculty of Nutrition Sciences and Food Technology/National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences
    5. Department of Medicinal Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences
  • Шығарылым: Том 24, № 2 (2024)
  • Беттер: 77-95
  • Бөлім: Oncology
  • URL: https://rjsocmed.com/1871-5206/article/view/644033
  • DOI: https://doi.org/10.2174/0118715206267309231103053808
  • ID: 644033

Дәйексөз келтіру

Толық мәтін

Аннотация

Cyclooxygenases (COXs) play a pivotal role in inflammation, a complex phenomenon required in human defense, but also involved in the emergence of insidious human disorders. Currently-used COX-1 inhibitors (Non-Steroidal Anti-Inflammatory Drugs-NSAIDs), as the most frequent choices for the treatment of chronic inflammatory diseases, have been identified to be associated with a variety of adverse drug reactions, especially dyspepsia, as well as peptic ulcer, which lead to diminished output. Moreover, the structural similarities of COX- 1 and -2, along with the availability of comprehensive information about the three-dimensional structure of COX- 2, co-crystallized with various inhibitors, search selective COX-2 inhibitors a formidable challenge. COX-2 inhibitors were shown to minimize the incidence of metastasis in cancer patients when administered preoperatively. Developing selective COX-2 inhibitors to tackle both cancer and chronic inflammatory illnesses has been identified as a promising research direction in recent decades. Identifying innovative scaffolds to integrate as the major component of future COX-2 inhibitors is critical in this regard. The presence of a central, ɑ, β-unsaturated carbonyl- containing scaffold, as a characteristic structural pattern in many selective COX-2 inhibitors, along with a huge count of chalcone-based anticancer agents representing the basic idea of this review; providing a survey of the most recently published literature concerning development of chalcone analogs as novel COX-2 inhibitors until 2022 with efficient anticancer activity. A brief overview of the most recent developments concerning structure- activity relationship insights and mechanisms is also reported, helping pave the road for additional investigation.

Авторлар туралы

Mohammad Mahboubi-Rabbani

Department of Medicinal Chemistry, School of Pharmacy, Islamic Azad University,

Email: info@benthamscience.net

Rosa Zarei

Department of Medicinal Chemistry, School of Pharmacy, Islamic Azad University

Email: info@benthamscience.net

Mehdi Baradaran

Department of Medicinal Chemistry, School of Pharmacy,, Islamic Azad University,

Email: info@benthamscience.net

Maryam Bayanati

Department of Food Technology Research, Faculty of Nutrition Sciences and Food Technology/National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences

Email: info@benthamscience.net

Afshin Zarghi

Department of Medicinal Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences

Хат алмасуға жауапты Автор.
Email: info@benthamscience.net

Әдебиет тізімі

  1. Bukowski, K.; Kciuk, M.; Kontek, R. Mechanisms of multidrug resistance in cancer chemotherapy. Int. J. Mol. Sci., 2020, 21(9), 3233. doi: 10.3390/ijms21093233 PMID: 32370233
  2. Housman, G.; Byler, S.; Heerboth, S.; Lapinska, K.; Longacre, M.; Snyder, N.; Sarkar, S. Drug resistance in cancer: An overview. Cancers, 2014, 6(3), 1769-1792. doi: 10.3390/cancers6031769 PMID: 25198391
  3. de Souza, P.S.; Bibá, G.C.C.; Melo, E.D.N.; Muzitano, M.F. Chalcones against the hallmarks of cancer: A mini-review. Nat. Prod. Res., 2022, 36(18), 4803-4820. doi: 10.1080/14786419.2021.2000980 PMID: 34865580
  4. Dempke, W.; Rie, C.; Grothey, A.; Schmoll, H.J. Cyclooxygenase-2: A novel target for cancer chemotherapy? J. Cancer Res. Clin. Oncol., 2001, 127(7), 411-417. doi: 10.1007/s004320000225 PMID: 11469677
  5. Ricciotti, E.; FitzGerald, G.A. Prostaglandins and Inflammation. Arterioscler. Thromb. Vasc. Biol., 2011, 31(5), 986-1000. doi: 10.1161/ATVBAHA.110.207449 PMID: 21508345
  6. Méric, J.B.; Rottey, S.; Olaussen, K.; Soria, J.C.; Khayat, D.; Rixe, O.; Spano, J.P. Cyclooxygenase-2 as a target for anticancer drug development. Crit. Rev. Oncol. Hematol., 2006, 59(1), 51-64. doi: 10.1016/j.critrevonc.2006.01.003 PMID: 16531064
  7. Sales, K.J.; Jabbour, H.N. Cyclooxygenase enzymes and prostaglandins in pathology of the endometrium. Reproduction, 2003, 126(5), 559-567. doi: 10.1530/rep.0.1260559 PMID: 14611628
  8. Heasley, L.E. Autocrine and paracrine signaling through neuropeptide receptors in human cancer. Oncogene, 2001, 20(13), 1563-1569. doi: 10.1038/sj.onc.1204183 PMID: 11313903
  9. Reader, J.; Holt, D.; Fulton, A. Prostaglandin E2 EP receptors as therapeutic targets in breast cancer. Cancer Metastasis Rev., 2011, 30(3-4), 449-463. doi: 10.1007/s10555-011-9303-2 PMID: 22002714
  10. Puurunen, J. Central nervous system effects of arachidonic acid, PGE2, PGF2α PGD2 and PGI2 on gastric secretion in the rat. Br. J. Pharmacol., 1983, 80(2), 255-262. doi: 10.1111/j.1476-5381.1983.tb10028.x PMID: 6360279
  11. Sugita, R.; Kuwabara, H.; Kubota, K.; Sugimoto, K.; Kiho, T.; Tengeiji, A.; Kawakami, K.; Shimada, K. Simultaneous inhibition of PGE 2 and PGI 2 signals is necessary to suppress hyperalgesia in rat inflammatory pain models. Mediators Inflamm., 2016, 2016, 1-10. doi: 10.1155/2016/9847840 PMID: 27478311
  12. Vane, J.R.; Botting, R.M. Mechanism of action of nonsteroidal anti-inflammatory drugs. Am. J. Med., 1998, 104(3), 2S-8S. doi: 10.1016/S0002-9343(97)00203-9 PMID: 9572314
  13. Mitchell, J.A.; Warner, T.D. Cyclo-oxygenase-2: Pharmacology, physiology, biochemistry and relevance to NSAID therapy. Br. J. Pharmacol., 1999, 128(6), 1121-1132. doi: 10.1038/sj.bjp.0702897 PMID: 10578123
  14. Simmons, D.L.; Wagner, D.; Westover, K. Nonsteroidal anti-inflammatory drugs, acetaminophen, cyclooxygenase 2, and fever. Clin. Infect. Dis., 2000, 31(Suppl. 5), S211-S218. doi: 10.1086/317517 PMID: 11113025
  15. Zidar, N.; Odar, K.; Glavac, D.; Jerse, M.; Zupanc, T.; Stajer, D. Cyclooxygenase in normal human tissues – is COX-1 really a constitutive isoform, and COX-2 an inducible isoform? J. Cell. Mol. Med., 2009, 13(9b), 3753-3763. doi: 10.1111/j.1582-4934.2008.00430.x PMID: 18657230
  16. Grosser, T.; Fries, S.; FitzGerald, G.A. Biological basis for the cardiovascular consequences of COX-2 inhibition: therapeutic challenges and opportunities. J. Clin. Invest., 2005, 116(1), 4-15. doi: 10.1172/JCI27291 PMID: 16395396
  17. Orlando, B.J.; McDougle, D.R.; Lucido, M.J.; Eng, E.T.; Graham, L.A.; Schneider, C.; Stokes, D.L.; Das, A.; Malkowski, M.G. Cyclooxygenase-2 catalysis and inhibition in lipid bilayer nanodiscs. Arch. Biochem. Biophys., 2014, 546, 33-40. doi: 10.1016/j.abb.2014.01.026 PMID: 24503478
  18. Attiq, A.; Jalil, J.; Husain, K.; Ahmad, W. Raging the war against inflammation with natural products. Front. Pharmacol., 2018, 9, 976. doi: 10.3389/fphar.2018.00976 PMID: 30245627
  19. Rouzer, C.A.; Marnett, L.J. Cyclooxygenases: Structural and functional insights. J. Lipid Res., 2009, 50, S29-S34. doi: 10.1194/jlr.R800042-JLR200
  20. Ghanghas, P.; Jain, S.; Rana, C.; Sanyal, S.N. Chemopreventive action of non-steroidal anti-inflammatory drugs on the inflammatory pathways in colon cancer. Biomed. Pharmacother., 2016, 78, 239-247. doi: 10.1016/j.biopha.2016.01.024
  21. Chan, A.T. Aspirin and familial adenomatous polyposis: Coming full circle. Cancer Prev. Res., 2011, 4(5), 623-627. doi: 10.1158/1940-6207.CAPR-11-0157 PMID: 21543340
  22. Sostres, C.; Gargallo, C.J.; Lanas, A. Aspirin, cyclooxygenase inhibition and colorectal cancer. World J. Gastrointest. Pharmacol. Ther., 2014, 5(1), 40-49. doi: 10.4292/wjgpt.v5.i1.40 PMID: 24605250
  23. Maniewska, J. Jeżewska, D. Non-steroidal anti-inflammatory drugs in colorectal cancer chemoprevention. Cancers, 2021, 13(4), 594. doi: 10.3390/cancers13040594 PMID: 33546238
  24. Pannunzio, A.; Coluccia, M. Cyclooxygenase-1 (COX-1) and COX-1 Inhibitors in Cancer: A review of oncology and medicinal chemistry literature. Pharmaceuticals, 2018, 11(4), 101. doi: 10.3390/ph11040101 PMID: 30314310
  25. Frejborg, E.; Salo, T.; Salem, A. Role of cyclooxygenase-2 in head and neck tumorigenesis. Int. J. Mol. Sci., 2020, 21(23), 9246. doi: 10.3390/ijms21239246 PMID: 33287464
  26. Craig, R.; Larkin, A.; Mingo, A.M.; Thuerauf, D.J.; Andrews, C.; McDonough, P.M.; Glembotski, C.C. p38 MAPK and NF-kappa B collaborate to induce interleukin-6 gene expression and release. Evidence for a cytoprotective autocrine signaling pathway in a cardiac myocyte model system. J. Biol. Chem., 2000, 275(31), 23814-23824. doi: 10.1074/jbc.M909695199 PMID: 10781614
  27. Yuen, H.F.; Chan, Y.K.; Grills, C.; McCrudden, C.M.; Gunasekharan, V.; Shi, Z.; Wong, A.S.Y.; Lappin, T.R.; Chan, K.W.; Fennell, D.A.; Khoo, U.S.; Johnston, P.G.; El-Tanani, M. Polyomavirus enhancer activator 3 protein promotes breast cancer metastatic progression through Snail-induced epithelial-mesenchymal transition. J. Pathol., 2011, 224(1), 78-89. doi: 10.1002/path.2859 PMID: 21404275
  28. Hoesel, B.; Schmid, J.A. The complexity of NF-κB signaling in inflammation and cancer. Mol. Cancer, 2013, 12(1), 86. doi: 10.1186/1476-4598-12-86 PMID: 23915189
  29. Liu, Y.; Borchert, G.L.; Surazynski, A.; Phang, J.M. Proline oxidase, a p53-induced gene, targets COX-2/PGE2 signaling to induce apoptosis and inhibit tumor growth in colorectal cancers. Oncogene, 2008, 27(53), 6729-6737. doi: 10.1038/onc.2008.322 PMID: 18794809
  30. Dixon, D.A.; Blanco, F.F.; Bruno, A.; Patrignani, P. Mechanistic aspects of COX-2 expression in colorectal neoplasia. Recent Results Cancer Res., 2013, 191, 7-37. doi: 10.1007/978-3-642-30331-9_2 PMID: 22893198
  31. Szweda, M.; Rychlik, A. Babińska, I.; Pomianowski, A. Significance of cyclooxygenase-2 in oncogenesis. J. Vet. Res., 2019, 63(2), 215-224. doi: 10.2478/jvetres-2019-0030 PMID: 31276061
  32. Ding, X.Z.; Hennig, R.; Adrian, T.E. Lipoxygenase and cyclooxygenase metabolism: New insights in treatment and chemoprevention of pancreatic cancer. Mol. Cancer, 2003, 2(1), 10. doi: 10.1186/1476-4598-2-10 PMID: 12575899
  33. Esteves, F.; Rueff, J.; Kranendonk, M. The central role of cytochrome P450 in xenobiotic metabolism—A brief review on a fascinating enzyme family. J. Xenobiot., 2021, 11(3), 94-114. doi: 10.3390/jox11030007 PMID: 34206277
  34. Jara-Gutiérrez, Á.; Baladrón, V. The role of prostaglandins in different types of cancer. Cells, 2021, 10(6), 1487. doi: 10.3390/cells10061487 PMID: 34199169
  35. Finetti, F.; Travelli, C.; Ercoli, J.; Colombo, G.; Buoso, E.; Trabalzini, L. Prostaglandin E2 and cancer: Insight into tumor progression and immunity. Biology, 2020, 9(12), 434. doi: 10.3390/biology9120434 PMID: 33271839
  36. Zarghi, A.; Arfaei, S. Selective COX-2 inhibitors: A review of their structure-activity relationships. Iran. J. Pharm. Res., 2011, 10(4), 655-683. PMID: 24250402
  37. Wong, R.S. Apoptosis in cancer: From pathogenesis to treatment. J. Exp. Clin. Cancer Res., 2011, 30(1), 87.
  38. Cui, J.; Zhao, S.; Li, Y.; Zhang, D.; Wang, B.; Xie, J.; Wang, J. Regulated cell death: Discovery, features and implications for neurodegenerative diseases. Cell Commun. Signal., 2021, 19(1), 120. doi: 10.1186/s12964-021-00799-8 PMID: 34922574
  39. Sun, Y.; Tang, X.M.; Half, E.; Kuo, M.T.; Sinicrope, F.A. Cyclooxygenase-2 overexpression reduces apoptotic susceptibility by inhibiting the cytochrome c-dependent apoptotic pathway in human colon cancer cells. Cancer Res., 2002, 62(21), 6323-6328. PMID: 12414664
  40. Yadav, N.; Kumar, S.; Marlowe, T.; Chaudhary, A.K.; Kumar, R.; Wang, J. Oxidative phosphorylation-dependent regulation of cancer cell apoptosis in response to anticancer agents. Cell Death Dis., 2015, 6(11), e1969. doi: 10.1038/cddis.2015.305
  41. Youssef, J.; Badr, M. Peroxisome proliferator-activated receptors and cancer: Challenges and opportunities. Br. J. Pharmacol., 2011, 164(1), 68-82. doi: 10.1111/j.1476-5381.2011.01383.x PMID: 21449912
  42. Martinasso, G.; Oraldi, M.; Trombetta, A.; Maggiora, M.; Bertetto, O.; Canuto, R.A.; Muzio, G. Involvement of PPARs in cell proliferation and apoptosis in human colon cancer specimens and in normal and cancer cell lines. PPAR Res., 2007, 2007, 1-9. doi: 10.1155/2007/93416 PMID: 17389773
  43. Peters, J.M.; Shah, Y.M.; Gonzalez, F.J. The role of peroxisome proliferator-activated receptors in carcinogenesis and chemoprevention. Nat. Rev. Cancer, 2012, 12(3), 181-195. doi: 10.1038/nrc3214 PMID: 22318237
  44. Wagner, N.; Wagner, K.D. PPAR beta/delta and the hallmarks of cancer. Cells, 2020, 9(5), 1133. doi: 10.3390/cells9051133 PMID: 32375405
  45. Elrod, H.A.; Sun, S.Y. PPAR γ and apoptosis in cancer. PPAR Res., 2008, 2008, 1-12. doi: 10.1155/2008/704165 PMID: 18615184
  46. Sobolewski, C.; Cerella, C.; Dicato, M.; Ghibelli, L.; Diederich, M. The role of cyclooxygenase-2 in cell proliferation and cell death in human malignancies. Int. J. Cell Biol., 2010, 2010, 1-21. doi: 10.1155/2010/215158 PMID: 20339581
  47. Baghban, R.; Roshangar, L.; Jahanban-Esfahlan, R.; Seidi, K.; Ebrahimi-Kalan, A.; Jaymand, M.; Kolahian, S.; Javaheri, T.; Zare, P. Tumor microenvironment complexity and therapeutic implications at a glance. Cell Commun. Signal., 2020, 18(1), 59. doi: 10.1186/s12964-020-0530-4 PMID: 32264958
  48. Winkler, J.; Abisoye-Ogunniyan, A.; Metcalf, K.J.; Werb, Z. Concepts of extracellular matrix remodelling in tumour progression and metastasis. Nat. Commun., 2020, 11(1), 5120. doi: 10.1038/s41467-020-18794-x PMID: 33037194
  49. Wells, A.; Grahovac, J.; Wheeler, S.; Ma, B.; Lauffenburger, D. Targeting tumor cell motility as a strategy against invasion and metastasis. Trends Pharmacol. Sci., 2013, 34(5), 283-289. doi: 10.1016/j.tips.2013.03.001 PMID: 23571046
  50. Sheng, J.; Sun, H.; Yu, F.B.; Li, B.; Zhang, Y.; Zhu, Y.T. The role of cyclooxygenase-2 in colorectal cancer. Int. J. Med. Sci., 2020, 17(8), 1095-1101. doi: 10.7150/ijms.44439 PMID: 32410839
  51. Nishida, N.; Yano, H.; Nishida, T.; Kamura, T.; Kojiro, M. Angiogenesis in cancer. Vasc. Health Risk Manag., 2006, 2(3), 213-219. doi: 10.2147/vhrm.2006.2.3.213 PMID: 17326328
  52. Ramanujan, S.; Koenig, G.C.; Padera, T.P.; Stoll, B.R.; Jain, R.K. Local imbalance of proangiogenic and antiangiogenic factors: A potential mechanism of focal necrosis and dormancy in tumors. Cancer Res., 2000, 60(5), 1442-1448. PMID: 10728711
  53. Gupta, M.K.; Qin, R.Y. Mechanism and its regulation of tumor-induced angiogenesis. World J. Gastroenterol., 2003, 9(6), 1144-1155. doi: 10.3748/wjg.v9.i6.1144 PMID: 12800214
  54. Gately, S. The contributions of cyclooxygenase-2 to tumor angiogenesis. Cancer Metastasis Rev., 2000, 19(1/2), 19-27. doi: 10.1023/A:1026575610124 PMID: 11191059
  55. Gonzalez, H.; Hagerling, C.; Werb, Z. Roles of the immune system in cancer: from tumor initiation to metastatic progression. Genes Dev., 2018, 32(19-20), 1267-1284. doi: 10.1101/gad.314617.118 PMID: 30275043
  56. Frank, K.; Paust, S. Dynamic natural killer cell and T cell responses to influenza infection. Front. Cell. Infect. Microbiol., 2020, 10, 425. doi: 10.3389/fcimb.2020.00425 PMID: 32974217
  57. Blobaum, A.L.; Marnett, L.J. Structural and functional basis of cyclooxygenase inhibition. J. Med. Chem., 2007, 50(7), 1425-1441. doi: 10.1021/jm0613166 PMID: 17341061
  58. Linn, S.C.; Giaccone, G. MDR1/P-glycoprotein expression in colorectal cancer. Eur. J. Cancer, 1995, 31a(7-8), 1291-1294.
  59. Sui, H.; Zhou, S.; Wang, Y.; Liu, X.; Zhou, L.; Yin, P.; Fan, Z.; Li, Q. COX-2 contributes to P-glycoprotein-mediated multidrug resistance via phosphorylation of c-Jun at Ser63/73 in colorectal cancer. Carcinogenesis, 2011, 32(5), 667-675. doi: 10.1093/carcin/bgr016 PMID: 21296766
  60. Waghray, D.; Zhang, Q. Inhibit or evade multidrug resistance p-glycoprotein in cancer treatment. J. Med. Chem., 2018, 61(12), 5108-5121. doi: 10.1021/acs.jmedchem.7b01457 PMID: 29251920
  61. Zhao, H.; Zhou, L.; Shangguan, A.J.; Bulun, S.E. Aromatase expression and regulation in breast and endometrial cancer. J. Mol. Endocrinol., 2016, 57(1), R19-R33. doi: 10.1530/JME-15-0310 PMID: 27067638
  62. Chan, H.J.; Petrossian, K.; Chen, S. Structural and functional characterization of aromatase, estrogen receptor, and their genes in endocrine-responsive and –resistant breast cancer cells. J. Steroid Biochem. Mol. Biol., 2016, 161, 73-83. doi: 10.1016/j.jsbmb.2015.07.018 PMID: 26277097
  63. Konturek, P.C.; Kania, J.; Burnat, G.; Hahn, E.G.; Konturek, S.J. Prostaglandins as mediators of COX-2 derived carcinogenesis in gastrointestinal tract. J. Physiol. Pharmacol., 2005, 56(S5), 57-73.
  64. Kinney, J.W.; Bemiller, S.M.; Murtishaw, A.S.; Leisgang, A.M.; Salazar, A.M.; Lamb, B.T. Inflammation as a central mechanism in Alzheimer’s disease. Alzheimers Dement., 2018, 4, 575-590. doi: 10.1016/j.trci.2018.06.014
  65. Amor, S.; Puentes, F.; Baker, D.; van der Valk, P. Inflammation in neurodegenerative diseases. Immunology, 2010, 129(2), 154-169. doi: 10.1111/j.1365-2567.2009.03225.x PMID: 20561356
  66. Wang, J.; Tan, L.; Wang, H.F.; Tan, C.C.; Meng, X.F.; Wang, C.; Tang, S.W.; Yu, J.T. Anti-inflammatory drugs and risk of Alzheimer’s disease: An updated systematic review and meta-analysis. J. Alzheimers Dis., 2015, 44(2), 385-396. doi: 10.3233/JAD-141506 PMID: 25227314
  67. Imbimbo, B.P.; Solfrizzi, V.; Panza, F. Are NSAIDs useful to treat Alzheimer’s disease or mild cognitive impairment? Front. Aging Neurosci., 2010, 2, 2. doi: 10.3389/fnagi.2010.00019 PMID: 20725517
  68. Bindu, S.; Mazumder, S.; Bandyopadhyay, U. Non-steroidal anti-inflammatory drugs (NSAIDs) and organ damage: A current perspective. Biochem. Pharmacol., 2020, 180, 114147. doi: 10.1016/j.bcp.2020.114147 PMID: 32653589
  69. Heneka, M.T.; Klockgether, T.; Feinstein, D.L. Peroxisome proliferator-activated receptor-gamma ligands reduce neuronal inducible nitric oxide synthase expression and cell death in vivo. J. Neurosci., 2000, 20(18), 6862-6867. doi: 10.1523/JNEUROSCI.20-18-06862.2000 PMID: 10995830
  70. Youssef, J.; Badr, M. Role of peroxisome proliferator-activated receptors in inflammation control. J. Biomed. Biotechnol., 2004, 2004(3), 156-166. doi: 10.1155/S1110724304308065 PMID: 15292582
  71. Wang, W.Y.; Tan, M.S.; Yu, J.T.; Tan, L. Role of pro-inflammatory cytokines released from microglia in Alzheimer’s disease. Ann. Transl. Med., 2015, 3(10), 136. PMID: 26207229
  72. Hemonnot, A.L.; Hua, J.; Ulmann, L.; Hirbec, H. Microglia in alzheimer disease: Well-known targets and new opportunities. Front. Aging Neurosci., 2019, 11, 233. doi: 10.3389/fnagi.2019.00233 PMID: 31543810
  73. Gao, C.; Shen, X.; Tan, Y.; Chen, S. Pathogenesis, therapeutic strategies and biomarker development based on "omics" analysis related to microglia in Alzheimer’s disease. J. Neuroinflammation, 2022, 19(1), 215. doi: 10.1186/s12974-022-02580-1 PMID: 36058959
  74. Gagne, J.J.; Power, M.C. Anti-inflammatory drugs and risk of Parkinson disease: A meta-analysis. Neurology, 2010, 74(12), 995-1002. doi: 10.1212/WNL.0b013e3181d5a4a3 PMID: 20308684
  75. Brakedal, B.; Tzoulis, C.; Tysnes, O.B.; Haugarvoll, K. NSAID use is not associated with Parkinson’s disease incidence: A Norwegian Prescription Database study. PLoS One, 2021, 16(9), e0256602. doi: 10.1371/journal.pone.0256602 PMID: 34492069
  76. Chen, H.; Zhang, S.M.; Hernán, M.A.; Schwarzschild, M.A.; Willett, W.C.; Colditz, G.A.; Speizer, F.E.; Ascherio, A. Nonsteroidal anti-inflammatory drugs and the risk of Parkinson disease. Arch. Neurol., 2003, 60(8), 1059-1064. doi: 10.1001/archneur.60.8.1059 PMID: 12925360
  77. Tansey, M.G.; Wallings, R.L.; Houser, M.C.; Herrick, M.K.; Keating, C.E.; Joers, V. Inflammation and immune dysfunction in Parkinson disease. Nat. Rev. Immunol., 2022, 22(11), 657-673. doi: 10.1038/s41577-022-00684-6 PMID: 35246670
  78. Królicka, E. Kieć-Kononowicz, K.; Łażewska, D. Chalcones as potential ligands for the treatment of parkinson’s disease. Pharmaceuticals, 2022, 15(7), 847. doi: 10.3390/ph15070847 PMID: 35890146
  79. Jawabrah Al-Hourani, B.; Sharma, S.K.; Suresh, M.; Wuest, F. Cyclooxygenase-2 inhibitors: A literature and patent review (2009 – 2010). Expert Opin. Ther. Pat., 2011, 21(9), 1339-1432. doi: 10.1517/13543776.2011.593510 PMID: 21714592
  80. Kim, Y.H.; Kim, J.; Park, H.; Kim, H.P. Anti-inflammatory activity of the synthetic chalcone derivatives: Inhibition of inducible nitric oxide synthase-catalyzed nitric oxide production from lipopolysaccharide-treated RAW 264.7 cells. Biol. Pharm. Bull., 2007, 30(8), 1450-1455. doi: 10.1248/bpb.30.1450 PMID: 17666802
  81. Ouyang, Y.; Li, J.; Chen, X.; Fu, X.; Sun, S.; Wu, Q. Chalcone derivatives: Role in anticancer therapy. Biomolecules, 2021, 11(6), 894. doi: 10.3390/biom11060894 PMID: 34208562
  82. Zarghi, A.; Arfaee, S.; Rao, P.N.P.; Knaus, E.E. Design, synthesis, and biological evaluation of 1,3-diarylprop-2-en-1-ones: A novel class of cyclooxygenase-2 inhibitors. Bioorg. Med. Chem., 2006, 14(8), 2600-2605. doi: 10.1016/j.bmc.2005.11.041 PMID: 16356730
  83. Abolhasani, H.; Zarghi, A.; Komeili Movahhed, T.; Abolhasani, A.; Daraei, B.; Dastmalchi, S. Design, synthesis and biological evaluation of novel indanone containing spiroisoxazoline derivatives with selective COX-2 inhibition as anticancer agents. Bioorg. Med. Chem., 2021, 32, 115960. doi: 10.1016/j.bmc.2020.115960 PMID: 33477020
  84. Zarghi, A.; Zebardast, T.; Hakimion, F.; Shirazi, F.H.; Praveen Rao, P.N.; Knaus, E.E. Synthesis and biological evaluation of 1,3-diphenylprop-2-en-1-ones possessing a methanesulfonamido or an azido pharmacophore as cyclooxygenase-1/-2 inhibitors. Bioorg. Med. Chem., 2006, 14(20), 7044-7050. doi: 10.1016/j.bmc.2006.06.022 PMID: 16798002
  85. Zebardast, T.; Zarghi, A.; Daraie, B.; Hedayati, M.; Dadrass, O.G. Design and synthesis of 3-alkyl-2-aryl-1,3-thiazinan-4-one derivatives as selective cyclooxygenase (COX-2) inhibitors. Bioorg. Med. Chem. Lett., 2009, 19(12), 3162-3165. doi: 10.1016/j.bmcl.2009.04.125 PMID: 19447036
  86. Zarghi, A.; Zebardast, T.; Daraie, B.; Hedayati, M. Design and synthesis of new 1,3-benzthiazinan-4-one derivatives as selective cyclooxygenase (COX-2) inhibitors. Bioorg. Med. Chem., 2009, 17(15), 5369-5373. doi: 10.1016/j.bmc.2009.06.056 PMID: 19596198
  87. Ju, Z.; Li, M.; Xu, J.; Howell, D.C.; Li, Z.; Chen, F.E. Recent development on COX-2 inhibitors as promising anti-inflammatory agents: The past 10 years. Acta Pharm. Sin. B, 2022, 12(6), 2790-2807. doi: 10.1016/j.apsb.2022.01.002 PMID: 35755295
  88. Huang, Z.H.; Yin, L.Q.; Guan, L.P.; Li, Z.H.; Tan, C. Screening of chalcone analogs with anti-depressant, anti-inflammatory, analgesic, and COX-2-inhibiting effects. Bioorg. Med. Chem. Lett., 2020, 30(11), 127173. doi: 10.1016/j.bmcl.2020.127173 PMID: 32278513
  89. Padhye, S.; Ahmad, A.; Oswal, N.; Sarkar, F.H. Emerging role of Garcinol, the antioxidant chalcone from Garcinia indica Choisy and its synthetic analogs. J. Hematol. Oncol., 2009, 2(1), 38. doi: 10.1186/1756-8722-2-38 PMID: 19725977
  90. Orlikova, B.; Tasdemir, D.; Golais, F.; Dicato, M.; Diederich, M. Dietary chalcones with chemopreventive and chemotherapeutic potential. Genes Nutr., 2011, 6(2), 125-147. doi: 10.1007/s12263-011-0210-5 PMID: 21484163
  91. Salehi, B.; Quispe, C.; Chamkhi, I.; El Omari, N.; Balahbib, A.; Sharifi-Rad, J.; Bouyahya, A.; Akram, M.; Iqbal, M.; Docea, A.O.; Caruntu, C.; Leyva-Gómez, G.; Dey, A.; Martorell, M.; Calina, D.; López, V.; Les, F. Pharmacological properties of chalcones: A review of preclinical including molecular mechanisms and clinical evidence. Front. Pharmacol., 2021, 11, 592654. doi: 10.3389/fphar.2020.592654 PMID: 33536909
  92. Li, Q.S.; Li, C.Y.; Lu, X.; Zhang, H.; Zhu, H.L. Design, synthesis and biological evaluation of novel (E)-α-benzylsulfonyl chalcone derivatives as potential BRAF inhibitors. Eur. J. Med. Chem., 2012, 50, 288-295. doi: 10.1016/j.ejmech.2012.02.007 PMID: 22361686
  93. Elkhalifa, D.; Siddique, A.B.; Qusa, M.; Cyprian, F.S.; El Sayed, K.; Alali, F.; Al Moustafa, A.E.; Khalil, A. Design, synthesis, and validation of novel nitrogen-based chalcone analogs against triple negative breast cancer. Eur. J. Med. Chem., 2020, 187, 111954. doi: 10.1016/j.ejmech.2019.111954 PMID: 31838326
  94. Eldehna, W.M.; Abo-Ashour, M.F.; Ibrahim, H.S.; Al-Ansary, G.H.; Ghabbour, H.A.; Elaasser, M.M.; Ahmed, H.Y.A.; Safwat, N.A. Novel (3-indolylmethylene)hydrazonoindolin-2-ones as apoptotic anti-proliferative agents: design, synthesis and in vitro biological evaluation. J. Enzyme Inhib. Med. Chem., 2018, 33(1), 686-700. doi: 10.1080/14756366.2017.1421181 PMID: 29560733
  95. Alswah, M.; Bayoumi, A.; Elgamal, K.; Elmorsy, A.; Ihmaid, S.; Ahmed, H. Design, synthesis and cytotoxic evaluation of novel chalcone derivatives bearing triazolo4,3-a-quinoxaline moieties as potent anticancer agents with dual egfr kinase and tubulin polymerization inhibitory effects. Molecules, 2017, 23(1), 48. doi: 10.3390/molecules23010048 PMID: 29280968
  96. Zhang, S.Y.; Fu, D.J.; Yue, X.X.; Liu, Y.C.; Song, J.; Sun, H.H.; Liu, H.M.; Zhang, Y.B. Design, synthesis and structure-activity relationships of novel chalcone-1,2,3-triazole-azole derivates as antiproliferative agents. Molecules, 2016, 21(5), 653. doi: 10.3390/molecules21050653 PMID: 27213317
  97. Hartinger, C.G.; Metzler-Nolte, N.; Dyson, P.J. Challenges and opportunities in the development of organometallic anticancer drugs. Organometallics, 2012, 31(16), 5677-5685. doi: 10.1021/om300373t
  98. Parveen, S.; Arjmand, F.; Tabassum, S. Development and future prospects of selective organometallic compounds as anticancer drug candidates exhibiting novel modes of action. Eur. J. Med. Chem., 2019, 175, 269-286. doi: 10.1016/j.ejmech.2019.04.062 PMID: 31096151
  99. Farzaneh, S.; Zeinalzadeh, E.; Daraei, B.; Shahhosseini, S.; Zarghi, A. New ferrocene compounds as selective cyclooxygenase (COX-2) inhibitors: Design, synthesis, cytotoxicity and enzyme-inhibitory activity. Anticancer. Agents Med. Chem., 2018, 18(2), 295-301. doi: 10.2174/1871520617666171003145533 PMID: 28971779
  100. Noori, S.; Nourbakhsh, M.; Farzaneh, S.; Zarghi, A. A ferrocene derivative reduces cisplatin resistance in breast cancer cells through suppression of MDR-1 expression and modulation of JAK2/STAT3 signaling pathway. Anticancer. Agents Med. Chem., 2020, 20(18), 2285-2292.
  101. Mourad, A.A.E.; Mourad, M.A.E.; Jones, P.G. Novel HDAC/tubulin dual inhibitor: Design, synthesis and docking studies of α-phthalimido-chalcone hybrids as potential anticancer agents with apoptosis-inducing activity. Drug Des. Devel. Ther., 2020, 14, 3111-3130. doi: 10.2147/DDDT.S256756 PMID: 32848361
  102. Sivapriya, S.; Sivakumar, K.; Manikandan, H. Anticancer effects of chalcone-benzoxadiazole hybrids on KB human cancer cells. Chemical Data Collections, 2021, 35, 100762. doi: 10.1016/j.cdc.2021.100762
  103. Fayed, E.A.; Eldin, R.R.E.; Mehany, A.B.M.; Bayoumi, A.H.; Ammar, Y.A. Isatin-Schiff’s base and chalcone hybrids as chemically apoptotic inducers and EGFR inhibitors; design, synthesis, anti-proliferative activities and in silico evaluation. J. Mol. Struct., 2021, 1234, 130159. doi: 10.1016/j.molstruc.2021.130159
  104. Bayanati, M.; Shahhosseini, S.; Shirazi, F.H.; Farnam, G.; Zarghi, A. Design, synthesis and biological evaluation of 1,3-diphenyl-3-(phenylthio)propan-1-ones as new cytotoxic agents. Iran. J. Pharm. Res., 2021, 20(4), 229-237. PMID: 35194442
  105. Anil, D.A.; Polat, M.F.; Saglamtas, R.; Tarikogullari, A.H.; Alagoz, M.A.; Gulcin, I.; Algul, O.; Burmaoglu, S. Exploring enzyme inhibition profiles of novel halogenated chalcone derivatives on some metabolic enzymes: Synthesis, characterization and molecular modeling studies. Comput. Biol. Chem., 2022, 100, 107748. doi: 10.1016/j.compbiolchem.2022.107748 PMID: 35917597
  106. Ahmed, A.H.H.; Mohamed, M.F.A.; Allam, R.M.; Nafady, A.; Mohamed, S.K.; Gouda, A.E.; Beshr, E.A.M. Design, synthesis, and molecular docking of novel pyrazole-chalcone analogs of lonazolac as 5-LOX, iNOS and tubulin polymerization inhibitors with potential anticancer and anti-inflammatory activities. Bioorg. Chem., 2022, 129, 106171. doi: 10.1016/j.bioorg.2022.106171 PMID: 36166898
  107. Guan, Y.F.; Liu, X.J.; Yuan, X.Y.; Liu, W.B.; Li, Y.R.; Yu, G.X.; Tian, X.Y.; Zhang, Y.B.; Song, J.; Li, W.; Zhang, S.Y. Design, synthesis, and anticancer activity studies of novel quinoline-chalcone derivatives. Molecules, 2021, 26(16), 4899. doi: 10.3390/molecules26164899 PMID: 34443487
  108. Patel, S.; Challagundla, N.; Rajput, R.A.; Mishra, S. Design, synthesis, characterization and anticancer activity evaluation of deoxycholic acid-chalcone conjugates. Bioorg. Chem., 2022, 127, 106036. doi: 10.1016/j.bioorg.2022.106036 PMID: 35878450
  109. Sunkari, Y.M.J.; Eppakayala, L. Design, synthesis and anticancer evaluation of chalcone based thieno2,3-dthiazoles as anticancer agents. Chemical Data Collections, 2021, 34, 100742. doi: 10.1016/j.cdc.2021.100742
  110. Fathi, E.M.; Sroor, F.M.; Mahrous, K.F.; Mohamed, M.F.; Mahmoud, K.; Emara, M.; Elwahy, A.H.M.; Abdelhamid, I.A. Design, synthesis, in silico and in vitro anticancer activity of novel bis-furanyl-chalcone derivatives linked through alkyl spacers. ChemistrySelect, 2021, 6(24), 6202-6211. doi: 10.1002/slct.202100884
  111. Abbas, S.H.; Abd El-Hafeez, A.A.; Shoman, M.E.; Montano, M.M.; Hassan, H.A. New quinoline/chalcone hybrids as anti-cancer agents: Design, synthesis, and evaluations of cytotoxicity and PI3K inhibitory activity. Bioorg. Chem., 2019, 82, 360-377. doi: 10.1016/j.bioorg.2018.10.064 PMID: 30428415
  112. Abu Bakar, A.; Akhtar, M.; Mohd Ali, N.; Yeap, S.; Quah, C.; Loh, W.S.; Alitheen, N.; Zareen, S.; Ul-Haq, Z.; Shah, S. Design, synthesis and docking studies of flavokawain b type chalcones and their cytotoxic effects on MCF-7 and MDA-MB-231 cell lines. Molecules, 2018, 23(3), 616. doi: 10.3390/molecules23030616 PMID: 29518053
  113. Zhao, T.Q.; Zhao, Y.D.; Liu, X.Y.; Li, Z.H.; Wang, B.; Zhang, X.H.; Cao, Y.Q.; Ma, L.Y.; Liu, H.M. Novel 3-(2,6,9-trisubstituted-9H-purine)-8-chalcone derivatives as potent anti-gastric cancer agents: Design, synthesis and structural optimization. Eur. J. Med. Chem., 2019, 161, 493-505. doi: 10.1016/j.ejmech.2018.10.058 PMID: 30388465
  114. Ahmed, M.F.; Santali, E.Y.; El-Haggar, R. Novel piperazine–chalcone hybrids and related pyrazoline analogues targeting VEGFR-2 kinase; design, synthesis, molecular docking studies, and anticancer evaluation. J. Enzyme Inhib. Med. Chem., 2021, 36(1), 308-319. doi: 10.1080/14756366.2020.1861606 PMID: 33349069
  115. Alam, M.J.; Alam, O.; Perwez, A.; Rizvi, M.A.; Naim, M.J.; Naidu, V.; Imran, M.; Ghoneim, M.M.; Alshehri, S.; Shakeel, F. Design, synthesis, molecular docking, and biological evaluation of pyrazole hybrid chalcone conjugates as potential anticancer agents and tubulin polymerization inhibitors. Pharmaceuticals, 2022, 15(3), 280. doi: 10.3390/ph15030280 PMID: 35337078
  116. Musa, A.; Mostafa, E.M.; Bukhari, S.N.A.; Alotaibi, N.H.; El-Ghorab, A.H.; Farouk, A.; Nayl, A.A.; Ghoneim, M.M.; Abdelgawad, M.A. EGFR and COX-2 dual inhibitor: The design, synthesis, and biological evaluation of novel chalcones. Molecules, 2022, 27(4), 1158. doi: 10.3390/molecules27041158 PMID: 35208952
  117. Farzaneh, S.; Shahhosseini, S.; Arefi, H.; Daraei, B.; Esfahanizadeh, M.; Zarghi, A. Design, synthesis and biological evaluation of new 1, 3-diphenyl-3-(phenylamino) propan-1-ones as selective cyclooxygenase (COX-2) inhibitors. Med. Chem., 2018, 14(7), 652-659. doi: 10.2174/1573406414666180525133221 PMID: 29804536
  118. Bayanati, M.; Daraei, B.; Zarghi, A. Design, synthesis, docking studies, enzyme inhibitory and antiplatelet aggregation activities of New 1, 3-Diphenyl-3-(Phenylthio) propan-1-one derivatives as selective cox-2 inhibitors. Anticancer. Agents Med. Chem., 2022. PMID: 35692149
  119. Rudrapal, M.; Khan, J.; Dukhyil, A.A.B.; Alarousy, R.M.I.I.; Attah, E.I.; Sharma, T.; Khairnar, S.J.; Bendale, A.R. Chalcone scaffolds, bioprecursors of flavonoids: Chemistry, bioactivities, and pharmacokinetics. Molecules, 2021, 26(23), 7177. doi: 10.3390/molecules26237177 PMID: 34885754
  120. Berning, L.; Scharf, L.; Aplak, E.; Stucki, D.; von Montfort, C.; Reichert, A.S.; Stahl, W.; Brenneisen, P. In vitro selective cytotoxicity of the dietary chalcone cardamonin (CD) on melanoma compared to healthy cells is mediated by apoptosis. PLoS One, 2019, 14(9), e0222267. doi: 10.1371/journal.pone.0222267 PMID: 31553748
  121. Delor, R.A.; Petering, H.G. The action of pteroylglutamic acid on blood dyscrasias induced by thiouracil and propylthiouracil. Blood, 1950, 5(2), 155-160. doi: 10.1182/blood.V5.2.155.155 PMID: 15402271

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Bentham Science Publishers, 2024