Neftehimiâ

ISSN (print)0028-2421

Media registration certificate: No. 0110162 dated 02/05/1993

Founder: Institute of Petrochemical Synthesis named after. A.V. Topchiev RAS, Russian Academy of Sciences

Editor-in-Chief: Maksimov Anton Lvovich

Number of issues per year: 6

Indexation: RISC, list of Higher Attestation Commissions, CrossRef, White List (level 2)

"Neftehimiâ" founded in 1961, offers original papers and reviews of theoretical and experimental studies concerned with current problems of petroleum chemistry and processing such as chemical composition of crude oils and natural gas liquids; petroleum refining (cracking, hydrocracking, and catalytic reforming); catalysts for petrochemical processes (hydrogenation, isomerization, oxidation, hydroformylation, etc.); activation and catalytic transformation of hydrocarbons and other components of petroleum, natural gas, and other complex organic mixtures; new petrochemicals including lubricants and additives; environmental problems; and information on scientific meetings relevant to these areas.

Neftehimiâ is abstracted and/or indexed in:

Academic OneFile, Business Source, ChemWeb, Chemical Abstract Service (CAS), Chemistry Citation Index, Chimica, Current Contents/Engineering, Computing, and Technology, EBSCO, EI - Compendex, EI Encompass, EnCompassLit, Gale, Google, INSPEC, Journal Citation Reports/Science Edition, OCLC, Reaction Citation Index, Reaxys, SCOPUS, Science Citation Index, Science Citation Index Expanded, Summon by Serial Solutions.

Edição corrente

Acesso aberto Acesso aberto  Acesso é fechado Acesso está concedido  Acesso é fechado Acesso é pago ou somente para assinantes

Volume 65, Nº 5 (2025)

Edição completa

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Articles

Исследование реакции олигомеризации смеси этилен–пропилен на катализаторе HZSM-5/Al2O3
Magomedova M., Davyidov I., Galanova E., Starozhitskaya A., Maximov A.
Resumo

Проведено исследование реакции олигомеризации смеси этилен–пропилен в среде азота и водорода в присутствии катализатора HZSM-5/Al2O3. Показано, что в среде водорода достигается высокая конверсия сырья (около 100%)и стабильность работы катализатора во времени. При этом с течением времени в различных средах состав продуктов изменяется по-разному: в среде азота наблюдается увеличение селективности образования алканов, в том числе этана и пропана (до 51 мас.%), в то время какв среде водорода происходит увеличение селективности образования жидких углеводородов С5+(до 40 мас.%) за счет снижения селективности образования пропанапри постоянной селективности образования этана. При этом групповой состав жидкойфракции С8+изменяется незначительно в сторону образования алканов (на 5мас.%). Увеличение температуры с 250 до 340°Cи давления с 10 до 20 атм приводит к увеличениюконверсии сырья до 98–100% и перераспределению продуктов реакции в сторонуобразования более тяжелых углеводородов—С7, С10, С12. При этом увеличение температуры значительно ускоряет реакцию взаимодействия пропиленаи бутенов, а увеличение давления влияет на скорость взаимодействия этиленас пропиленом.

Neftehimiâ. 2025;65(5):341-350
pages 341-350 views
Зависимость свойств фторированных активирующих носителей и металлоценовых катализаторов сополимеризации этилена от характеристик мезопористых силикагелей
Kostomarova O., Nifant'ev I., Kolosov N., Zubkevich S., Komarov P., Ivchenko P.
Resumo
Актуальный подход к нанесенным металлоценовым катализаторам (со)полимеризации этилена основан на использовании так называемых активирующих носителей—силикагелей, поверхность которых модифицирована взаимодействием с триалкилалюминием, с последующей термоокислительной обработкой и фторированием. В работе представлены результаты сравнительного исследования активирующих носителей на основе мезопористыхсиликагелей с различной морфологией (микросферическая, тороидальная, гранулы) и удельной площадьюповерхности (270–660 м2/г). Активирующие носители, содержащие Al и Fв количестве 1,19–1,92 и 3,4–3,8 ммоль/г соответственно, были использованы для приготовления катализаторов сополимеризации этилена с гексеном-1 на основе (η5-BuC5H4)2ZrCl2,активированного Et3Al. Полученные катализаторы продемонстрировали активность 23,2–56,8 кгПЭ/(ммольZrч) (25 атм, 80°C), максимальную для катализатора на основе мезопористого силикагеля ES-70, характеризующегося узким распределением микро пор по размеру (D = 20 нм). Катализатор сравнения на основе ES-70, приготовленный с использованием модифицированного метилалюмоксана ММАО-12, показалактивность 20 кгПЭ/(ммольZrч). Для всех катализаторов в полимеризации этилена наблюдался эффект репликации, что позволяет их использование в промышленных газофазных процессах производства линейного полиэтилена низкой плотности (ЛПЭНП).
Neftehimiâ. 2025;65(5):351-363
pages 351-363 views
Взаимосвязь морфологии частиц псевдобёмита и структурно-каталитических свойств NiMo/Al2O3-катализаторов гидроочистки вакуумного газойля
Vatutina Y., Nadeina K., Kazakov M., Romanova T., Revyakin M., Dik P., Cherepanova S., Klimov O., Noskov A.
Resumo
Выполнено исследование зависимости свойств Al2O3-носителей и NiMo/Al2O3-катализаторов гидроочистки вакуумного газойля от размера частиц псевдобёмита игольчатой морфологии, прокаленного при 550°C. Был приготовлен псевдобёмит методом осаждения с шириной иголок не более 5 нм, и псевдобёмиты с шириной иголокот 9 до 15 нм с использованием метода гидротермального синтеза. В образце Al2O3 носителя, приготовленного на основе псевдобёмита, полученного методом осаждения, преобладали мезопоры с диаметром 7–13 нм. С увеличением размера частиц псевдобёмита объем мезопор 7–13 нм в носителях уменьшался и отмечалось формирование более крупных мезопор с диаметрами 13–30 нм. Величина удельной поверхности Al2O3-носителей уменьшалась с увеличением размера частиц исходного псевдобёмита с 259 до 163 м2/г, объем пор составлял 0,7–0,8 см3/г. Для NiMo/Al2O3-катализаторов тенденция в изменении текстурных характеристик была аналогичной носителям. В сульфидированных катализаторах более длинные и полислойные частицы активного компонента NiMoS-фазы формировались на носителях из псевдобёмита с более широкими иголками. Средняя длина частиц увеличивалась от 3,0до 3,7 нм, среднее количество слов в пакете активного компонента возрастало от 1,4 до 1,9. По результатам тестирования катализаторов в условиях гидроочистки вакуумного газойля было обнаружено, что наибольшей активностью в реакциях гидрообессеривания обладают образцы, приготовленные на основе носителей с добавлением псевдобёмитов с шириной иголок 5–9 нм, то есть имеющие наименьшую длину частиц активного компонента и количество слоев в пакете. Остальные образцы катализаторов были менее активными, несмотря на увеличение доли крупных мезопор.
Neftehimiâ. 2025;65(5):364-376
pages 364-376 views
Гидродехлорирование п-дихлорбензола в присутствии кислородорганических соединений с использованием in situ формирующихся ненанесенных сульфидных катализаторов
Dzhabarov E., Petrukhina N., Zakharyan E., Kaldysheva A.
Resumo
Изучены каталитические свойства ненанесенных моно- и биметаллических систем на основе ненанесенных сульфидов переходных металлов (Ni, W,Co, Mo, Fe) в конкурирующих процессах гидрогенолиза бикомпонентных систем (1,4-дихлорбензол/терефталевая кислота, 1,4-дихлорбензол/гваякол). В качестве предшественников активного компонентаиспользовались нефтерастворимые соли, а формирование сульфидных частиц происходило в реакционной среде in situ. Установлено, что наибольшие степени дехлорирования (до 100%)и деоксигенации (до 95%) в параллельном процессе гидродехлорирования 1,4-дихлорбензола и гидродеоксигенации гваякола достигаются в присутствии биметаллических NiWS, NiMoS, CoWS, CoMoSи монометаллической WS систем, тогда как в параллельном процессегидродехлорирования 1,4-дихлорбензола и гидродеоксигенации терефталевой кислоты—в присутствии NiMoS и NiWS, что говорит о высокой активности именно NiMoSи NiWS среди всех исследуемых систем. Исследование морфологии и фазового состава NiWS посредством рентгеновской фотоэлектронной спектроскопии и просвечивающей электронноймикроскопии указывает на наличие на поверхности катализаторов фазы дисульфида вольфрама,сульфида никеля и смешанной фазы NiWS. Показано увеличение скоростиреакций гидродеоксигенации в присутствии 1,4-дихлорбензола по сравнению с процессом гидродеоксигенации монокомпонентных систем гидродеоксигенации гваякола. Катализатор NiWS был исследован в процессе гидротермальной переработки смеси поливинилхлорида и полиэтилентерефталата, в результате которой жидкий продукт содержал до 2% хлор- и 1% кислородароматических соединений.
Neftehimiâ. 2025;65(5):377-390
pages 377-390 views
Ni-Al2O3-катализаторы пиролиза природного газа: зависимость физико-химических свойств и каталитической активности от температуры прокалки
Vinogradov N., Galeeva Y., Elizarova V., Dolgikh V., Kudinov I.
Resumo
Предложен способ синтеза Ni-Al2O3-катализаторов пиролиза природного газа, основанный на золь–гель-подходе с использованием псевдобёмита. Для синтезированного геля изучено влияние кальцинирования при различных температурах. Полученные материалы охарактеризованы методами низкотемпературной адсорбции азота, термопрограммируемого восстановления и рентгенофазового анализа. Изменение температуры прокалки приводит к изменению текстурных характеристик, кристалличности и степени взаимодействия активного компонента и носителя в результате чего катализаторы проявляют различную каталитическую активность. Наибольшую активность проявил образец, полученный при 650°C, что связано с повышенным объемом пор и степенью взаимодействия активной фазы и носителя.
Neftehimiâ. 2025;65(5):391-399
pages 391-399 views
Использование термолизных масел в качестве компонентов сырья каталитического крекинга
Gilyazutdinova A., Koveza V., Bobkova T., Potapenko O.
Resumo
Исследованы термолизные масла, полученные термической обработкой полимерных отходов, в качестве потенциального компонента сырья каталитического крекинга с целью производства моторных топлив и олефинов. Показано, что введение в базовое сырье каталитического крекинга (вакуумные дистилляты нефти) термолизного масла в количестве до 30 мас.% не приводит к критическим изменениям в материальном балансе или эффективности процесса. Выявлено, что повышенное содержание олефинов, парафинов и нафтенов в термолизном масле способствует увеличению конверсии сырья и выхода целевых продуктов (бензина, пропилена). Наличие примесей в виде органических соединений железа и натрия в составе сырья способствует дезактивации катализатора: накопление Fe повышает выход кокса до 6,7 мас.% и снижает активность катализатора, натрийразрушает цеолитную структуру катализатора (его активность снижается до 13 мас.% — на 72 отн.% меньше по сравнению с чистым катализатором), Са и Al оказывают минимальное влияние. Показано, что использование термолизных масел без предварительной очистки от металлических примесей ограничено из-за риска отравления катализатора вследствие их накопления при сохранении низкого расхода катализатора. Рекомендовано ограничивать долю термолизного масла в смеси с классическим сырьем нефтяного происхождения до 5–10 мас.% и контролировать уровень железа и натрия в смеси. Полученные данные расширяют возможности переработки полимерных отходов в рамках существующих технологий, применяемых на НПЗ.
Neftehimiâ. 2025;65(5):400-409
pages 400-409 views
УФ-старение уреатных пластиковых смазок
Kochubeiev A., Lyadov A., Kostina Y., Fedorov A., Chirikov A., Sokolova M., Le Quyen V., Duong P.
Resumo
Впервые было изучено влияние длительного воздействия УФ-излучения на изменение свойств уреатных пластичных смазок. Показано, что УФ-воздействие приводит к существенному ухудшению структурно-механических свойств смазок; так, для смазок, полученных на основе минеральных базовых масел, уже через 14 дней выдерживания в климатической камере при энергетической освещенности образцов 22,9 ± 0,1 Вт/м2 и температуре 60°C наблюдается снижение предела прочности более чем в 2 раза. В работе доказано, что такие изменения обусловлены накоплением кислых компонентов, которые образуются под действием УФ-излучения, а сам уреатный загуститель при этом не претерпевает химических превращений. Накопление кислых компонентов в уреатных смазках приводит к возрастанию несущей способности уреатных смазок при умеренном ухудшении противоизносных свойств.
Neftehimiâ. 2025;65(5):410-416
pages 410-416 views
Определение источника разлива мазута методом ГХ-МС
Zimens M., Polovkov N., Zolotareva V., Pantserny A., Kanatyeva A., Borisov R.
Resumo
Методом газовой хромато-масс-спектрометрии с ионизацией электронами изучен состав углеводородов различного строения в образцах мазута, попавших в окружающую среду в результате аварии в Керченском проливе в 2024 г. Установлено, что контакт с окружающей средой приводит к изме-нению соотношений в них алканов, пристана и фитана. В то же время относительное содержание высокомолекулярных ароматических соединений (дибензотиофенов, фенантренов и хризенов), а также реликтовых углеводородов остается практически неизменным. Это позволяет рассчитывать индексы, отражающие соотношения данных соединений, и на основании их сравнения выявлять происхождение загрязнений. Предложенный подход апробирован на серии образцов, как собранных в акватории Черного моря, так и полученных непосредственно на нефтеперерабатывающих заводах. Показано, что его применение дает возможность дифференцировать загрязнения, связанные с аварийным разливом мазута в Керченском проливе в 2024 г., от загрязнений, возникших в результате других техногенных аварий.
Neftehimiâ. 2025;65(5):417-423
pages 417-423 views
К юбилею профессора Рудяка Константина Борисовича
Editorial T.
Resumo

--

Neftehimiâ. 2025;65(5):424-425
pages 424-425 views