MODEL BIOMEMBRANES AS TEST OBJECTS FOR DETERMINING THE CONCENTRATION RANGE OF CHEMICALS WITHOUT DESTROING THE BIOLOGICAL OBJECTS

Cover Page

Cite item

Full Text

Abstract

The paper presents data on changes in model biomembranes (liposomes, erythrocyte shadows, erythrocytes) used as test objects for determining those areas of concentrations of biologically active substances in which these is no violation of the structure or function of experimental objects. As biologically active substances synthetic ones were selected: plant growth regulator-melafen used in small doses in pre-sowing seed treatment and antioxidant derivatives -phenosan, phenoxan and Ihfans. It was shown by DSC method that phenosan derivatives in concentrations equal to 10-5 M and more destroy microdomain organization in bilayers of phospholipid multilamellar liposomes and reform protein microdomains in the shadows of erythrocytes. Melafen in small and large concentrations changes polymodally the microdomain organization in the bilayers of phospholipid multilamellar liposomes without destroying the structure and does not affect the protein microdomains in the shadows. Spectral analysis revealed an increase in membrane permeability in isolated whole erythrocytes under the action of melafen in large and small concentrations. The method of small-angle diffraction scattering showed the absence of melafen influence in a wide range of concentrations on the thickness of phospholipid bilayers and the order of their packing in multilamellar liposomes.

About the authors

O. M. Alekseeva

N.M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences

Author for correspondence.
Email: olgavek@yandex.ru
119334, Moscow Russian Federation

A. V. Krementsova

N.M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences

Email: akrementsova@mail.ru
119334, Moscow Russian Federation

A. V. Krivandin

N.M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences

Email: a.krivandin@sky.chph.ras.ru
119334, Moscow Russian Federation

O. V. Shatalova

N.M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences

Email: Shatalova@sky.chph.ras.ru
119334, Moscow Russian Federation

Yu. A. Kim

Institute of Cell Biophysics, Russian Academy of Sciences

Email: fake@neicon.ru
142290, Pushchino, Moscow region Russian Federation

References

  1. Fattakhov S.G., Reznik V.S., Konovalov A.I. Melamine Salt of Bis (hydroxymethyl) Phosphinic Acid (Melaphene) as a New Generation Regulator of Plant Growth Regulator. Proceedings of the 13th International Conference on Chemistry of Phosphorus Compounds. St. Petersburg.. 2002. 80. 2 (in Russian).
  2. Ershov V.V., Nikiforov G.A., Volodkin A.A. Spatially hampered phenols. M. Khimia. 1972. (in Russian).
  3. Nikiforov G.A., Belostotskaya I.S., Vol’eva V.B., Komissarova N.L., Gorbunov D.B. Bioantioxidants “float types” at base of derivatives 2,6 ditret butyl fenyl. Scientific Bulletin of the Tyumen Academy of Medicine: «Bioantioxidants». 2003; 1: 50-51 (in Russian).
  4. Tarachovsky Yu.S., Kusnetsova S.M., Vasilieva N.A., Egorochkin M.A., Kim Yu.A. Relationships of taxifolin (dihydroquercitine) with multilamellar liposomes from dimyristoilphosphatidylcholine. Biopysics. 2008; 5: 279–84 (in Russian).
  5. Antonov V.F., Smirnova E.Yu., Shevchenko E.V. Lipid membranes under the phase transitions M. Nauka. 1992. (in Russian).
  6. Tarachovsky Yu.S. Intellectual lipid’s nana containers at address transport of medical substances. M. LKI. 2011. (in Russian).
  7. Charakoz D.P. About the possible physiological role of phase transition “liquidsolid“ at biological membranes. 2001; 41: 54 - 7 (in Russian).
  8. Filippov A.V., Rudakova M.A., Gimatdinov R.S., Semina I.G. Lipids diffusion at biological membranes. Educational material for students of third and fourth courses specialization. Medical physics of physics department. Kazan. 2006. (in Russian).
  9. Lindblom G., Oradd G., Filippov A. Lipid lateral diffusion in bilayers with phosphatidylcholine, sphingomyelin and cholesterol. An NMR study of dynamics and lateral phase separation. Chem Phys Lipids. 2006; 141: 179-184.
  10. Svergun D.I., Feigin L.A. Rentgen and neutron small angle scattering. M. Nauka.1986. (in Russian).
  11. Dodge J.T., Mitchell C., Hanahan D.J. The preparation and chemical characteristics of hemoglobin-free ghost of human erythrocytes. Arch. Biochem. Biophys. 1963; 100: 199-130.
  12. Sato Y., Yamakose H. Suzuki Ya. Mechanism of hypotonic hemolysis of human erythrocytes. Biol. Pharm. Bull. 1993; 16: 506-512.
  13. Akoev V.R., Sherbinina S.P., Matveev A.V., Tarachovsky Yu.S., Deev A.A., Shnirov V.L. Investigations of structural transitions at erythrocytes’ membrane when hereditary hemochromatosis. Bulletin Experimental biology and medicine. 1997; 123: 279–84 (in Russian).
  14. Akoev V.R., Matveev A.V., Belyaeva T.V., Kim Y.A. The effect of oxidative stress on structural transitions of human erythrocyte ghost membranes. Biochim Biophys Acta. 1998; 1371: 284-294.
  15. Gendel L.J., Kim L.V., Luneva O.G., Fedin V.A., Kruglakova K.E. Changes of cursory architectonics of erythrocytes under the impact of synthetic antioxidant Fenosan-1. Reports of Russian Academy of Science. Series. Biol. 1996; 4: 508-512 (in Russian).
  16. Burlakova E.B., Goloshchapov A.N., Treschenkova Yu.A. The low doses actions to the biochemical properties of lactatdehydrohenase and microviscosity brain microsomes membranes of mice. Radiation biology. Radioecology. 2003; 3: 320-323 (in Russian).
  17. Kim Yu.A., Elemesov R.E., Akoev V.R. Hyper osmotic hemolysis of erythrocytes and antihemolytic activity of saponins faction and triterpens glycosides from Panax Ginseng C. A. Meyer. Biological Membrane. 2000; 17: 15–26 (in Russian).
  18. Prokopov A.A., Berland A.C., Shukil L.V. Investigation of Phenosan-acid acid metabolism at rabbit body. Pharmaceutical Chemistry Journal. 2006; 2: 3-4 (in Russian).
  19. Burlakova E.B. Effect of super low doses. Herald of Russian Academy of science. 1994; 64: 425 - 431 (in Russian).
  20. McMullen T.P.W., Lewis R.N.A.H., Mc Elhaney R.N. Differential scanning calorimetry study.of the effect of cholesterol on the thermo tropic phase behavior of a homologous series of linear saturated phosphatidylcholines. Biochemistry. 1993; 32: 516-552.
  21. Jager F.C. Determination of vitamin E requirement in rats by means of spontaneous haemolysis in vitro. Nutr. et Diets. 1968; 10: 215−223.
  22. Privalov P.L., Plotnikov V.V. Three generations of scanning microcalorimeters for liquids. Therm. Acta. 1989; 139: 257-277.
  23. Archipova G.V., Burlakova E.B., Krivandin A.V., Pogoretskaya I.L. Phenosan-acid influence to phospholipid membrane. Neurochemistry. 1996; 13: 128-132 (in Russian).
  24. Fattahov S.G. Melafen-perspective preparation for agricultural, biotechnology and ecobiotechnology..At Book: Melafen: mechanism of action and regions of using. Eds: Fattachov S.G., Kuznetsov V.V., Zagoskina N.V., Kazan: Print-Servis-XXI century; 2014: 9–14 (in Russian).
  25. Krivandin A.V., Fatkullina L.D. Shatalova O.V., Goloshchapov A.N., Burlakova E.B. Investigation of antioxidant IHFAN incorporation to liposomes by method small angle Rentgen scattering. Chemical Physics. 2013; 32: 91-96. (in Russian).
  26. Fatkullina L.D., Vekshina O.M. (Alekseeva O.M.), Burlakova E.B., Goloshchapov A.N., Kim Yu.A. Stabilization of cell membranes by hybrid antioxidants in therapy of neurodegenerative diseases. In book “In Biotechnology: State of the Art and Prospects for Development” Ed. by P.E. Stott and G.E. Zaikov. New York. Nova Science Publishers; 2008: Chapter 13. 115-123.
  27. Kim Yu. A. Elemesov R. E. Akoev V. R. Hyper osmotic hemolysis of erythrocytes and antihemolytic activity of saponins faction and triterpens glycosides from Panax Ginseng C. A. Meyer. Biological Membrane. 2000; 17: 15–26 (in Russian).
  28. Fattachov S.G. Melafen – perspective substance for agriculture, biotechnology and ekobiotechnology. Book “Melafen: mechanism of action and aerials of using” (Editors Fattahov S.G., Kuznetsov V.V., Zagoskina N.V.) Kazan “Pechat-Servis. XXI senture”. 2014; 9-14. (in Russian).
  29. Alekseeva O.M., Erokhin V.N., Krementsova A.V., Mill E.M., Binukov V.I., Fattahov S.G., Kim Yu. A., Semenov V.A., Golochshapov A.N., Burlakova E.B., Konovalov A.I. The investigation of melafen super low doses influences to the tumor of animals in vivo and in vitro. Reports of Academy of science 2010; 431: (3). 408-410. (in Russian).
  30. Alekseeva O.M. Chapter 9: «The Influence of Melafen-Plant Growth Regulator to some Metabolic pathways of animal cells». Book «Nanopolymers and Modern Materials Processing, Production and Applications» Editors: O.V. Stoyanov, A. K. Haghi, G. E. Zaikov Apple Academic Press, Toronto New Jersey 2013; 147-161.
  31. Erokhin V.N., Krementsova A.V., Semenov V.A., Burlakova E.B. The influences of antioxidant – (hydroxyl-3,5-ditertbutilphenil) propionic acid (phenozan) to the development of tumor. Reports of Academy of science 2007; 5: 583-590. (in Russian).
  32. Mill E.M., Albantova A.A., Burlakova E.B. The influence of antioxidant phenozan and radiation at low doses to the contain of Р53 and BCL-2 proteins at mouse of different lines. Radiation biology. Radioecology. 2010; 50: (1). 58-64. (in Russian).
  33. Mill E.M., Mishliakova O.V., Burlakova E.B. Р53 under the low intensity actions of physical and chemical natures (ionization’s emissions and antioxidant). Biophysic. 50: (1). 75-79. (in Russian).
  34. Zhizhina G.P., Zavarikina T.M., Mill E.M., Burlakova E.B. The changes of structural characteristics of DNA of mouse spleen after the injection of phenozan and mutual actions of -radiation at low dose with small power.. Radiation’s biology. Radiation ecology. 2007; 47: (4). 414-422. (in Russian).
  35. Trecschenkova Yu.A., Golochshapov A.N., Shishkina L.N., Burlakova E.B. The actions of low doses of antioxidant phenosan and radiation to the glycolic enzymes of sub cellular structures of cells of brain. Radiation’s biology. Radiation ecology. 2003; 43: (3). 320-323. (in Russian).
  36. Zhigacheva I. V., Fatkulina L.D., Rusina I.F., Shugaev A.I., Generosova I.P., Fattahov S.G., Konovalov A.I. Antistress properties Influence of substance melafen. Reports of Russian Academy of Sciences” 2007; 414: (2). 263-265. (in Russian).
  37. Zhigacheva I.V., Burlakova E.B., Generosova I.P., Shugaev A.I. Role of adaptogens at regulation of bioenergetics’ functions of mitochondrial at stress conditions. Biology membranes. 2013; 30: (4). 313-321.
  38. Zhigacheva I. V., Fatkulina L. D., Shugaev A. I., Super Low concentrations of melafen change the structural-and functional properties of biological membranes of plant and animal’s origin. Book “Melafen: mechanism of action and aerials of using” (Editors Fattahov S. G., Kuznetsov V.V., Zagoskina N.V.) Kazan “Pechat-Servis XXI senture”. 2014; 136-147. (in Russian).
  39. Gorbatova E.N., Duchovitch F.C., Kurochkin V.K. Investigation of effects of super low doses of phenozan. Russian Chemical Journal. 1999; 43: (5). 80-81. (in Russian).
  40. Molochkina E.M., Ozerova I.B., Burlakova E.B. The phenozan action to the acetilcholineesterase and system of lipid’s peroxidation at membranes of brain cells. Russian Chemical Journal. 1999; 43: 63-71. (in Russian).
  41. Palmina N.P., Maltseva E.L., Pinzar E.I., Burlakova E.B. Modification of proteinkinase C activity by ligands at superlow concentrations. The role of proteinkinase C and its effectors at processes of peroxide oxidation. Russian Chemical Journal. 1999; 43: 55-63. (in Russian).
  42. Palmina N.P., Cledova L.V., Pankova T.V., Gaintseva V.D. To the question of the “receptors” mechanism of biological substances actions at super low concentrations. Radiation’s biology. Radiation ecology. 2003; 43: (3). 310-314. (in Russian).
  43. Chasovskaya T.E., Maltseva E.L., Palmina N.P. The phenozan action to the plasmatic membrane structure of mice liver cell’s in vitro. Biophysics. 2013; 58: (1). 97-105. (in Russian).
  44. Palmina N.P., Chasovskaya Т.Е., Binukov V.I., Plaschina I.G. Mechanism of antioxidant action under super low concentrations at the surface areas of plasmatic membrane areas. VI International congress “Weak and ultra weak fields and radiations in biology and medicine” 2012; 84-97. (in Russian).
  45. Parshina E.Yu., Gendel L.Ya., Rubin A.B. The influence of new hybrid antioxidants – IHFANs, to the erythrocyte’s morphology. Biophysics. 2004; 49. (6): 1094-1098. (in Russian).
  46. Parshina E.Yu., Gendel L.Ya., Rubin A.B. The influence of new hybrid antioxidants – IHFANs, to the kinetics of the ascorbatdependent reestablishment of radical centers of spin zondes at liposomes. Biophysics. 2005; 50. (4): 676-679. (in Russian).
  47. Konovalov A.I., Rizkina I.S., Murtazina L.I., Timosheva A.P., Shagidullin R.R., Chernova A.I., Avvakumova L.V., Fattakhov S.G. Supramolecular systems at the base of dihydro melamine salt bis (oximethyl) phosphinic acid (melafen )and of the surfaceactive substances. Speech 1. Structure and self-association of melafen in water and chloroform. Reports of Academy of science. Chemical series. 2008; 6: 1207-1214. (in Russian).
  48. Rizkina I.S., Murtazina L.I., Kiseleva Yu.V., Mansgukova D.N., Tomosheva A.P., Konovalov A.I. Properties of supramolecular nanoassociates, formed at water solutions under low and super low concentrations of biological active substances. 2009; 428: (4). 487–491. (in Russian).
  49. Palmina N.P., Chasovskaya Т.Е., Rizkina I.S., Murtazina L.I., Kiseleva Yu. V. Konovalov A.I. Water solutions of potassium phenozan: influence to the structure of biological membranes and electro conductivity. Reports of Academy of science. 2009; 429: (1).128-131. (in Russian).
  50. Sirotuk M.G. The temperature and gases containing influence to the cavitations processes/ Acustic Journal 1966 1966; 12: (1). 87-92. (in Russian).
  51. Gavrilov L.R. Physical bases of ultrasonic technology processes. Ed. Rosenberg L.D. M. Nauka. 1970; 395-426. (in Russian)

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2019 Alekseeva O.M., Krementsova A.V., Krivandin A.V., Shatalova O.V., Kim Y.A.



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 81728 от 11 декабря 2013.