Problematic aspects of medical artificial intelligence. Part 1

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

BACKGROUND: Artificial intelligence, like medicine, is a dynamically developing field that can be considered both a science and an art. This makes it much more difficult to use artificial intelligence compared to other technologies that come with a user manual.

Research and start-ups in the field of medical artificial intelligence are rapidly multiplying: the popularity of smart mobile devices, networked applications and remote digital services is growing. However, there are still some problems that complicate the widespread use of artificial intelligence algorithms in everyday clinical practice. The reasons for this are the high cost of operating neural network platforms and the limited qualifications of some medical professionals in the field of computer technology. These are only temporary difficulties, though, which should and will be gradually resolved.

CONCLUSION: This article focuses on the most sensitive points that are currently hindering the accelerated progress of machine learning in healthcare.

Full Text

Restricted Access

About the authors

Vitalii A. Berdutin

State Research Center — Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency

Email: vberdt@gmail.com
ORCID iD: 0000-0003-3211-0899
SPIN-code: 8316-7111

MD, Cand. Sci. (Medicine)

Russian Federation, Moscow

Tatyana E. Romanova

Privolzhsky Research Medical University

Email: drmedromanova@gmail.com
ORCID iD: 0000-0001-6328-079X
SPIN-code: 4943-6121

MD, Cand. Sci. (Medicine)

Russian Federation, Nizhny Novgorod

Sergey V. Romanov

Privolzhsky District Medical Center of the Federal Medical and Biological Agency

Email: director@pomc.ru
ORCID iD: 0000-0002-1815-5436
SPIN-code: 9014-6344

MD, Dr. Sci. (Medicine)

Russian Federation, Nizhny Novgorod

Olga P. Abaeva

State Research Center — Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency

Author for correspondence.
Email: abaevaop@inbox.ru
ORCID iD: 0000-0001-7403-7744
SPIN-code: 5602-2435

MD, Dr. Sci. (Medicine), Professor

Russian Federation, Moscow

References

  1. Prisyazhnaya NV, Reshetnikov AV. Education in a pandemic: vectors of digital transformation. Sociological research. 2022;(4):149-151. EDN: IVSVOX doi: 10.31857/S013216250018694-6 (In Russ.)
  2. Reshetnikov AV, Shamshurina NG, Shamshurin VI. Economics and management in healthcare: Textbook and workshop. 2nd ed. Moscow: Yurayt Publishing House; 2020 (In Russ.) EDN: KSZBPT
  3. Berdutin VA, Abaeva OP, Romanova TE, Romanov SV. Application of artificial intelligence in medicine: achievements and prospects. Literature review. Part 1. Sociology of medicine. 2022;21(1):83-96 EDN: ZGRLWS doi: 10.17816/socm106054
  4. Berdutin VA, Abaeva OP, Romanova TE, Romanov SV. Application of artificial intelligence in medicine: achievements and prospects. literature review. Part 2. Sociology of medicine. 2022;21(2):77-83 EDN: VLBRCV doi: 10.17816/socm107908
  5. Common Ways That AI Driven Medical Devices Can Fail. In: JD Supra [Internet]. Sausalito: JD Supra, LLC, 2024 [cited 2024 Wed 24]. Available from: https://www.jdsupra.com/legalnews/4-common-ways-that-ai-driven-medical-3346085/
  6. Quinn TP, Senadeera M, Jacobs S, Coghlan S, Le V. Trust and medical AI: the challenges we face and the expertise needed to overcome them. J Am Med Inform Assoc. 2021;28(4):890-894. doi: 10.1093/jamia/ocaa268
  7. Reshetnikov AV, Moiseenko NV, Khachaturyants GA. Transparency of medicines and medical devices accounting in medical organizations — current challenges and opportunities. Compulsory health insurance in the Russian Federation. 2020;(1):52-57 (In Russ.) EDN: GDBPZD
  8. Brundage M, Avin S, Clark J, et al. The Malicious Use of Artificial Intelligence: Forecasting, Prevention, and Mitigation. [Internet]. 2018 [cited 2023 Thu 21]. Available from: https://img1.wsimg.com/blobby/go/3d82daa4-97fe-4096-9c6b-376b92c619de/downloads/MaliciousUseofAI.pdf?ver=1553030594217
  9. Stoecklin MP, Jang J, Kirat D. DeepLocker: How AI Can Power a Stealthy New Breed of Malware. [Internet]. Security Intelligence; 2018. [cited 2023 Thu 21]. Available from: https://securityintelligence.com/deeplocker-how-ai-can-power-a-stealthy-new-breed-of-malware/
  10. Berdutin V. Socionic vision on Bioethics and Deontology. LAP LAMBERT Academic Publishing; 2018.
  11. Reshetnikov A, Fedorova J, Prisyazhnaya N, et al. Health management for sustainable development. In: 2018 Second World Conference on Smart Trends in Systems, Security and Sustainability (WorldS4). IEEE, 2018.
  12. Powles J, Hodson H. Google DeepMind and healthcare in an age of algorithms. Health Technol. 2017;7(4):351-367. doi: 10.1007/s12553-017-0179-1
  13. Howard A, Borenstein J. The ugly truth about ourselves and our robot creations: the problem of bias and social inequity. Sci Eng Ethics. 2018;24(5):1521-1536. doi: 10.1007/s11948-017-9975-2
  14. Ma X, Niu Y, Gu L, et al. Understanding adversarial attacks on deep learning based medical image analysis systems. Pattern Recogn. 2020;107332 doi: 10.1016/j.patcog.2020.107332
  15. Reddy S, Allan S, Coghlan S, Cooper P. A governance model for the application of AI in health care. J Am Med Inform Assoc. 2020;27(3):491-497. doi: 10.1093/jamia/ocz192
  16. Babel B, Buehler K, Pivonka A, Richardson B, Waldron D. Derisking machine learning and artificial intelligence. Technical report. [Internet]. McKinsey&Company; 2019. [cited 2023 Thu 21]. Available from: https://www.mckinsey.com/business-functions/risk/our-insights/derisking-machine-learning-and-artificial-intelligence
  17. Bottou L. From machine learning to machine reasoning. Mach Learn. 2014;94(2):133-149. doi: 10.1007/s10994-013-5335-x
  18. Artificial intelligence for authentic engagement: patient perspectives on health care’s evolving AI conversation. [Internet]. Syneos Health Communications; 2018. [cited 2023 Fri 22]. Available from: https://syneoshealthcommunications.com/perspectives/artificial-intelligence-for-authentic-engagement
  19. Vayena E, Blasimme A, Cohen IG. Machine learning in medicine: Addressing ethical challenges. PLoS Med. 2018;15(11):e1002689. doi: 10.1371/journal.pmed.1002689
  20. Alvarez-Melis D, Jaakkola TS. Towards robust interpretability with self-explaining neural networks. In: Proceedings of 32nd Conference on Neural Information Processing Systems (NeurIPS). Montreal; 2018.
  21. Grote T, Berens P. On the ethics of algorithmic decision-making in healthcare. J Med Ethics. 2020;46(3):205-211. doi: 10.1136/medethics-2019-105586
  22. Payrovnaziri SN, Chen Z, Rengifo-Moreno P, et al. Explainable artificial intelligence models using real-world electronic health record data: a systematic scoping review. J Am Med Inform Assoc. 2020;27(7):1173-1185. doi: 10.1093/jamia/ocaa053
  23. DeCamp M, Lindvall C. Latent bias and the implementation of artificial intelligence in medicine. J Am Med Inform Assoc. 2020;27(12):2020-2023. doi: 10.1093/jamia/ocaa094
  24. Bjerring JC, Busch J. Artificial intelligence and patient-centered decision-making. Philos Technol. 2021;34:349-371. doi: 10.1007/s13347-019-00391-6
  25. Ploug T, Holm S. The right to refuse diagnostics and treatment planning by artificial intelligence. Med Health Care Philos. 2020;23(1):107-114. doi: 10.1007/s11019-019-09912-8
  26. Nagendran M, Chen Y, Lovejoy CA, et al. Artificial intelligence versus clinicians: systematic review of design, reporting standards, and claims of deep learning studies. BMJ. 2020;368:m689. doi: 10.1136/bmj.m689
  27. Gunning D, Aha D. DARPA’s Explainable Artificial Intelligence (XAI) program. AIMag. 2019;40(2):44-58. doi: 10.1609/aimag.v40i2.2850
  28. Dalton-Brown S. The Ethics of Medical AI and the Physician-Patient Relationship. Camb Q Healthc Ethics. 2020;29(1):115-121. doi: 10.1017/S0963180119000847
  29. Proposed regulatory framework for modifications to artificial intelligence/machine learning (AI/ML)-based software as a medical device (SaMD): Discussion Paper. [Internet]. FDA; 2019. [cited 2023 Fri 22]. Available from: https://www.fda.gov/media/122535/download
  30. Shukla S. Enhancing Healthcare Insights, Exploring Diverse Use-Cases with K-means Clustering. International Journal of Management, IT & Engineering. 2023;13(8):60-68.
  31. Keane PA, Topol EJ. With an eye to AI and autonomous diagnosis. NPJ Digit Med. 2018;1:40. doi: 10.1038/s41746-018-0048-y
  32. Winkler JK, Fink C, Toberer F, et al. Association Between Surgical Skin Markings in Dermoscopic Images and Diagnostic Performance of a Deep Learning Convolutional Neural Network for Melanoma Recognition. JAMA Dermatol. 2019;155(10):1135-1141. doi: 10.1001/jamadermatol.2019.1735
  33. Kelly CJ, Karthikesalingam A, Suleyman M, Corrado G, King D. Key challenges for delivering clinical impact with artificial intelligence. BMC Med. 2019;17(1):195. doi: 10.1186/s12916-019-1426-2
  34. Berdutin VA, Berdutina EV. Logistics of applied solutions for lean healthcare and socionic typology. Beau Bassin: LAP LAMBERT Academic Publishing; 2020. (In Russ.)
  35. Giuste FO, Sequeira R, Keerthipati V, et al. Explainable synthetic image generation to improve risk assessment of rare pediatric heart transplant rejection. J Biomed Inform. 2023;139:104303. doi: 10.1016/j.jbi.2023.104303

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. DeepLocker — Artificial Intelligence-Powered Concealment: 1 — Target Class Concealment (does not reveal what kind of target is looking for (e.g. person, organization); 2 — Target Instance Concealment (if the target class is an individual, it does not reveal who it is looking for); 3 — Malicious Intent Concealment (payload is fully encrypted concealing how the final attack is executed)

Download (19KB)

Copyright (c) 2023 Eco-Vector

License URL: https://eco-vector.com/for_authors.php#07

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 86498 от 11.12.2023 г. 
СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия
ЭЛ № ФС 77 - 80649 от 15.03.2021 г.