Experience of direct numerical simulation of turbulent boundary layers in complex flows
- Authors: Garbaruk A.V.1, Stabnikov A.S.1, Strelets M.K.1, Travin A.K.1, Shur M.L.1
-
Affiliations:
- Peter the Great Saint-Petersburg Polytechnic University
- Issue: Vol 89, No 5 (2025)
- Pages: 718-751
- Section: Articles
- URL: https://rjsocmed.com/0032-8235/article/view/696410
- DOI: https://doi.org/10.7868/S3034575825050033
- ID: 696410
Cite item
Abstract
About the authors
A. V. Garbaruk
Peter the Great Saint-Petersburg Polytechnic University
Email: agarbaruk@cfd.spbstu.ru
Saint-Petersburg, Russia
A. S. Stabnikov
Peter the Great Saint-Petersburg Polytechnic University
Email: an.stabnikov@gmail.com
Saint-Petersburg, Russia
M. Kh. Strelets
Peter the Great Saint-Petersburg Polytechnic University
Email: strelets@cfd.spb.ru
Saint-Petersburg, Russia
A. K. Travin
Peter the Great Saint-Petersburg Polytechnic University
Email: atravin@cfd.spbstu.ru
Saint-Petersburg, Russia
M. L. Shur
Peter the Great Saint-Petersburg Polytechnic University
Email: mshur@cfd.spb.ru
Saint-Petersburg, Russia
References
- Alfredsson P.H., Örlü, R., Alfredsson R. O. Large-Eddy BreakUp Devices — a 40 Years Perspective from a Stockholm Horizon // Flow Turbulence and Combustion. 2018, vol. 100, pp. 877–888. https://doi.org/10.1007/s10494-018-9908-4
- Strelets M. Detached Eddy Simulation of Massively Separated Flows // AIAA Paper., 2001, no. 2001–0879. https://doi.org/10.2514/6.2001-879
- Shur M., Strelets M., Travin A. High-order implicit multi-block Navier-Stokes code: Ten-year experience of application to RANS/DES/LES/DNS of turbulent flows // 7th Symp. on Overset Composite Grids & Solution Technol., Huntington Beach, CA, USA, 2004.
- Rogers S.E., Kwak D. An Upwind Differencing Scheme for the Time Accurate Incompressible Navier-Stokes Equations // AIAA J., 1990, vol. 28, no. 2, pp. 253–262. https://doi.org/10.2514/3.10382
- Roe P. Approximate Riemann Solvers, Parameter Vectors and Difference Schemes // J. of Computational Physics, 1981, vol. 43, no. 2, pp. 357–372. https://doi.org/10.1016/0021-9991(81)90128-5
- Spalart P.R., Strelets M., Travin A. Direct numerical simulation of large-eddy-break-up devices in a boundary layer // Int. J. of Heat and Fluid Flow, 2006, vol. 27, no. 5, pp. 902–910. https://doi.org/10.1016/j.ijheatfluidflow.2006.03.014
- Lund T., Wu, X., Squires K. Generation of turbulent inflow data for spatially-developing boundary layer simulations // J. of Comput. Phys., 1990, vol. 140, pp. 233–258. https://doi.org/10.1006/jcph.1998.5882
- Spalart P.R, Shur M., Strelets M. et al. Experimental and numerical study of the turbulent boundary layer over shallow dimples // Int. J. of Heat and Fluid Flow, 2019, vol. 78. https://doi.org/10.1016/j.ijheatfluidflow.2019.108438
- Van Nesselrooij M., Veldhuis L.L.M., van Oudheusden B.W., Schrijer F.F.J. Drag reduction by means of dimpled surfaces in turbulent boundary layers // Experiments in Fluids, 2016, vol. 57, no. 142. https://doi.org/10.1007/s00348-016-2230-9
- Lashkov Y.A., Samoilova N.V. On the viscous drag of a plate with spherical recesses // Fluid Dynamics, 2002, vol. 37, no. 2, pp. 231–236. https://doi.org/10.1023/A:1015806332333
- Lienhart H., Breuer M., Koksoy C. Drag reduction by dimples? A complementary experimental/numerical investigation // Int. J. of Heat and Fluid Flow, 2008, vol. 29, no. 3, pp. 783–791. https://doi.org/10.1016/j.ijheatfluidflow.2008.02.001
- Spalart P.R. Direct simulation of a turbulent boundary layer up to Rθ = 1410 // J. of Fluid Mech., 1988, vol. 187, pp. 61–98. https://doi.org/10.1017/S0022112088000345
- Van Campenhout O.W.G., van Nesselrooij M., Veldhuis L.L.M. et al. An experimental investigation into the flow mechanics of dimpled surfaces in turbulent boundary layers // AIAA Paper., 2018, no. 2018–2062. https://doi.org/10.2514/6.2018-2062
- Van Campenhout O.W.G., van Nesselrooij M., Lin Y.Y. et al. Experimental and numerical investigation into the drag performance of dimpled surfaces in a turbulent boundary layer // Int. J. of Heat and Fluid Flow, 2023, vol. 100. https://doi.org/10.1016/j.ijheatfluidflow.2023.109110
- Anderson B., Shur M., Spalart P. et al. Reduction of Aerodynamic Noise in a Flight Deck by Use of Vortex Generators // AIAA Paper., 2005, no. 2005–0426. https://doi.org/10.2514/6.2005-426
- Spalart P.R., Shur M.L., Strelets M.Kh., Travin A.K. Direct Simulation and RANS Modelling of a Vortex Generator Flow // Flow Turbulence and Combustion, 2015, vol. 95, pp. 335–350. https://doi.org/10.1007/s10494-015-9610-8
- Spalart P.R., Allmaras S.R. A One-Equation Turbulence Model for Aerodynamic Flows // AIAA Paper., 1992, no. 1992–0439. https://doi.org/10.2514/6.1992-439
- Menter F.R. Zonal Two-Equation k-ω Turbulence Models for Aerodynamic Flows // AIAA Paper., 1993, no. 1993–2906. https://doi.org/10.2514/6.1993-2906
- Spalart P.R., Shur M.L. On the sensitization of simple turbulence models to rotation and curvature // Aerospace Sci.& Techn., 1997, vol. 1, no. 5, pp. 297–302. https://doi.org/10.1016/S1270-9638(97)90051-1
- Smirnov P.E., Menter F.R. Sensitization of the SST turbulence model to rotation and curvature by applying the Spalart–Shur correction term // J. of Turbomachinery, 2009, vol. 131, no. 4. https://doi.org/10.1115/1.3070573
- Shur M., Spalart P.R., Strelets M., Travin A. Synthetic turbulence generators for RANS-LES interfaces in zonal simulations of aerodynamic and aeroacoustic problems // Flow of Turbulence and Combustion, 2014, vol. 93, no. 1, pp. 63–92. https://doi.org/10.1007/s10494-014-9534-8
- Driver D.M. Reynolds shear stress measurements in a separated boundary layer flow // AIAA Paper., 1991, no. 1991–1787. https://doi.org/10.2514/6.1991-1787
- Dudek J., Georgiadis N., Yoder D. Calculation of turbulent subsonic diffuser flows using the NPARC Navier–Stokes code // AIAA Paper., 1996, no. 1996–0497. https://doi.org/10.2514/6.1996-497
- Stabnikov A.S., Kolmogorov D.K., Garbaruk A.V., Menter F.R. Direct Numerical Simulation of Separated Turbulent Flow in Axisymmetric Diffuser // J. of Physics: Conference Series, 2021, vol. 2103, no. 1. https://doi.org/10.1088/1742-6596/2103/1/012214
- Menter F.R., Kolmogorov D.K., Garbaruk A.V., Stabnikov A.S. Direct- and Large Eddy Simulations of Turbulent Flow in CS0 Diffuser on Resolved and Under-resolved Meshes // Flow Turbulence and Combustion, 2023, vol. 110, no. 3, pp. 515–546. https://doi.org/10.1007/s10494-023-00399-1
- Bachalo W.D., Johnson D.A. Transonic, turbulent boundary-layer separation generated on an axisymmetric flow model // AIAA J., 1986, vol. 24, no. 3, pp. 437–443. https://doi.org/10.2514/3.9286
- Spalart P.R., Belyaev K.V., Garbaruk A.V. et al. Large-Eddy and Direct Numerical Simulations of the Bachalo-Johnson Flow with Shock-Induced Separation // Flow Turbulence and Combustion, 2017, vol. 99, no. 3, pp. 865–885. https://doi.org/10.1007/s10494-017-9832-z
- Belyaev K.V., Garbaruk A.V., Shur M.L. et al. Experience of Direct Numerical Simulation of Turbulence on Supercomputers // In: Communications in Computer & Inform. Sci., 2017, vol. 687, pp. 67–77. https://doi.org/10.1007/978-3-319-55669-7_6
- Shur M.L., Spalart P.R., Strelets M.Kh., Travin A.K. A hybrid RANS-LES approach with delayed-DES and wall-modelled LES capabilities // Int. J. of Heat and Fluid Flow, 2008, vol. 29, no. 6, pp. 1638–1649. https://doi.org/10.1016/j.ijheatfluidflow.2008.07.001
- Shur M.L., Spalart P.R., Strelets M.Kh., Travin A.K. Direct numerical simulation of the two-dimensional speed bump flow at increasing Reynolds numbers // Int. J. of Heat and Fluid Flow, 2021, vol. 90, no. 3. https://doi.org/10.1016/j.ijheatfluidflow.2021.108840
- Balin R., Jansen K.E., Spalart P.R. Wall-Modeled LES of flow over a Gaussian bump with strong pressure gradients and separation // AIAA Paper., 2020, no. 2020–3012. https://doi.org/10.2514/6.2020-3012
- Uzun A., Malik M.R. Large-Eddy Simulation of flow over a wall-mounted hump with separation and reattachment // AIAA J., 2017, vol. 56, no. 2, pp. 1–16. https://doi.org/10.2514/1.J056397
Supplementary files




