Experience of direct numerical simulation of turbulent boundary layers in complex flows

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

A survey is presented of numerical studies of near-wall turbulent flows conducted in different years using Direct Numerical Simulation (DNS) by representatives of three generations of L.G. Loitsyansky's students, currently working in the laboratory “Computational Hydroaeroacoustics and Turbulence” of SPbPU. Based on the experience accumulated in the course of these studies, a conclusion is drawn that despite the high computational costs required to carry out DNS, this method already today represents a powerful universal tool not only for fundamental research into turbulence, but also for solving important applied problems.

Sobre autores

A. Garbaruk

Peter the Great Saint-Petersburg Polytechnic University

Email: agarbaruk@cfd.spbstu.ru
Saint-Petersburg, Russia

A. Stabnikov

Peter the Great Saint-Petersburg Polytechnic University

Email: an.stabnikov@gmail.com
Saint-Petersburg, Russia

M. Strelets

Peter the Great Saint-Petersburg Polytechnic University

Email: strelets@cfd.spb.ru
Saint-Petersburg, Russia

A. Travin

Peter the Great Saint-Petersburg Polytechnic University

Email: atravin@cfd.spbstu.ru
Saint-Petersburg, Russia

M. Shur

Peter the Great Saint-Petersburg Polytechnic University

Email: mshur@cfd.spb.ru
Saint-Petersburg, Russia

Bibliografia

  1. Alfredsson P.H., Örlü, R., Alfredsson R. O. Large-Eddy BreakUp Devices — a 40 Years Perspective from a Stockholm Horizon // Flow Turbulence and Combustion. 2018. V. 100. P. 877–888. https://doi.org/10.1007/s10494-018-9908-4
  2. Strelets M. Detached Eddy Simulation of Massively Separated Flows // AIAA Paper 2001. № 2001-0879. https://doi.org/10.2514/6.2001-879
  3. Shur M., Strelets M., Travin A. High-order implicit multi-block Navier-Stokes code: Ten-year experience of application to RANS/DES/LES/DNS of turbulent flows // 7th Symp. on Overset Composite Grids & Solution Technol., Huntington Beach, CA, USA. Huntington Beach, 2004.
  4. Rogers S.E., Kwak D. Upwind Differencing Scheme for the Time Accurate Incompressible Navier-Stokes Equations // AIAA J. 1990. V. 28. № 2. P.253–262. https://doi.org/10.2514/3.10382
  5. Roe P. Approximate Riemann Solvers, Parameter Vectors and Difference Schemes // J. of Comput. Phys. 1981. V. 43. № 2. P. 357–372. https://doi.org/10.1016/0021-9991(81)90128-5
  6. Spalart P.R., Strelets M., Travin A. Direct numerical simulation of large-eddy-break-up devices in a boundary layer // Int. J. of Heat and Fluid Flow. 2006. V. 27. № 5. P. 902–910. https://doi.org/10.1016/j.ijheatfluidflow.2006.03.014
  7. Lund T., Wu X., Squires K. Generation of turbulent inflow data for spatially-developing boundary layer simulations // J. of Comput. Phys. 1990. V. 140. P. 233–258. https://doi.org/10.1006/jcph.1998.5882
  8. Spalart P.R, Shur M., Strelets M. et al. Experimental and numerical study of the turbulent boundary layer over shallow dimples // Int. J. of Heat and Fluid Flow. 2019. V. 78. https://doi.org/10.1016/j.ijheatfluidflow.2019.108438
  9. Van Nesselrooij M., Veldhuis L.L.M., van Oudheusden B.W., Schrijer F.F.J. Drag reduction by means of dimpled surfaces in turbulent boundary layers // Experiments in Fluids. 2016. V. 57. № 142. https://doi.org/10.1007/s00348-016-2230-9
  10. Лашков Ю.А., Самойлова Н.В. К вопросу о сопротивлении пластины со сферическими углублениями // Изв. РАН. Механика жидкости и газа. 2002. № 2. С. 69–75.
  11. Lienhart H., Breuer M., Koksoy C. Drag reduction by dimples? A complementary experimental/numerical investigation // Int. J. of Heat and Fluid Flow. 2008. V. 29. №. 3. P. 783–791. https://doi.org/10.1016/j.ijheatfluidflow.2008.02.001
  12. Spalart P.R. Direct simulation of a turbulent boundary layer up to Rθ = 1410 // J. of Fluid Mech. 1988. V. 187. P. 61–98. https://doi.org/10.1017/S0022112088000345
  13. Van Campenhout O.W.G., van Nesselrooij M., Veldhuis L.L.M. et al. An experimental investigation into the flow mechanics of dimpled surfaces in turbulent boundary layers // AIAA Paper 2018. № 2018–2062. https://doi.org/10.2514/6.2018-2062
  14. Van Campenhout O.W.G., van Nesselrooij M., Lin Y.Y. et al. Experimental and numerical investigation into the drag performance of dimpled surfaces in a turbulent boundary layer // Int. J. of Heat and Fluid Flow. 2023. V. 100. https://doi.org/10.1016/j.ijheatfluidflow.2023.109110
  15. Anderson B., Shur M., Spalart P. et al. Reduction of Aerodynamic Noise in a Flight Deck by Use of Vortex Generators // AIAA Paper. 2005. № 2005–0426 https://doi.org/10.2514/6.2005-426
  16. Spalart P.R., Shur M.L., Strelets M.Kh., Travin A.K. Direct Simulation and RANS Modelling of a Vortex Generator Flow // Flow Turbulence and Combustion. 2015. V. 95. P. 335–350. https://doi.org/10.1007/s10494-015-9610-8
  17. Spalart P.R., Allmaras S.R. A One-Equation Turbulence Model for Aerodynamic Flows // AIAA Paper. 1992. № 1992–0439. https://doi.org/10.2514/6.1992-439
  18. Menter F.R. Zonal Two-Equation k-ω Turbulence Models for Aerodynamic Flows // AIAA Paper. 1993. № 1993–2906. https://doi.org/10.2514/6.1993-2906
  19. Spalart P.R., Shur M.L. On the sensitization of simple turbulence models to rotation and curvature // Aerospace Sci.&Techn. 1997. V. 1. № 5. P. 297–302. https://doi.org/10.1016/S1270-9638(97)90051-1
  20. Smirnov P.E., Menter F.R. Sensitization of the SST turbulence model to rotation and curvature by applying the Spalart–Shur correction term // J. of Turbomachinery. 2009. V. 131. № 4. https://doi.org/10.1115/1.3070573
  21. Shur M., Spalart P.R., Strelets M., Travin A. Synthetic turbulence generators for RANS-LES interfaces in zonal simulations of aerodynamic and aeroacoustic problems // Flow of Turbulence and Combustion. 2014. V. 93. № 1. P. 63–92. https://doi.org/10.1007/s10494-014-9534-8
  22. Driver D.M. Reynolds shear stress measurements in a separated boundary layer flow // AIAA Paper 1991. № 1991–1787. https://doi.org/10.2514/6.1991-1787
  23. Dudek J., Georgiadis N., Yoder D. Calculation of turbulent subsonic diffuser flows using the NPARC Navier–Stokes code // AIAA Paper. 1996. № 1996–0497. https://doi.org/10.2514/6.1996-497
  24. Stabnikov A.S., Kolmogorov D.K., Garbaruk A.V., Menter F.R. Direct Numerical Simulation of Separated Turbulent Flow in Axisymmetric Diffuser // J. of Physics: Conference Series. 2021. V. 2103. № 1. https://doi.org/10.1088/1742-6596/2103/1/012214
  25. Menter F.R., Kolmogorov D.K., Garbaruk A.V., Stabnikov A.S. Direct- and Large Eddy Simulations of Turbulent Flow in CS0 Diffuser on Resolved and Under-resolved Meshes // Flow Turbulence and Combustion. 2023. V. 110. № 3. P. 515–546. https://doi.org/10.1007/s10494-023-00399-1
  26. Bachalo W.D., Johnson D.A. Transonic, turbulent boundary-layer separation generated on an axisymmetric flow model // AIAA J. 1986. V. 24. № 3. P. 437–443. https://doi.org/10.2514/3.9286
  27. Spalart P.R., Belyaev K.V., Garbaruk A.V. et al. Large-Eddy and Direct Numerical Simulations of the Bachalo-Johnson Flow with Shock-Induced Separation // Flow Turbulence and Combustion. 2017. V. 99. № 3. P. 865–885. https://doi.org/10.1007/s10494-017-9832-z
  28. Belyaev K.V., Garbaruk A.V., Shur M.L. et al. Experience of Direct Numerical Simulation of Turbulence on Supercomputers // In: Communications in Computer & Information Science. 2017. V. 687. P. 67–77. https://doi.org/10.1007/978-3-319-55669-7_6
  29. Shur M.L., Spalart P.R., Strelets M.Kh. et al. A hybrid RANS-LES approach with delayed-DES and wall-modelled LES capabilities // Int. J. of Heat and Fluid Flow. 2008. V. 29. № 6. P. 1638–1649. https://doi.org/10.1016/j.ijheatfluidflow.2008.07.001
  30. Shur M.L., Spalart P.R., Strelets M.Kh., Travin A.K. Direct numerical simulation of the two-dimensional speed bump flow at increasing Reynolds numbers // Int. J. of Heat and Fluid Flow. 2021. V. 90. № 3. https://doi.org/10.1016/j.ijheatfluidflow.2021.108840
  31. Balin R., Jansen K.E., Spalart P.R. Wall-Modeled LES of flow over a Gaussian bump with strong pressure gradients and separation // AIAA Paper. 2020. № 2020–3012. https://doi.org/10.2514/6.2020-3012
  32. Uzun A., Malik M.R. Large-Eddy Simulation of flow over a wall-mounted hump with separation and reattachment // AIAA J. 2017. V. 56. № 2. P. 1–16. https://doi.org/10.2514/1.J056397

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2025