Indirubin, an Active Component of Indigo Naturalis, Exhibits Inhibitory Effects on Leukemia Cells via Targeting HSP90AA1 and PI3K/Akt Pathway

  • Authors: Yao Y.1, Li X.2, Yang X.3, Mou H.3, Wei L.4
  • Affiliations:
    1. College of Biology and Food Engineering,, Huaihua University, Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province
    2. College of Biology and Food Engineering, Huaihua UniaHuaihua University, Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Provinceversity
    3. College of Basic Medicine, Guizhou University of Traditional Chinese Medicine
    4. College of Biology and Food Engineering, Huaihua University, Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province
  • Issue: Vol 24, No 9 (2024)
  • Pages: 718-727
  • Section: Oncology
  • URL: https://rjsocmed.com/1871-5206/article/view/644311
  • DOI: https://doi.org/10.2174/0118715206258293231017063340
  • ID: 644311

Cite item

Full Text

Abstract

Background::This research intended to predict the active ingredients and key target genes of Indigo Naturalis in treating human chronic myeloid leukemia (CML) using network pharmacology and conduct the invitro verification.

Methods::The active components of Indigo Naturalis and the corresponding targets and leukemia-associated genes were gathered through public databases. The core targets and pathways of Indigo Naturalis were predicted through protein-protein interaction (PPI) network, gene ontology (GO) function, and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses. Next, after intersecting with leukemia-related genes, the direct core target gene of Indigo Naturalis active components was identified. Subsequently, HL-60 cells were stimulated with indirubin (IND) and then examined for cell proliferation using CCK-8 assay and cell cycle, cell apoptosis, and mitochondrial membrane potential using flow cytometry. The content of apoptosis-associated proteins (Cleaved Caspase 9, Cleaved Caspase 7, Cleaved Caspase 3, and Cleaved parp) were detected using Western blot, HSP90AA1 protein, and PI3K/Akt signaling (PI3K, p-PI3K, Akt, and p-Akt) within HL-60 cells.

Results::A total of 9 active components of Indigo Naturalis were screened. The top 10 core target genes (TNF, PTGS2, RELA, MAPK14, IFNG, PPARG, NOS2, IKBKB, HSP90AA1, and NOS3) of Indigo Naturalis active components within the PPI network were identified. According to the KEGG enrichment analysis, these targets were associated with leukemia-related pathways (such as acute myeloid leukemia and CML). After intersecting with leukemia-related genes, it was found that IND participated in the most pairs of target information and was at the core of the target network; HSP90AA1 was the direct core gene of IND. Furthermore, the in-vitro cell experiments verified that IND could inhibit the proliferation, elicit G2/M-phase cell cycle arrest, enhance the apoptosis of HL-60 cells, reduce mitochondrial membrane potential, and promote apoptosis-related protein levels. Under IND treatment, HSP90AA1 overexpression notably promoted cell proliferation and inhibited apoptosis. Additionally, IND exerted tumor suppressor effects on leukemia cells by inhibiting HSP90AA1 expression.

Conclusion::IND, an active component of Indigo Naturalis, could inhibit CML progression, which may be achieved via inhibiting HSP90AA1 and PI3K/Akt signaling expression levels.

About the authors

Yuanzhi Yao

College of Biology and Food Engineering,, Huaihua University, Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province

Email: info@benthamscience.net

Xiaoying Li

College of Biology and Food Engineering, Huaihua UniaHuaihua University, Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Provinceversity

Email: info@benthamscience.net

Xiaoqin Yang

College of Basic Medicine, Guizhou University of Traditional Chinese Medicine

Email: info@benthamscience.net

Hai Mou

College of Basic Medicine, Guizhou University of Traditional Chinese Medicine

Email: info@benthamscience.net

Lin Wei

College of Biology and Food Engineering, Huaihua University, Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province

Author for correspondence.
Email: info@benthamscience.net

References

  1. Li, Z.; Luo, J. Epigenetic regulation of HOTAIR in advanced chronic myeloid leukemia. Cancer Manag. Res., 2018, 10, 5349-5362. doi: 10.2147/CMAR.S166859 PMID: 30464631
  2. Jabbour, E.; Kantarjian, H. Chronic myeloid leukemia: 2022 update on diagnosis, therapy, and monitoring. Am. J. Hematol., 2022, 97(9), 1236-1256. doi: 10.1002/ajh.26642 PMID: 35751859
  3. Shallis, R.M.; Podoltsev, N. What is the best pharmacotherapeutic strategy for treating chronic myeloid leukemia in the elderly? Expert Opin. Pharmacother., 2019, 20(10), 1169-1173. doi: 10.1080/14656566.2019.1599357 PMID: 30951394
  4. Deininger, M.; Buchdunger, E.; Druker, B.J. The development of imatinib as a therapeutic agent for chronic myeloid leukemia. Blood, 2005, 105(7), 2640-2653. doi: 10.1182/blood-2004-08-3097 PMID: 15618470
  5. Meenakshi Sundaram, D.N.; Jiang, X.; Brandwein, J.M.; Valencia-Serna, J.; Remant, K.C.; Uludağ, H. Current outlook on drug resistance in chronic myeloid leukemia (CML) and potential therapeutic options. Drug Discov. Today, 2019, 24(7), 1355-1369. doi: 10.1016/j.drudis.2019.05.007 PMID: 31102734
  6. Chen, Y.; Xu, N.; Yang, Y.; Liu, Z.; Xue, M.; Meng, L.; He, Q.; Chen, C.; Zeng, Q.; Zhu, H.; Du, X.; Zou, J.; He, W.; Guo, J.; Chen, S.; Yuan, G.; Wu, H.; Hong, M.; Cheng, F.; Liu, B.; Zhang, Y.; Li, W. Quality of life, mental health, and perspective on TKI dose reduction as a prelude to discontinuation in chronic phase chronic myeloid leukemia. Cancer Med., 2023, 12(16), 17239-17252. doi: 10.1002/cam4.6296 PMID: 37409506
  7. Soverini, S.; Mancini, M.; Bavaro, L.; Cavo, M.; Martinelli, G. Chronic myeloid leukemia: The paradigm of targeting oncogenic tyrosine kinase signaling and counteracting resistance for successful cancer therapy. Mol. Cancer, 2018, 17(1), 49. doi: 10.1186/s12943-018-0780-6 PMID: 29455643
  8. Zhang, Y.; Xiao, Y.; Dong, Q.; Ouyang, W.; Qin, Q. Neferine in the lotus plumule potentiates the antitumor effect of imatinib in primary chronic myeloid leukemia cells in vitro. J. Food Sci., 2019, 84(4), 904-910. doi: 10.1111/1750-3841.14484 PMID: 30866043
  9. Chen, D.; Luo, C. Salidroside inhibits chronic myeloid leukemia cell proliferation and induces apoptosis by regulating the miR-140-5p/wnt5a/β-catenin axis. Exp. Ther. Med., 2021, 22(5), 1249. doi: 10.3892/etm.2021.10684 PMID: 34539845
  10. McDermott, L.; Madan, R.; Rupani, R.; Siegel, D. A review of indigo naturalis as an alternative treatment for nail psoriasis. J. Drugs Dermatol., 2016, 15(3), 319-323. PMID: 26954317
  11. Kawai, S.; Iijima, H.; Shinzaki, S.; Hiyama, S.; Yamaguchi, T.; Araki, M.; Iwatani, S.; Shiraishi, E.; Mukai, A.; Inoue, T.; Hayashi, Y.; Tsujii, M.; Motooka, D.; Nakamura, S.; Iida, T.; Takehara, T. Indigo Naturalis ameliorates murine dextran sodium sulfate-induced colitis via aryl hydrocarbon receptor activation. J. Gastroenterol., 2017, 52(8), 904-919. doi: 10.1007/s00535-016-1292-z PMID: 27900483
  12. Zhang, Q.; Xie, J.; Li, G.; Wang, F.; Lin, J.; Yang, M.; Du, A.; Zhang, D.; Han, L. Psoriasis treatment using Indigo Naturalis: Progress and strategy. J. Ethnopharmacol., 2022, 297, 115522. doi: 10.1016/j.jep.2022.115522 PMID: 35872288
  13. Tu, P.; Tian, R.; Lu, Y.; Zhang, Y.; Zhu, H.; Ling, L.; Li, H.; Chen, D. Beneficial effect of Indigo Naturalis on acute lung injury induced by influenza A virus. Chin. Med., 2020, 15(1), 128. doi: 10.1186/s13020-020-00415-w PMID: 33349263
  14. Lou, Y.; Ma, Y.; Jin, J.; Zhu, H. Oral realgar-indigo naturalis formula plus retinoic acid for acute promyelocytic leukemia. Front. Oncol., 2021, 10, 597601. doi: 10.3389/fonc.2020.597601 PMID: 33614484
  15. Huang, H.; Li, Y.; Dai, Y.; Zhang, Y.; Lu, Q.; Xu, Q.; Zhang, Y. Antileukemic effects of indigo naturalis constituents by "target constituent knock out" coupled with semipreparative liquid chromatography and quadrupole time of flight mass spectrometry. Biomed. Chromatogr., 2021, 35(12), e5216. doi: 10.1002/bmc.5216 PMID: 34254701
  16. Wang, Y.; Zhang, Y.; Wang, Y.; Shu, X.; Lu, C.; Shao, S.; Liu, X.; Yang, C.; Luo, J.; Du, Q. Using network pharmacology and molecular docking to explore the mechanism of Shan Ci Gu (Cremastra appendiculata) against non-small cell lung cancer. Front Chem., 2021, 9, 682862. doi: 10.3389/fchem.2021.682862 PMID: 34178945
  17. Li, H.; Liu, L.; Liu, C.; Zhuang, J.; Zhou, C.; Yang, J.; Gao, C.; Liu, G.; Lv, Q.; Sun, C. Deciphering key pharmacological pathways of qingdai acting on chronic myeloid leukemia using a network pharmacology-based strategy. Med. Sci. Monit., 2018, 24, 5668-5688. doi: 10.12659/MSM.908756 PMID: 30108199
  18. Zhou, C.; Liu, L.; Zhuang, J.; Wei, J.; Zhang, T.; Gao, C.; Liu, C.; Li, H.; Si, H.; Sun, C. A systems biology-based approach to uncovering molecular mechanisms underlying effects of traditional Chinese medicine Qingdai in chronic myelogenous leukemia, involving integration of network pharmacology and molecular docking technology. Med. Sci. Monit., 2018, 24, 4305-4316. doi: 10.12659/MSM.908104 PMID: 29934492
  19. Yang, L. Pharmacological properties of indirubin and its derivatives. Biomed. Pharmacother, 2022, 151, 113112. doi: 10.1016/j.biopha.2022.113112
  20. Xu, X.; Zhang, W.; Huang, C.; Li, Y.; Yu, H.; Wang, Y.; Duan, J.; Ling, Y. A novel chemometric method for the prediction of human oral bioavailability. Int. J. Mol. Sci., 2012, 13(6), 6964-6982. doi: 10.3390/ijms13066964 PMID: 22837674
  21. Szklarczyk, D.; Kirsch, R.; Koutrouli, M.; Nastou, K.; Mehryary, F.; Hachilif, R.; Gable, A.L.; Fang, T.; Doncheva, N.T.; Pyysalo, S.; Bork, P.; Jensen, L.J.; von Mering, C. The STRING database in 2023: protein–protein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic Acids Res., 2023, 51(D1), D638-D646. doi: 10.1093/nar/gkac1000 PMID: 36370105
  22. Safran, M. GeneCards Version 3: The human gene integrator. Database, 2010, 2010, baq020. doi: 10.1093/database/baq020
  23. Xie, L.; Shi, F.; Tan, Z.; Li, Y.; Bode, A.M.; Cao, Y. Mitochondrial network structure homeostasis and cell death. Cancer Sci., 2018, 109(12), 3686-3694. doi: 10.1111/cas.13830 PMID: 30312515
  24. Ding, L.; Chen, Q.; Chen, K.; Jiang, Y.; Li, G.; Chen, Q.; Bai, D.; Gao, D.; Deng, M.; Zhang, H.; Xu, B. Simvastatin potentiates the cell-killing activity of imatinib in imatinib-resistant chronic myeloid leukemia cells mainly through PI3K/AKT pathway attenuation and Myc downregulation. Eur. J. Pharmacol., 2021, 913, 174633. doi: 10.1016/j.ejphar.2021.174633 PMID: 34843676
  25. Li, L.; Qi, Y.; Ma, X.; Xiong, G.; Wang, L.; Bao, C. TRIM22 knockdown suppresses chronic myeloid leukemia via inhibiting PI3K/Akt/mTOR signaling pathway. Cell Biol. Int., 2018, 42(9), 1192-1199. doi: 10.1002/cbin.10989 PMID: 29762880
  26. Schäfer, M.; Semmler, M.L.; Bernhardt, T.; Fischer, T.; Kakkassery, V.; Ramer, R.; Hein, M.; Bekeschus, S.; Langer, P.; Hinz, B.; Emmert, S.; Boeckmann, L. Small molecules in the treatment of squamous cell carcinomas: Focus on indirubins. Cancers (Basel), 2021, 13(8), 1770. doi: 10.3390/cancers13081770 PMID: 33917267
  27. Lee, M.Y.; Li, Y.Z.; Huang, K.J.; Huang, H.C.; Lin, C.Y.; Lee, Y.R. Indirubin-3′-oxime suppresses human cholangiocarcinoma through cell-cycle arrest and apoptosis. Eur. J. Pharmacol., 2018, 839, 57-65. doi: 10.1016/j.ejphar.2018.09.023 PMID: 30267650
  28. Rajagopalan, P.; Dera, A.; Abdalsamad, M.R.; C Chandramoorthy, H. Rational combinations of indirubin and arylidene derivatives exhibit synergism in human non-small cell lung carcinoma cells. J. Food Biochem., 2019, 43(7), e12861. doi: 10.1111/jfbc.12861 PMID: 31353710
  29. Marko, D.; Schätzle, S.; Friedel, A.; Genzlinger, A.; Zankl, H.; Meijer, L.; Eisenbrand, G. Inhibition of cyclin-dependent kinase 1 (CDK1) by indirubin derivatives in human tumour cells. Br. J. Cancer, 2001, 84(2), 283-289. doi: 10.1054/bjoc.2000.1546 PMID: 11161389
  30. Wei, Y.F.; Su, J.; Deng, Z.L.; Zhu, C.; Yuan, L.; Lu, Z.J.; Zhu, Q.Y. Indirubin inhibits the proliferation of prostate cancer PC-3 cells. Zhonghua Nan Ke Xue, 2015, 21(9), 788-791. PMID: 26552210
  31. Gaboriaud-Kolar, N.; Myrianthopoulos, V.; Vougogiannopoulou, K.; Gerolymatos, P.; Horne, D.A.; Jove, R.; Mikros, E.; Nam, S.; Skaltsounis, A.L. Natural-based indirubins display potent cytotoxicity toward wild-type and t315i-resistant leukemia cell lines. J. Nat. Prod., 2016, 79(10), 2464-2471. doi: 10.1021/acs.jnatprod.6b00285 PMID: 27726390
  32. Lee, M.Y.; Liu, Y.W.; Chen, M.H.; Wu, J.Y.; Ho, H.Y.; Wang, Q.F.; Chuang, J.J. Indirubin-3′-monoxime promotes autophagic and apoptotic death in JM1 human acute lymphoblastic leukemia cells and K562 human chronic myelogenous leukemia cells. Oncol. Rep., 2013, 29(5), 2072-2078. doi: 10.3892/or.2013.2334 PMID: 23468088
  33. Barnwal, B.; Karlberg, H.; Mirazimi, A.; Tan, Y.J. The non-structural protein of crimean-congo hemorrhagic fever virus disrupts the mitochondrial membrane potential and induces apoptosis. J. Biol. Chem., 2016, 291(2), 582-592. doi: 10.1074/jbc.M115.667436 PMID: 26574543
  34. Chu, S.; Liu, Y.; Zhang, L.; Liu, B.; Li, L.; Shi, J.; Li, L. Regulation of survival and chemoresistance by HSP90AA1 in ovarian cancer SKOV3 cells. Mol. Biol. Rep., 2013, 40(1), 1-6. doi: 10.1007/s11033-012-1930-3 PMID: 23135731
  35. Abdalla, A.N.; Abdallah, M.E.; Aslam, A.; Bader, A.; Vassallo, A.; Tommasi, N.D.; Malki, W.H.; Gouda, A.M.; Mukhtar, M.H.; El-Readi, M.Z.; Alkahtani, H.M.; Abdel-Aziz, A.A.M.; El-Azab, A.S. Synergistic anti leukemia effect of a novel Hsp90 and a pan cyclin dependent kinase inhibitors. Molecules, 2020, 25(9), 2220. doi: 10.3390/molecules25092220 PMID: 32397330
  36. Al-Rawashde, F.A.; Al-wajeeh, A.S.; Vishkaei, M.N.; Saad, H.K.M.; Johan, M.F.; Taib, W.R.W.; Ismail, I.; Al-Jamal, H.A.N. Thymoquinone inhibits JAK/STAT and PI3K/Akt/mTOR signaling pathways in MV4-11 and K562 myeloid leukemia cells. Pharmaceuticals (Basel), 2022, 15(9), 1123. doi: 10.3390/ph15091123 PMID: 36145344
  37. Xiao, X.; Wang, W.; Li, Y.; Yang, D.; Li, X.; Shen, C.; Liu, Y.; Ke, X.; Guo, S.; Guo, Z. HSP90AA1-mediated autophagy promotes drug resistance in osteosarcoma. J. Exp. Clin. Cancer Res., 2018, 37(1), 201. doi: 10.1186/s13046-018-0880-6 PMID: 30153855

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers