Использование термолизных масел в качестве компонентов сырья каталитического крекинга

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Исследованы термолизные масла, полученные термической обработкой полимерных отходов, в качестве потенциального компонента сырья каталитического крекинга с целью производства моторных топлив и олефинов. Показано, что введение в базовое сырье каталитического крекинга (вакуумные дистилляты нефти) термолизного масла в количестве до 30 мас.% не приводит к критическим изменениям в материальном балансе или эффективности процесса. Выявлено, что повышенное содержание олефинов, парафинов и нафтенов в термолизном масле способствует увеличению конверсии сырья и выхода целевых продуктов (бензина, пропилена). Наличие примесей в виде органических соединений железа и натрия в составе сырья способствует дезактивации катализатора: накопление Fe повышает выход кокса до 6,7 мас.% и снижает активность катализатора, натрийразрушает цеолитную структуру катализатора (его активность снижается до 13 мас.% — на 72 отн.% меньше по сравнению с чистым катализатором), Са и Al оказывают минимальное влияние. Показано, что использование термолизных масел без предварительной очистки от металлических примесей ограничено из-за риска отравления катализатора вследствие их накопления при сохранении низкого расхода катализатора. Рекомендовано ограничивать долю термолизного масла в смеси с классическим сырьем нефтяного происхождения до 5–10 мас.% и контролировать уровень железа и натрия в смеси. Полученные данные расширяют возможности переработки полимерных отходов в рамках существующих технологий, применяемых на НПЗ.

About the authors

A. S. Gilyazutdinova

Center for New Chemical Technologies, Institute of Catalysis, Siberian Branch of the Russian Academy of Sciences, Omsk, 644040 Russia

V. A. Koveza

Center for New Chemical Technologies, Institute of Catalysis, Siberian Branch of the Russian Academy of Sciences, Omsk, 644040 Russia

T. V. Bobkova

Center for New Chemical Technologies, Institute of Catalysis, Siberian Branch of the Russian Academy of Sciences, Omsk, 644040 Russia

O. V. Potapenko

Center for New Chemical Technologies, Institute of Catalysis, Siberian Branch of the Russian Academy of Sciences, Omsk, 644040 Russia

Email: potap@ihcp.ru

References

  1. Lettieri P., Al-Salem S.M.Thermochemical treatmentof plastic solid waste // Waste. Academic Press. 2011. Р. 233–242. https://doi.org/10.1016/B978-0-12-381475-3.10017-8
  2. Garforth A.A., Salmiaton A.,Jesús H.-M., AaronA.Feedstock recycling of polymer wastes // Current Opinion inSolid State and Materials Science. 2004. V. 8. № 6.P. 419–425. https://doi.org/10.1016/j.cossms.2005.04.003
  3. MiskolcziN., Bartha L., Angyal A. High energycontaining fractions from plastic wastes by their chemical recycling //Macromolecules Symposia. Weinheim: WILEY-VCH Verlag. 2006. V. 245. I. 1.P. 599–606. https://doi.org/10.1002/masy.200651386
  4. Sarker M., Rashid M.M., Molla M. Wasteplastic conversion into hydrocarbon fuel materials // J. of EnvironmentalScience. 2011. V. 5. P. 603–609.
  5. Sørum L., Grønli M.G., HustadJ.E. Pyrolysis characteristics and kinetics of municipal solid wastes //Fuel. 2001. V. 80. I. 9. P. 1217–1227. https://doi.org/10.1016/S0016-2361(00)00218-0
  6. Murata K., Sato K., Sakata Y. Effect of pressure on thermal degradation of polyethylene// J. of Analytical and Applied Pyrolysis. 2004. V. 71.I. 2. P. 569–589. https://doi.org/10.1016/j.jaap.2003.08.010
  7. Faravelli T., Pinciroli M., PisanoF., Bozzano G., Dente M., Ranzi E.Thermal degradation ofpolystyrene // J. of analytical and applied pyrolysis. 2001. V.60. I. 1. P. 103–121. https://doi.org/10.1016/S0165-2370(00)00159-5
  8. Cha W.S., Kim S.B., McCoyB.J. Study of polystyrene degradation using continuous distribution kinetics ina bubbling reactor // Korean J. of Chem. Engineering. 2002.V. 19. I. 2. P. 239–245. https://doi.org/10.1007/BF02698408
  9. Doležal Z., PacákováV., Kovářová J.The effects of controlled aging and blendingof low-and high-density polyethylenes, polypropylene and polystyrene on their thermaldegradation studied by pyrolysis gas chromatography // J. of Analyticaland Applied Pyrolysis. 2001. V. 57. I. 2. P. 177–185. https://doi.org/10.1016/S0165-2370(00)00107-8
  10. Kim S.S., Kim S.Pyrolysis characteristics of polystyreneand polypropylenein a stirred batch reactor // Chem. Engineering J. 2004.V. 98. I. 1–2. P. 53–60. https://doi.org/10.1016/S1385-8947(03)00184-0
  11. Woo O.S., AyalaN., Broadbelt L.J. Mechanistic interpretation of base-catalyzed depolymerization of polystyrene// Catalysis Today. 2000. V. 55. I. 1–2. P. 161–171. https://doi.org/10.1016/S0920-5861(99)00235-7
  12. Jakab E., VárhegyiG., Faix O.Thermal decomposition of polypropylenein the presence of wood-derived materials // J. of Analyticaland Applied Pyrolysis. 2000. V. 56. I. 2. P. 273–285. https://doi.org/10.1016/S0165-2370(00)00101-7
  13. Kaminsky W., Predel M., Sadiki A.Feedstock recycling of polymers by pyrolysisin a fluidised bed // Polymer degradation and stability. 2004.V. 85. I. 3. P. 1045–1050. https://doi.org/10.1016/j.polymdegradstab.2003.05.002
  14. Marcilla A., Beltran M.,Conesa J.A. Catalyst addition in polyethylene pyrolysis: Thermogravimetric study // J. of Analytical and Applied Pyrolysis. 2001. V. 58. P. 117–126. https://doi.org/10.1016/S0165-2370(00)00162-5
  15. MurataK., Hirano Y., Sakata Y., Uddin Md.A.Basic study on a continuous flow reactor for thermaldegradationof polymers // J. of Analytical and AppliedPyrolysis. 2002.V. 65. I. 1. P. 71–90. https://doi.org/10.1016/S0165-2370(01)00181-4
  16. Seth D., Sarkar A.Thermal pyrolysis of polypropylene: effect of reflux-condenser on the molecularweight distribution of products // Chem. Еngineering Science. 2004.V. 59. I. 12. P. 2433–2445. https://doi.org/10.1016/j.ces.2004.03.008
  17. Passamonti F.J., Sedran U.Recycling of waste plastics into fuels. LDPE conversion in FCC// AppliedCatalysis B: Environmental. 2012. V. 125. P. 499–506. https://doi.org/10.1016/j.apcatb.2012.06.020
  18. Ali M.F., Siddiqui M.N. Thermal and catalytic decomposition behaviorof PVC mixed plastic waste with petroleum residue // J.of Analytical and Applied Pyrolysis. 2005. V. 74. I. 1–2.P. 282–289. https://doi.org/10.1016/j.jaap.2004.12.010
  19. Sharypov V.I., Marin N., Beregovtsova N.G., Baryshnikov S.V.,Kuznetsov B.N., CebollaV.L., Weber J.V. Co-pyrolysis of wood biomassand synthetic polymer mixtures. Part I: Influence of experimental conditionson the evolution of solids, liquids and gases // J.of Analytical and Applied Pyrolysis. 2002. V. 64. P. 15–28. https://doi.org/10.1016/S0165–2370(01)00167-X
  20. Marin N.,Collura S., Sharypov V.I.,Beregovtsova N.G.,Baryshnikov S.V., Kutnetzov B.N., CebollaV., Weber J.V. Co-pyrolysis ofwood biomass and synthetic polymers mixtures. Part II: characterisation ofthe liquid phases // J. of Analytical and Applied Pyrolysis.2002. V. 65. P. 41–55. https://doi.org/10.1016/S0165-2370(01)00179-6
  21. Sharypov V.I., Beregovtsova N.G.,Kuznetsov B.N., Membrado L.,Cebolla V.L.,Marin N., Weber J.V. Co-pyrolysis of wood biomass and synthetic polymersmixtures. Part III: characterisation of heavy products // J. ofAnalytical and Applied Pyrolysis. 2003. V. 67. P. 325–340. https://doi.org/10.1016/S0165-2370(02)00071-2
  22. Sharypov V.I., Beregovtsova N.G., Kuznetsov B.N., Baryshnikov S.V., CebollaV.L., WeberJ.V., Collura S., Finqueneisel G., Zimny T.Co-pyrolysisof wood biomass and synthetic polymers mixtures: Part IV: catalyticpyrolysis of pine wood and polyolefinic polymers mixtures in hydrogenatmosphere // J. of Analytical and Applied Pyrolysis. 2006. V.76. P. 265–270. https://doi.org/10.1016/j.jaap.2005.12.006
  23. Siddiqui M.N., Redhwi H.H. Pyrolysis of mixedplastics for the recovery of useful products // Fuel ProcessTechnol. 2009. V. 90. P. 545–552. https://doi.org/10.1016/j.fuproc.2009.01.003
  24. Barbarias I., LopezG., Alvarez J., Artetxe M., Arregi A., Bilbao J., OlazarM.A sequential process for hydrogen production based on continuousHDPE fast pyrolysis and in-line steam reforming // Chem. EngineeringJ. 2016. V. 296. P. 191–198. https://doi.org/10.1016/j.cej.2016.03.091
  25. Marcilla A., Hernández M.R.,García Á.N.Degradation of LDPE/VGO mixtures to fuels using anFCC equilibrium catalyst in a sand fluidized bed reactor //Applied Catalysis A: General. 2008. V. 341. P. 181–191. https://doi.org/10.1016/j.apcata.2008.02.041
  26. Liu S., Kots P.A., VanceB.C., Danielson A.,Vlachos D.G. Plastic waste to fuels by hydrocracking atmildconditions // Science advances. 2021. V. 7. I. 17. https://doi.org/10.1126/sciadv.abf8283
  27. Dobó Z., Kecsmár G., NagyG., Koós T., Muránszky G., Ayari M.Characterization of gasoline-like transportation fuels obtained by distillationof pyrolysis oils from plastic waste mixtures// Energy &Fuels. 2021. V. 35. I. 3. P. 2347–2356. https://doi.org/10.1021/acs.energyfuels.0c04022
  28. Kasar P., Sharma D.K., Ahmaruzzaman M.Thermal and catalytic decomposition ofwaste plastics and its co-processing with petroleum residue through pyrolysisprocess // J. of Cleaner Production. 2020. V. 265. P. 121639. https://doi.org/10.1016/j.jclepro.2020.121639
  29. Liao Y., LiuT., Du X., Gao X.Distributionof iron on FCC catalyst and its effect on catalystperformance // Frontiers in Chemistry. 2021. V. 9. P. 640413. https://doi.org/10.3389/fchem.2021.640413
  30. Mathieu Y., Corma A., Echard M., Bories M. Singleand combined Fluidized Catalytic Cracking (FCC) catalyst deactivation by ironand calcium metal–organic contaminants // Applied Catalysis A: General. 2014.V. 469. P. 451–465. https://doi.org/10.1016/j.apcata.2013.10.007
  31. Tangstad E., Bendiksen M., Myrstad T.Effect of sodium deposition of FCC catalysts deactivation // Applied Catalysis A: General. 1997. V. 150.№ 1. P. 85–99. https://doi.org/10.1016/S0926-860X(96)00284-0
  32. Adanenche D.E., Aliyu A., Atta A.Y., El-Yakubu B.J. Residue fluid catalytic cracking: A review onthe mitigation strategies of metal poisoning of RFCC catalyst usingmetal passivators/traps // Fuel. 2023. V. 343. P. 127894. https://doi.org/10.1016/j.fuel.2023.127894
  33. Yan G., Jing X., Wen H., Xiang S.Thermal crackingofvirgin and waste plastics of PP and LDPE ina semibatchreactor under atmospheric pressure//Energy & Fuels.2015. V. 29. № 4. P. 2289–2298. https://doi.org/10.1021/ef502919f
  34. Доронин В.П.,Сорокина Т.П., Потапенко О.В., Липин П.В.,Дмитриев К.И., Бобкова Т.В.Микросферический катализатор для крекинга нефтяных фракций//ПатентRU 2673811C1. 2018 г.,заявка 2018134088от 26 сент. 2018 г.
  35. Chekantsev N.V., KravtsovA.V., Fu F.Computer program for optimizingcompounding of high-octane gasoline // Chemistry and Technology of Fuelsand Oils. 2014. V. 50. № 1.P. 17–27. https://doi.org/10.1007/s10553-014-0486-4
  36. Ivanchina E.D., Kirgina M.V., Chekantsev N.V.,Sakhnevich B.V., Sviridova E.V., Romanovskiy R.V. Complex modeling system for optimization of compounding process ingasoline pool to produce high-octane finished gasoline fuel // ChemicalEngineering J. 2015. V. 282. P. 194–205. https://doi.org/10.1016/j.cej.2015.03.014
  37. Liu Z.,Li S., Wang Y.Characteristics of asphalt modified by wasteengine oil / polyphosphoric acid: Conventional, high-temperature rheological, and mechanismproperties // J. of Cleaner Production. 2022. V. 330. P. 129844. https://doi.org/10.1016/j.jclepro.2021.129844
  38. Behnood A.Application of rejuvenators to improve the rheologicaland mechanical properties of asphalt binders and mixtures: a review// J. Clean. Prod. 2019. V. 231. P. 171–182. https://doi.org/10.1016/j.jclepro.2019.05.209

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences