FN-1501 Inhibits Diffuse Large B-Cell Lymphoma Tumor Growth by Inducing Cell Cycle Arrest and Apoptosis
- Autores: Feng S.1, Si R.1, Zhong B.2, Shen B.1, Du Y.1, Feng J.1, Zou D.1, Hu B.1
-
Afiliações:
- Department of Oncology, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research
- Department of Endocrinology, Sir Run Run Hospital, Nanjing Medical University
- Edição: Volume 24, Nº 20 (2024)
- Páginas: 1501-1513
- Seção: Oncology
- URL: https://rjsocmed.com/1871-5206/article/view/644079
- DOI: https://doi.org/10.2174/0118715206345788240902062910
- ID: 644079
Citar
Texto integral
Resumo
Background:Due to its high degree of aggressiveness, diffuse large B-cell lymphoma (DLBCL) presents a treatment challenge because 30% to 50% of patients experience resistance or relapse following standard chemotherapy. FN-1501 is an effective inhibitor of cyclin-dependent kinases and Fms-like receptor tyrosine kinase 3.
Objective:This study aimed to examine the anti-tumor impact of FN-1501 on DLBCL and clarify its molecular mechanism.
Methods:This study used the cell counting kit-8 assay to evaluate cell proliferation, along with western blotting and flow cytometry to analyze cell cycle progression and apoptosis influenced by FN-1501 in vitro. Afterward, the effectiveness of FN-1501 was evaluated in vivo utilizing the xenograft tumor model. In addition, we identified the potential signaling pathways and performed rescue studies using western blotting and flow cytometry.
Results:We found that FN-1501 inhibited cell proliferation and induced cell cycle arrest and apoptosis in DLBCL cells in vitro. Its anti-proliferative effects were shown to be time- and dose-dependent. The effect on cell cycle progression resulted in G1/S phase arrest, and the apoptosis induction was found to be caspase-dependent. FN-1501 treatment also reduced tumor volumes and weights and was associated with a prolonged progressionfree survival in vivo. Mechanistically, the MAPK and PI3K/AKT/mTOR pathways were significantly inhibited by FN-1501. Additional pathway inhibitors examination reinforced that FN-1501 may regulate cell cycle arrest and apoptosis through these pathways.
Conclusion:FN-1501 shows promising anti-tumor activity against DLBCL in vivo and in vitro, suggesting its potential as a new therapeutic option for patients with refractory or relapsed DLBCL.
Palavras-chave
Sobre autores
Sitong Feng
Department of Oncology, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research
Email: info@benthamscience.net
Rujia Si
Department of Oncology, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research
Email: info@benthamscience.net
Bei Zhong
Department of Endocrinology, Sir Run Run Hospital, Nanjing Medical University
Email: info@benthamscience.net
Bo Shen
Department of Oncology, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research
Autor responsável pela correspondência
Email: info@benthamscience.net
Yuxin Du
Department of Oncology, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research
Autor responsável pela correspondência
Email: info@benthamscience.net
Jifeng Feng
Department of Oncology, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research
Autor responsável pela correspondência
Email: info@benthamscience.net
Dan Zou
Department of Oncology, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research
Email: info@benthamscience.net
Bowen Hu
Department of Oncology, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research
Email: info@benthamscience.net
Bibliografia
- Thandra, K.C.; Barsouk, A.; Saginala, K.; Padala, S.A.; Barsouk, A.; Rawla, P. Epidemiology of non-hodgkins lymphoma. Med. Sci., 2021, 9(1), 5-13. doi: 10.3390/medsci9010005 PMID: 33573146
- de Leval, L.; Jaffe, E.S. Lymphoma classification. Cancer J., 2020, 26(3), 176-185. doi: 10.1097/PPO.0000000000000451 PMID: 32496451
- Poletto, S.; Novo, M.; Paruzzo, L.; Frascione, P.M.M.; Vitolo, U. Treatment strategies for patients with diffuse large B-cell lymphoma. Cancer Treat. Rev., 2022, 110, 102443. doi: 10.1016/j.ctrv.2022.102443 PMID: 35933930
- Chapuy, B.; Stewart, C.; Dunford, A.J.; Kim, J.; Kamburov, A.; Redd, R.A.; Lawrence, M.S.; Roemer, M.G.M.; Li, A.J.; Ziepert, M.; Staiger, A.M.; Wala, J.A.; Ducar, M.D.; Leshchiner, I.; Rheinbay, E.; Taylor-Weiner, A.; Coughlin, C.A.; Hess, J.M.; Pedamallu, C.S.; Livitz, D.; Rosebrock, D.; Rosenberg, M.; Tracy, A.A.; Horn, H.; van Hummelen, P.; Feldman, A.L.; Link, B.K.; Novak, A.J.; Cerhan, J.R.; Habermann, T.M.; Siebert, R.; Rosenwald, A.; Thorner, A.R.; Meyerson, M.L.; Golub, T.R.; Beroukhim, R.; Wulf, G.G.; Ott, G.; Rodig, S.J.; Monti, S.; Neuberg, D.S.; Loeffler, M.; Pfreundschuh, M.; Trümper, L.; Getz, G.; Shipp, M.A. Molecular subtypes of diffuse large B cell lymphoma are associated with distinct pathogenic mechanisms and outcomes. Nat. Med., 2018, 24(5), 679-690. doi: 10.1038/s41591-018-0016-8 PMID: 29713087
- Sehn, L.H.; Salles, G. Diffuse large B-cell lymphoma. N. Engl. J. Med., 2021, 384(9), 842-858. doi: 10.1056/NEJMra2027612 PMID: 33657296
- Swerdlow, S.H.; Campo, E.; Pileri, S.A.; Harris, N.L.; Stein, H.; Siebert, R.; Advani, R.; Ghielmini, M.; Salles, G.A.; Zelenetz, A.D.; Jaffe, E.S. The 2016 revision of the World Health Organization classification of lymphoid neoplasms. Blood, 2016, 127(20), 2375-2390. doi: 10.1182/blood-2016-01-643569 PMID: 26980727
- Nowakowski, G.S.; Feldman, T.; Rimsza, L.M.; Westin, J.R.; Witzig, T.E.; Zinzani, P.L. Integrating precision medicine through evaluation of cell of origin in treatment planning for diffuse large B-cell lymphoma. Blood Cancer J., 2019, 9(6), 48. doi: 10.1038/s41408-019-0208-6 PMID: 31097684
- Susanibar-Adaniya, S.; Barta, S.K. 2021 Update on Diffuse large B cell lymphoma: A review of current data and potential applications on risk stratification and management. Am. J. Hematol., 2021, 96(5), 617-629. doi: 10.1002/ajh.26151 PMID: 33661537
- Lewis, W.D.; Lilly, S.; Jones, K.L. Lymphoma: Diagnosis and Treatment. Am. Fam. Physician, 2020, 101(1), 34-41. PMID: 31894937
- Lv, Y.; Du, Y.; Li, K.; Ma, X.; Wang, J.; Du, T.; Ma, Y.; Teng, Y.; Tang, W.; Ma, R.; Wu, J.; Wu, J.; Feng, J. The FACT-targeted drug CBL0137 enhances the effects of rituximab to inhibit B-cell non-Hodgkins lymphoma tumor growth by promoting apoptosis and autophagy. Cell Commun. Signal., 2023, 21(1), 16-32. doi: 10.1186/s12964-022-01031-x PMID: 36691066
- Melchardt, T.; Egle, A.; Greil, R. How I treat diffuse large B-cell lymphoma. ESMO Open, 2023, 8(1), 100750. doi: 10.1016/j.esmoop.2022.100750 PMID: 36634531
- Wang, L.; Li, L.; Young, K.H. New agents and regimens for diffuse large B cell lymphoma. J. Hematol. Oncol., 2020, 13(1), 175. doi: 10.1186/s13045-020-01011-z PMID: 33317571
- He, M.Y.; Kridel, R. Treatment resistance in diffuse large B-cell lymphoma. Leukemia, 2021, 35(8), 2151-2165. doi: 10.1038/s41375-021-01285-3 PMID: 34017074
- Davoodi-Moghaddam, Z.; Jafari-Raddani, F.; Noori, M.; Bashash, D. A systematic review and meta-analysis of immune checkpoint therapy in relapsed or refractory non-Hodgkin lymphoma; a friend or foe? Transl. Oncol., 2023, 30, 101636. doi: 10.1016/j.tranon.2023.101636 PMID: 36773442
- Rosenthal, A.C.; Munoz, J.L.; Villasboas, J.C. Clinical advances in epigenetic therapies for lymphoma. Clin. Epigenetics, 2023, 15(1), 39-51. doi: 10.1186/s13148-023-01452-6 PMID: 36871057
- Xu, W.; Berning, P.; Lenz, G. Targeting B-cell receptor and PI3K signaling in diffuse large B-cell lymphoma. Blood, 2021, 138(13), 1110-1119. doi: 10.1182/blood.2020006784 PMID: 34320160
- Lu, T.; Zhang, J.; Xu-Monette, Z.Y.; Young, K.H. The progress of novel strategies on immune-based therapy in relapsed or refractory diffuse large B-cell lymphoma. Exp. Hematol. Oncol., 2023, 12(1), 72. doi: 10.1186/s40164-023-00432-z PMID: 37580826
- Hanlon, A.; Brander, D.M. Managing toxicities of phosphatidylinositol-3-kinase (PI3K) inhibitors. Hematology (Am. Soc. Hematol. Educ. Program), 2020, 2020(1), 346-356. doi: 10.1182/hematology.2020000119 PMID: 33275709
- Wang, X.; Wu, S.; Chen, Y.; Shao, E.; Zhuang, T.; Lu, L.; Chen, X. Fatal adverse events associated with programmed cell death ligand 1 inhibitors: A systematic review and meta-analysis. Front. Pharmacol., 2020, 11, 5-16. doi: 10.3389/fphar.2020.00005 PMID: 32076409
- Kiyoi, H.; Kawashima, N.; Ishikawa, Y. FLT3 mutations in acute myeloid leukemia: Therapeutic paradigm beyond inhibitor development. Cancer Sci., 2020, 111(2), 312-322. doi: 10.1111/cas.14274 PMID: 31821677
- Roskoski, R., Jr The role of small molecule Flt3 receptor protein-tyrosine kinase inhibitors in the treatment of Flt3-positive acute myelogenous leukemias. Pharmacol. Res., 2020, 155, 104725. doi: 10.1016/j.phrs.2020.104725 PMID: 32109580
- Kazi, J.U.; Rönnstrand, L. FMS-like tyrosine kinase 3/FLT3: From basic science to clinical implications. Physiol. Rev., 2019, 99(3), 1433-1466. doi: 10.1152/physrev.00029.2018 PMID: 31066629
- Short, N.J.; Nguyen, D.; Ravandi, F. Treatment of older adults with FLT3-mutated AML: Emerging paradigms and the role of frontline FLT3 inhibitors. Blood Cancer J., 2023, 13(1), 142. doi: 10.1038/s41408-023-00911-w PMID: 37696819
- Bystrom, R.; Levis, M.J. An update on FLT3 in acute myeloid leukemia: Pathophysiology and therapeutic landscape. Curr. Oncol. Rep., 2023, 25(4), 369-378. doi: 10.1007/s11912-023-01389-2 PMID: 36808557
- Kayser, S.; Levis, M.J. The clinical impact of the molecular landscape of acute myeloid leukemia. Haematologica, 2023, 108(2), 308-320. doi: 10.3324/haematol.2022.280801 PMID: 36722402
- Zhao, J.C.; Agarwal, S.; Ahmad, H.; Amin, K.; Bewersdorf, J.P.; Zeidan, A.M. A review of FLT3 inhibitors in acute myeloid leukemia. Blood Rev., 2022, 52, 100905. doi: 10.1016/j.blre.2021.100905 PMID: 34774343
- Daver, N.; Venugopal, S.; Ravandi, F. FLT3 mutated acute myeloid leukemia: 2021 treatment algorithm. Blood Cancer J., 2021, 11(5), 104. doi: 10.1038/s41408-021-00495-3 PMID: 34045454
- Malumbres, M. Cyclin-dependent kinases. Genome Biol., 2014, 15(6), 122. doi: 10.1186/gb4184 PMID: 25180339
- Malumbres, M.; Barbacid, M. Cell cycle, CDKs and cancer: a changing paradigm. Nat. Rev. Cancer, 2009, 9(3), 153-166. doi: 10.1038/nrc2602 PMID: 19238148
- Fischer, M.; Schade, A.E.; Branigan, T.B.; Müller, G.A.; DeCaprio, J.A. Coordinating gene expression during the cell cycle. Trends Biochem. Sci., 2022, 47(12), 1009-1022. doi: 10.1016/j.tibs.2022.06.007 PMID: 35835684
- Mughal, M.J.; Bhadresha, K.; Kwok, H.F. CDK inhibitors from past to present: A new wave of cancer therapy. Semin. Cancer Biol., 2023, 88, 106-122. doi: 10.1016/j.semcancer.2022.12.006 PMID: 36565895
- Lee, D.J.; Zeidner, J.F. Cyclin-dependent kinase (CDK) 9 and 4/6 inhibitors in acute myeloid leukemia (AML): a promising therapeutic approach. Expert Opin. Investig. Drugs, 2019, 28(11), 989-1001. doi: 10.1080/13543784.2019.1678583 PMID: 31612739
- Senderowicz, A.M. Development of cyclin-dependent kinase modulators as novel therapeutic approaches for hematological malignancies. Leukemia, 2001, 15(1), 1-9. doi: 10.1038/sj.leu.2401994 PMID: 11243375
- Wang, Y.; Zhi, Y.; Jin, Q.; Lu, S.; Lin, G.; Yuan, H.; Yang, T.; Wang, Z.; Yao, C.; Ling, J.; Guo, H.; Li, T.; Jin, J.; Li, B.; Zhang, L.; Chen, Y.; Lu, T. Discovery of 4-((7 H -Pyrrolo2,3- d pyrimidin-4-yl)amino)-N-(4-((4-methylpiperazin-1-yl)methyl)phenyl)-1 H -pyrazole-3-carboxamide (FN-1501), an FLT3- and CDK-kinase inhibitor with potentially high efficiency against acute myelocytic leukemia. J. Med. Chem., 2018, 61(4), 1499-1518. doi: 10.1021/acs.jmedchem.7b01261 PMID: 29357250
- Lin, B.; Li, Y.; Wang, T.; Qiu, Y.; Chen, Z.; Zhao, K.; Lu, N. CRMP2 is a therapeutic target that suppresses the aggressiveness of breast cancer cells by stabilizing RECK. Oncogene, 2020, 39(37), 6024-6040. doi: 10.1038/s41388-020-01412-x PMID: 32778769
- Richardson, G.E.; Al-Rajabi, R.; Uprety, D.; Hamid, A.; Williamson, S.K.; Baranda, J.; Mamdani, H.; Lee, Y.L.; Nitika; Li, L.; Wang, X.; Dong, X. A multicenter, open-label, phase I/II study of FN-1501 in patients with advanced solid tumors. Cancers (Basel), 2023, 15(9), 2553-2562. doi: 10.3390/cancers15092553 PMID: 37174019
- Bury, M.; Le Calvé, B.; Ferbeyre, G.; Blank, V.; Lessard, F. New insights into CDK regulators: Novel opportunities for cancer therapy. Trends Cell Biol., 2021, 31(5), 331-344. doi: 10.1016/j.tcb.2021.01.010 PMID: 33676803
- Perrone, S.; Ottone, T.; Zhdanovskaya, N.; Molica, M. How acute myeloid leukemia (AML) escapes from FMS-related tyrosine kinase 3 (FLT3) inhibitors? Still an overrated complication? Cancer Drug Resist., 2023, 6(2), 223-238. doi: 10.20517/cdr.2022.130 PMID: 37457126
- Kong, D.; Yamori, T. Phosphatidylinositol 3‐kinase inhibitors: promising drug candidates for cancer therapy. Cancer Sci., 2008, 99(9), 1734-1740. doi: 10.1111/j.1349-7006.2008.00891.x PMID: 18616528
- You, Y.; Niu, Y.; Zhang, J.; Huang, S.; Ding, P.; Sun, F.; Wang, X. U0126: Not only a MAPK kinase inhibitor. Front. Pharmacol., 2022, 13, 927083. doi: 10.3389/fphar.2022.927083 PMID: 36091807
- Lopez-Santillan, M.; Lopez-Lopez, E.; Alvarez-Gonzalez, P.; Martinez, G.; Arzuaga-Mendez, J.; Ruiz-Diaz, I.; Guerra-Merino, I.; Gutierrez-Camino, A.; Martin-Guerrero, I. Prognostic and therapeutic value of somatic mutations in diffuse large B-cell lymphoma: A systematic review. Crit. Rev. Oncol. Hematol., 2021, 165, 103430. doi: 10.1016/j.critrevonc.2021.103430 PMID: 34339834
- Takahara, T.; Nakamura, S.; Tsuzuki, T.; Satou, A. The Immunology of DLBCL. Cancers (Basel), 2023, 15(3), 835. doi: 10.3390/cancers15030835 PMID: 36765793
- Cillessen, S.A.G.M.; Meijer, C.J.L.M.; Notoya, M.; Ossenkoppele, G.J.; Oudejans, J.J. Molecular targeted therapies for diffuse large B‐cell lymphoma based on apoptosis profiles. J. Pathol., 2010, 220(5), 509-520. doi: 10.1002/path.2670 PMID: 20087881
- Hilton, L.K.; Scott, D.W.; Morin, R.D. Biological heterogeneity in diffuse large B-cell lymphoma. Semin. Hematol., 2023, 60(5), 267-276. doi: 10.1053/j.seminhematol.2023.11.006 PMID: 38151380
- Hume, S.; Dianov, G.L.; Ramadan, K. A unified model for the G1/S cell cycle transition. Nucleic Acids Res., 2020, 48(22), 12483-12501. doi: 10.1093/nar/gkaa1002 PMID: 33166394
- Yuan, K.; Wang, X.; Dong, H.; Min, W.; Hao, H.; Yang, P. Selective inhibition of CDK4/6: A safe and effective strategy for developing anticancer drugs. Acta Pharm. Sin. B, 2021, 11(1), 30-54. doi: 10.1016/j.apsb.2020.05.001 PMID: 33532179
- Matthews, H.K.; Bertoli, C.; de Bruin, R.A.M. Cell cycle control in cancer. Nat. Rev. Mol. Cell Biol., 2022, 23(1), 74-88. doi: 10.1038/s41580-021-00404-3 PMID: 34508254
- Liu, J.; Peng, Y.; Wei, W. Cell cycle on the crossroad of tumorigenesis and cancer therapy. Trends Cell Biol., 2022, 32(1), 30-44. doi: 10.1016/j.tcb.2021.07.001 PMID: 34304958
- Dang, F.; Nie, L.; Wei, W. Ubiquitin signaling in cell cycle control and tumorigenesis. Cell Death Differ., 2021, 28(2), 427-438. doi: 10.1038/s41418-020-00648-0 PMID: 33130827
- Zheng, C.; Tang, Y.D. The emerging roles of the CDK/cyclin complexes in antiviral innate immunity. J. Med. Virol., 2022, 94(6), 2384-2387. doi: 10.1002/jmv.27554 PMID: 34964486
- Ettl, T.; Schulz, D.; Bauer, R. The renaissance of cyclin dependent kinase inhibitors. Cancers (Basel), 2022, 14(2), 293. doi: 10.3390/cancers14020293 PMID: 35053461
- Xie, Z.; Hou, S.; Yang, X.; Duan, Y.; Han, J.; Wang, Q.; Liao, C. Lessons learned from past cyclin-dependent kinase drug discovery efforts. J. Med. Chem., 2022, 65(9), 6356-6389. doi: 10.1021/acs.jmedchem.1c02190 PMID: 35235745
- Knudsen, E.S.; Kumarasamy, V.; Nambiar, R.; Pearson, J.D.; Vail, P.; Rosenheck, H.; Wang, J.; Eng, K.; Bremner, R.; Schramek, D.; Rubin, S.M.; Welm, A.L.; Witkiewicz, A.K. CDK/cyclin dependencies define extreme cancer cell-cycle heterogeneity and collateral vulnerabilities. Cell Rep., 2022, 38(9), 110448. doi: 10.1016/j.celrep.2022.110448 PMID: 35235778
- Bedoui, S.; Herold, M.J.; Strasser, A. Emerging connectivity of programmed cell death pathways and its physiological implications. Nat. Rev. Mol. Cell Biol., 2020, 21(11), 678-695. doi: 10.1038/s41580-020-0270-8 PMID: 32873928
- Bertheloot, D.; Latz, E.; Franklin, B.S. Necroptosis, pyroptosis and apoptosis: an intricate game of cell death. Cell. Mol. Immunol., 2021, 18(5), 1106-1121. doi: 10.1038/s41423-020-00630-3 PMID: 33785842
- Park, H.A.; Hayden, M.M.; Bannerman, S.; Jansen, J.; Crowe-White, K.M. Anti-apoptotic effects of carotenoids in neurodegeneration. Molecules, 2020, 25(15), 3453. doi: 10.3390/molecules25153453 PMID: 32751250
- Dailah, H.G. Potential of therapeutic small molecules in apoptosis regulation in the treatment of neurodegenerative diseases: An updated review. Molecules, 2022, 27(21), 7207. doi: 10.3390/molecules27217207 PMID: 36364033
- Li, M.; Wang, Z.W.; Fang, L.J.; Cheng, S.Q.; Wang, X.; Liu, N.F. Programmed cell death in atherosclerosis and vascular calcification. Cell Death Dis., 2022, 13(5), 467. doi: 10.1038/s41419-022-04923-5 PMID: 35585052
- Lin, X.; Ouyang, S.; Zhi, C.; Li, P.; Tan, X.; Ma, W.; Yu, J.; Peng, T.; Chen, X.; Li, L.; Xie, W. Focus on ferroptosis, pyroptosis, apoptosis and autophagy of vascular endothelial cells to the strategic targets for the treatment of atherosclerosis. Arch. Biochem. Biophys., 2022, 715, 109098. doi: 10.1016/j.abb.2021.109098 PMID: 34856194
- Newton, K.; Strasser, A.; Kayagaki, N.; Dixit, V.M. Cell death. Cell, 2024, 187(2), 235-256. doi: 10.1016/j.cell.2023.11.044 PMID: 38242081
- Singh, R.; Letai, A.; Sarosiek, K. Regulation of apoptosis in health and disease: the balancing act of BCL-2 family proteins. Nat. Rev. Mol. Cell Biol., 2019, 20(3), 175-193. doi: 10.1038/s41580-018-0089-8 PMID: 30655609
- Nowak, K.L.; Edelstein, C.L. Apoptosis and autophagy in polycystic kidney disease (PKD). Cell. Signal., 2020, 68, 109518. doi: 10.1016/j.cellsig.2019.109518 PMID: 31881325
- Sanz, A.B.; Sanchez-Niño, M.D.; Ramos, A.M.; Ortiz, A. Regulated cell death pathways in kidney disease. Nat. Rev. Nephrol., 2023, 19(5), 281-299. doi: 10.1038/s41581-023-00694-0 PMID: 36959481
- Tong, X.; Tang, R.; Xiao, M.; Xu, J.; Wang, W.; Zhang, B.; Liu, J.; Yu, X.; Shi, S. Targeting cell death pathways for cancer therapy: recent developments in necroptosis, pyroptosis, ferroptosis, and cuproptosis research. J. Hematol. Oncol., 2022, 15(1), 174-205. doi: 10.1186/s13045-022-01392-3 PMID: 36482419
- Das, S.; Shukla, N.; Singh, S.S.; Kushwaha, S.; Shrivastava, R. Mechanism of interaction between autophagy and apoptosis in cancer. Apoptosis, 2021, 26(9-10), 512-533. doi: 10.1007/s10495-021-01687-9 PMID: 34510317
- Carneiro, B.A.; El-Deiry, W.S. Targeting apoptosis in cancer therapy. Nat. Rev. Clin. Oncol., 2020, 17(7), 395-417. doi: 10.1038/s41571-020-0341-y PMID: 32203277
- Profitós-Pelejà, N.; Santos, J.C.; Marín-Niebla, A.; Roué, G.; Ribeiro, M.L. Regulation of B-cell receptor signaling and its therapeutic relevance in aggressive B-cell lymphomas. Cancers (Basel), 2022, 14(4), 860. doi: 10.3390/cancers14040860 PMID: 35205606
- Deshotels, L.; Safa, F.; Saba, N. Notch signaling in mantle cell lymphoma: Biological and clinical implications. Int. J. Mol. Sci., 2023, 24(12), 10280. doi: 10.3390/ijms241210280 PMID: 37373427
- Steinberg, G.R.; Carling, D. AMP-activated protein kinase: the current landscape for drug development. Nat. Rev. Drug Discov., 2019, 18(7), 527-551. doi: 10.1038/s41573-019-0019-2 PMID: 30867601
- Pi, M.; Kuang, H.; Yue, C.; Yang, Q.; Wu, A.; Li, Y.; Assaraf, Y.G.; Yang, D.H.; Wu, S. Targeting metabolism to overcome cancer drug resistance: A promising therapeutic strategy for diffuse large B cell lymphoma. Drug Resist. Updat., 2022, 61, 100822. doi: 10.1016/j.drup.2022.100822 PMID: 35257981
- Li, B.; Wan, Q.; Li, Z.; Chng, W.J. Janus kinase signaling: Oncogenic criminal of lymphoid cancers. Cancers (Basel), 2021, 13(20), 5147. doi: 10.3390/cancers13205147 PMID: 34680295
- Zhang, Y.; Wang, X. Targeting the Wnt/β-catenin signaling pathway in cancer. J. Hematol. Oncol., 2020, 13(1), 165. doi: 10.1186/s13045-020-00990-3 PMID: 33276800
- Tewari, D.; Patni, P.; Bishayee, A.; Sah, A.N.; Bishayee, A. Natural products targeting the PI3K-Akt-mTOR signaling pathway in cancer: A novel therapeutic strategy. Semin. Cancer Biol., 2022, 80, 1-17. doi: 10.1016/j.semcancer.2019.12.008 PMID: 31866476
- Yang, J.; Friedman, R. Synergy and antagonism between azacitidine and FLT3 inhibitors. Comput. Biol. Med., 2024, 169, 107889. doi: 10.1016/j.compbiomed.2023.107889 PMID: 38199214
- Zhang, M.; Huang, M.N.; Dong, X.D.; Cui, Q.B.; Yan, Y.; She, M.L.; Feng, W.G.; Zhao, X.S.; Wang, D.T. Overexpression of ABCB1 confers resistance to FLT3 inhibitor FN-1501 in cancer cells: in vitro and in vivo characterization. Am. J. Cancer Res., 2023, 13(12), 6026-6037. PMID: 38187048
Arquivos suplementares
