Power-law elliptical bodies of minimum drag in approximation of newton pressure coefficient law

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Newton's classical problem of constructing bodies with minimum drag is being developed in the direction of studying the characteristics of bodies with non-circular cross-sections. The examples of pyramidal bodies, the elliptical cone, and the power-law elliptical body demonstrate the possibility of reducing drag compared to axisymmetric bodies, provided that the length and the base area are preserved. The obtained results correct the erroneous results and conclusions, published in the journals “Applied Mathematics and Mechanics” (Nguyen V.L. Power-Law Elliptical Bodies of Minimum Drag in a Gas Flow // Applied Mathematics and Mechanics, 2023, vol. 87, no. 3, pp. 454–460) and “Fluid Dynamics” (Nguyen, V.L. Power-Law Elliptical Bodies of Minimum Drag in a Gas Flow // Fluid Dyn 58, 1367–1372 (2023)).

About the authors

S. A. Takovitskii

Central aerohydrodynamic institute named after prof. N.E. Zhukovsky

Email: c.a.t@tsagi.ru
Zhukovsky, Russia

References

  1. Newton I. Mathematical Principles of Natural Philosophy. Moscow: Nauka, 1989. (In Russian)
  2. Kraiko A.N. Newton’s problem on the head part of the minimum drag with A.N. Krylov’s commentaries and continuation of its solving history in the XX and early XXI century // High-Speed Hydrodynamics and Shipbuilding, 2018, pp. 47–56.
  3. Kraiko A.N. Newton’s Problem of the Optimal Forebody: History of the Solution // Fluid Dyn., 2019, vol. 54, no. 8, pp. 1009–1019. https://doi.org/10.1134/S0015462819080056
  4. Kraiko A.N., Pudovikov D.Ye., P'yankov K.S. et al. Axisymmetric nose shapes of specified aspect ratio, optimum or close to optimum with respect to wave drag // J. Appl. Math.&Mech, 2003, vol. 67, no. 5, pp. 703–730. https://doi.org/10.1016/S0021-8928(03)90043-8
  5. Takovitskii S.A. The construction of axisymmetric nose shapes of minimum wave drag // J. Appl. Math.&Mech, 2006, vol. 70, no.3, pp. 373–377.
  6. Efremov N.L., Kraiko A.N., P’yankov K.S. et al. The construction of a nose shape of minimum drag for specified external dimensions and volume using Euler equations // J. Appl. Math.& Mech, 2006, vol. 70, no. 6, pp. 912–923. http://dx.doi.org/10.1016/j.jappmathmech.2007.01.008
  7. Takovitskii S.A. Optimization Problems of Supersonic Aerodynamics. Moscow: Nauka, 2015. (In Russian)
  8. Efremov N.L., Kraiko A.N., P’yankov K.S. The axisymmetric nose shape of minimum wave drag for given size and volume // J. Appl. Math.&Mech, 2005, vol. 69, no. 5, pp. 649–664. http://dx.doi.org/10.1016/j.jappmathmech.2005.09.001
  9. Takovitskii S.A. Analytical solution in the problem of constructing axisymmetric noses with minimum wave drag // Fluid Dyn., 2006, vol. 41, no. 2, pp. 308–312. http://dx.doi.org/10.1007/s10697-006-0045-8
  10. Takovitskii S.A. Axisymmetric nose parts with a front face and a hypergeometric generatrix as a result of a solution of Newton's problem on a body of minimum drag at fixed dimensions and volume// TsAGI Sci. J., 2023, vol. 54, no. 4, pp. 21–27. (In Russian)
  11. Takovitskii S.A. Truncated Power-Law Bodies as a Result of an Approximate Solution to the Newton Problem on a Body Having the Minimum Drag // Fluid Dyn, 2022, vol. 57, pp. 657–662. https://doi.org/10.1134/S0015462822050111
  12. Ferry A., Ness N., Kaplita T. Supersonic flow over conical bodies without axial symmetry // JAS, 1953, vol.20, no. 8, pp. 563–571.
  13. Maikapar G.I. On the wave drag of non anixymmetric bodies at supersonic speeds // J. Appl. Math. Mech, 1959, vol. 23, no. 2, pp. 528–531. https://doi.org/10.1016/0021-8928(59)90104-2
  14. Chernyi G.G., Gonor A.L. Transversal contour of minimum pressure drag body. N.-Y.: Academic Press, 1965. P. 283–295.
  15. Gonor A.L. On three-dimensional bodies of minimum drag at high supersonic speed // J. Appl. Math. Mech, 1963, vol. 27, no. 1, pp. 273–280. https://doi.org/10.1016/0021-8928(63)90116-3
  16. Gonor A.L. Conical bodies of minimum drag in hypersonic gas flow// J. Appl. Math.&Mech., 1964, vol. 28, no. 2, pp. 471–475. https://doi.org/10.1016/0021-8928(64)90183-2
  17. Gonor A.L., Kraiko A.N. Some results of the optimal forms study for super- and hypersonic velocities. Moscow: Mir, 1969. P. 456–492. (In Russian)
  18. Gonor A.L. Determination of the shape of an optimal three-dimensional body with allowance for friction// Izv. Akad. Nauk SSSR, Mekh. Mashinostr., 1965, v. 4. (In Russian)
  19. Bunimovich A.I., Yakunina G.E. Investigation of the shape of the transverse contour of a conical three-dimensional body of minimal drag moving in rarefied gas // Fluid Dyn, 1986, vol. 21, pp. 771–776. https://doi.org/10.1007/BF01050900
  20. Vedernikov Y.A., Gonor A.L., Zubin M.A. et al. Aerodynamic characteristics of star-shaped bodies at Mach numbers M = 3–5 // Fluid Dyn., 1981, vol. 16, pp. 559–563. https://doi.org/10.1007/BF01094600
  21. Yakunina G.Ye. The construction of optimum three-dimensional shapes within the framework of a model of local interaction // J. Appl. Math.&Mech., 2000, vol. 64, no. 2, pp. 289–298. https://doi.org/10.1016/S0021-8928(00)00051-4
  22. Yakunina G.Ye. The optimum non-conical and asymmetrical three-dimensional configurations // J. Appl. Math. Mech., 2000, vol. 64, no. 4, pp. 583–591. https://doi.org/10.1016/S0021-8928(00)00084-8
  23. Kraiko A.N., Pudovikov D.Ye., Yakunina G.Ye. Theory of aerodynamic shapes close to optimal. Moscow: Janus-K, 2001. (In Russian)
  24. Takovitskii S.A. Conical Bodies with Star-Shaped Transverse Contour Having the Minimum Wave Drag // Fluid Dyn., 2024, vol. 59, pp. 122–129. https://doi.org/10.1134/S0015462823602966
  25. Maikapar G.I. Bodies formed by the stream surfaces of conical flows // Fluid Dyn., 1966, vol. 1, pp. 89–90. https://doi.org/10.1007/BF01016277
  26. Gusarov A.A., Dvoretskii V.M., Ivanov M.Y. et al. Theoretical and experimental investigation of the aerodynamic characteristics of three-dimensional bodies // Fluid Dyn, 1979, vol. 14, pp. 402–406. https://doi.org/10.1007/BF01062446
  27. Kraiko A.N., Tillyaeva N.I., Brailko I.A. Construction of the Three-Dimensional Minimum-Wave-Drag Forebody of Given Length and with a Circular Base (Review) // Fluid Dyn., 2025, vol. 60, no. 1. http://dx.doi.org/10.1134/S0015462824604716
  28. Nguyen V.L. Power-Law Elliptical Bodies of Minimum Drag in a Gas Flow // Fluid Dyn, 2024, vol. 58, pp. 1367–1372. https://doi.org/10.1134/S001546282360205X
  29. Bateman H., Erdelayi A. Higher transcendental functions. Hypergeometric function. Legendre functions. Moscow: Nauka, 1973. (In Russian)
  30. Bezrodnykh S.I. Analytic continuation of the Appell function F1 and integration of the associated system of equations in the logarithmic case // Comput. Math.&Math. Phys, 2017, vol. 57, pp. 559–589. https://doi.org/10.1134/S0965542517040042

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences