Исследование реакции олигомеризации смеси этилен–пропилен на катализаторе HZSM-5/Al2O3
- Authors: Magomedova M.V.1,2, Davyidov I.A.1, Galanova E.G.1, Starozhitskaya A.V.1, Maximov A.L.1
-
Affiliations:
- Institute of Oil Chemistry named after A.V. Topchiev RAS
- Institute of Fine Chemical Technologies named after M.V. Lomonosov, Russian Technical University (RTU MIREA)
- Issue: Vol 65, No 5 (2025)
- Pages: 341-350
- Section: Articles
- URL: https://rjsocmed.com/0028-2421/article/view/696436
- DOI: https://doi.org/10.31857/S0028242125050011
- ID: 696436
Cite item
Abstract
Проведено исследование реакции олигомеризации смеси этилен–пропилен в среде азота и водорода в присутствии катализатора HZSM-5/Al2O3. Показано, что в среде водорода достигается высокая конверсия сырья (около 100%)и стабильность работы катализатора во времени. При этом с течением времени в различных средах состав продуктов изменяется по-разному: в среде азота наблюдается увеличение селективности образования алканов, в том числе этана и пропана (до 51 мас.%), в то время какв среде водорода происходит увеличение селективности образования жидких углеводородов С5+(до 40 мас.%) за счет снижения селективности образования пропанапри постоянной селективности образования этана. При этом групповой состав жидкойфракции С8+изменяется незначительно в сторону образования алканов (на 5мас.%). Увеличение температуры с 250 до 340°Cи давления с 10 до 20 атм приводит к увеличениюконверсии сырья до 98–100% и перераспределению продуктов реакции в сторонуобразования более тяжелых углеводородов—С7, С10, С12. При этом увеличение температуры значительно ускоряет реакцию взаимодействия пропиленаи бутенов, а увеличение давления влияет на скорость взаимодействия этиленас пропиленом.
About the authors
M. V. Magomedova
Institute of Oil Chemistry named after A.V. Topchiev RAS; Institute of Fine Chemical Technologies named after M.V. Lomonosov, Russian Technical University (RTU MIREA)
Email: podlesnaya@ips.ac.ru
Moscow, 119991 Russia; Moscow, 119454 Russia
I. A. Davyidov
Institute of Oil Chemistry named after A.V. Topchiev RAS
Email: podlesnaya@ips.ac.ru
Moscow, 119991 Russia
E. G. Galanova
Institute of Oil Chemistry named after A.V. Topchiev RAS
Email: podlesnaya@ips.ac.ru
Moscow, 119991 Russia
A. V. Starozhitskaya
Institute of Oil Chemistry named after A.V. Topchiev RAS
Email: podlesnaya@ips.ac.ru
Moscow, 119991 Russia
A. L. Maximov
Institute of Oil Chemistry named after A.V. Topchiev RAS
Author for correspondence.
Email: podlesnaya@ips.ac.ru
Moscow, 119991 Russia
References
- Peng A., Huang Z.,Li G. Ethylene oligomerization catalyzed by different homogeneous orheterogeneous catalysts // Catalysts. 2024. V. 14. P. 268. https://doi.org/10.3390/catal14040268
- Tabak S.A., Krambeck F.J., Garwood W.E. Conversion of propylene andbutylene over ZSM-5 catalyst // AIChE J. 1986. V. 32.P. 1526–1531. https://doi.org/10.1002/aic.690320913
- Tabak S.A., Yurchak S. Conversion of methanol overZSM-5 to fuels and chemicals // Catal. Today. 1990. V. 6. № 3. P. 307–327. https://doi.org/10.1016/0920-5861(90)85007-B
- Baliban R.C., Elia J.A.,Floudas C.A., Xiao X., Zhang Z.,Li J., Cao H.,Ma J., Qiao Y., Hu X.Thermochemical conversion of duckweedbiomass to gasoline, diesel, and jet fuel: process synthesis andglobal optimization // Ind. Eng. Chem. Res. 2013. V. 52. № 33. P. 11436–11450. https://doi.org/10.1021/ie3034703
- Jin F., YanY., Wu G. Ethylene oligomerization over H- and Ni-formaluminosilicate composite with ZSM-5 and MCM-41 structure: effect of aciditystrength, nickel site and porosity // Catal. Today. 2020. V.355. P. 148–161. https://doi.org/10.1016/j.cattod.2019.06.050
- Li X., Han D., Wang H., LiuG., Wang B., Li Z., Wu J.Propene oligomerization tohigh-quality liquid fuels over Ni/HZSM-5 // Fuel. 2015. V. 144.P. 9–14. http://dx.doi.org/10.1016/j.fuel.2014.12.005
- Díaz M., Epelde E., Tabernilla Z., AtekaA., Aguayo A.T.,Bilbao J. Operating conditions to maximize cleanliquid fuels yield by oligomerization of 1-butene on HZSM-5 zeolitecatalysts // Energy. 2020. V. 207. P. 118317. https://doi.org/10.1016/j.energy.2020.118317
- Ning X.,Chen J., Zuo Q., Li W., Zheng J., Li R.Fluoride-treated IM-5 zeolite as a highly active catalyst for theproduction of jet fuels by the oligomerization of 1-hexene //Fuel Process. Technol. 2022. V. 236. P. 107420. https://doi.org/10.1016/j.fuproc.2022.107420
- MoonS., Chae Ho-J., Park M.B. Oligomerization of light olefins overZSM-5 and beta zeolite catalysts by modifying textural properties //Appl. Catal. A: Gen. 2018. V. 553.P. 15–23. https://doi.org/10.1016/j.apcata.2018.01.015
- MonamaW., Mohiuddin E., Thangarai B., Mdeleleni M.M., Key D.Oligomerizationof lower olefins to fuel range hydrocarbons over texturally enhancedZSM-5 catalyst // Catal. Today. 2020. V. 342. P. 167–177. https://doi.org/10.1016/j.cattod.2019.02.061
- Fuchs C., ArnoldU., Sauer J.Synthesis of sustainableaviation fuels via (co-)oligomerization of light olefins // Fuel. 2025.V. 382. P. 133680. https://doi.org/10.1016/j.fuel.2024.133680
- Babu B.H., Lee M., Hwang D.W.,Kim Y., Chae Ho-J. An integrated process for production ofjet-fuel range olefins from ethylene using Ni-AlSBA-15 and Amberlyst-35 catalysts// Appl. Catal. A: Gen. 2017. V. 530. P. 48–55. http://dx.doi.org/10.1016/j.apcata.2016.11.020
- Panpian P.,Tran T.T.V., KongparakulS., Attanatho L., Thanmongkhon Y., WangP., Guan G., ChanlekN., Poo-arporn Y.,Samart C.Production of bio-jet fuel throughethylene oligomerization using NiAlKIT-6 as a highly efficient catalyst //Fuel. 2021. V. 287. P. 119831.https://doi.org/10.1016/j.fuel.2020.119831
- Moussa S., Arribas M.A., Concepcion P., Martinez A.Heterogeneous oligomerization of ethylene toliquids on bifunctional Ni-based catalysts: The influence of support propertieson nickel speciation and catalytic performance // Catal. Today. 2016.V. 277. P. 78–88. http://dx.doi.org/10.1016/j.cattod.2015.11.032
- Muraza O.Maximizing diesel production througholigomerization: A landmark opportunity for zeolite research // Ind. Eng.Chem. Res. 2015. V. 54. № 3. P. 781–789. https://doi.org/10.1021/ie5041226
- Martínez A., Arribas M.A., Concepción P., Moussa S. New bifunctionalNi-H-Beta catalysts for the heterogeneous oligomerization of ethylene // Appl.Catal. A: Gen. 2013. V. 467. P. 509–518. https://doi.org/10.1016/j.apcata.2013.08.021
- KoninckxE., Mendes P.S.F., Thybaut J.W., Broadbelt L.J. Ethylene oligomerization onnickel catalysts on a solid acid support: From new mechanisticinsights to tunable bifunctionality // Appl. Catal. A: Gen. 2021.V. 624. P. 118296. https://doi.org/10.1016/j.apcata.2021.118296
- Ganjkhanlou Y., Berlier G., Groppo E.,Borfecchia E., Bordiga S.In situ investigation of the deactivationmechanism in Ni-ZSM5 during ethylene oligomerization // Top. Catal. 2017.V. 60. P. 1664–1672. https://doi.org/10.1007/s11244-017-0845-6
- Jin F., Zhang P., Wu G.Fundamental kinetics model of acidity-activity relation for ethylene oligomerizationand aromatization over ZSM-5 zeolites // Chem. Eng. Sci. 2021.V. 229. P. 116144. https://doi.org/10.1016/j.ces.2020.116144
- Li C., Dong X., Yu Y.Mechanism insight into ethylene oligomerization on zeolite K-LTA surface: A DFT andkMC study // Appl. Surf. Sci. 2023. V. 626. P. 157298. https://doi.org/10.1016/j.apsusc.2023.157298
- Hawkins A.P.,Zachariou A., Parker S.F., Collier P., Silverwood I.P., Howe R.F., Lennon D.Onset of propene oligomerizationreactivity in ZSM-5 studied by inelastic neutron scattering spectroscopy //ACS Omega. 2020. V. 5. № 14. P. 7762–7770. https://dx.doi.org/10.1021/acsomega.9b03503
- Magomedova M.V., Afokin M.I.,Starozhitskaya A.V., Galanova E.G. Pilot testof olefin synthesis from dimethyl ether in a synthesis gasatmosphere // Ind. Eng. Chem. Res. 2021. V. 60. № 12. P. 4602–4609. https://doi.org/10.1021/acs.iecr.1c00363
- Tabernilla Z., Ateka A., Aguayo A.T.,Bilbao J., Epelde E. Low-pressure oligomerization of diluted ethylene ona HZSM-5 zeolite catalyst // J. Clean. Prod. 2024. V. 441. P. 141072. https://doi.org/10.1016/j.jclepro.2024.141072
Supplementary files




