Cordyceps militaris: A Comprehensive Study on Laboratory Cultivation and Anticancer Potential in Dalton's Ascites Lymphoma Tumor Model


Cite item

Full Text

Abstract

Background:Cancer, a predominant cause of mortality, poses a formidable challenge in our pursuit of elevating life expectancy. Throughout history, individuals have sought natural remedies with minimal side effects as an appealing substitute for chemotherapeutic drugs. One such remedy is Cordyceps militaris, a renowned medicinal mushroom deeply entrenched in Asian ethnomedicine. Revered for its rejuvenating and curative attributes, it relied upon for ages.

Objective:The mushroom’s soaring demand outpaced natural availability, necessitating controlled laboratory cultivation as the core focus and exploring the potential of methanolic extracts from harvested Cordyceps militaris fruiting bodies against Dalton's Lymphoma Ascites (DLA) cells in vitro, with a specific emphasis on its anticancer traits.

Methods:For cultivation, we employed a diverse range of rice substrates, among which bora rice showed promising growth of C. militaris fruiting bodies. To assess DLA cell cytotoxicity, several assays, including trypan blue exclusion assay, MTT assay, and LDH assay, were employed at different time points (24-96 h), which provided valuable insights on DLA cell viability and proliferation, shedding light on its therapeutic potential against cancer.

Results:Our studies unveiled that methanolic extract prompts apoptosis in DLA cells via AO/EB dual staining, manifesting consistent apoptosis indicators such as membrane blebbing, chromatin condensation, nuclei fragmentation, and cellular shrinkage at 48-96 h of treatment. Furthermore, these striking repercussions of apoptosis were comprehended by an in silico approach having molecular docking simulation against antiapoptotic proteins like BCL-2, BCL-XL, MCL-1, BFL-1 & HSP100.

Conclusion:Methanolic C. militaris extracts exhibited cytotoxicity and apoptotic alterations in DLA cells

About the authors

Diksha Dutta

Department of Zoology, Cell & Biochemical Technology Laboratory, Cotton University

Email: info@benthamscience.net

Namram Singh

Department of Zoology, Cell & Biochemical Technology Laboratory, Cotton University

Email: info@benthamscience.net

Rohit Aggarwal

Cosmic Cordycep Farms, Badarpur Said Tehsil

Email: info@benthamscience.net

Akalesh Verma

Department of Zoology, Cell & Biochemical Technology Laboratory, Cotton University

Author for correspondence.
Email: info@benthamscience.net

References

  1. Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249. doi: 10.3322/caac.21660 PMID: 33538338
  2. Nam, K.S.; Jo, Y.S.; Kim, Y.H.; Hyun, J.W.; Kim, H.W. Cytotoxic activities of acetoxyscirpenediol and ergosterol peroxide from Paecilomyces tenuipes. Life Sci., 2001, 69(2), 229-237. doi: 10.1016/S0024-3205(01)01125-0 PMID: 11441913
  3. Holliday, J.C.; Cleaver, M.P. Medicinal value of the caterpillar fungi species of the genus cordyceps (Fr) link (Ascomycetes). A review. Int. J. Med. Mushrooms, 2008, 10(3), 219-234. doi: 10.1615/IntJMedMushr.v10.i3.30
  4. Jędrejko, K.J.; Lazur, J.; Muszyńska, B. Cordyceps militaris: An overview of its chemical constituents in relation to biological activity. Foods, 2021, 10(11), 2634. doi: 10.3390/foods10112634 PMID: 34828915
  5. Jo, E.; Jang, H.J.; Shen, L.; Yang, K.E.; Jang, M.S.; Huh, Y.H.; Yoo, H.S.; Park, J.; Jang, I.S.; Park, S.J. Cordyceps militaris exerts anticancer effect on non–small cell lung cancer by inhibiting hedgehog signaling via suppression of TCTN3. Integr. Cancer Ther., 2020, 19, 1534735420923756. doi: 10.1177/1534735420923756 PMID: 32456485
  6. Kang, J.Y.; Lee, B.; Kim, C.H.; Choi, J.H.; Kim, M.S. Enhancing the prebiotic and antioxidant effects of exopolysaccharides derived from Cordyceps militaris by enzyme-digestion. Lebensm. Wiss. Technol., 2022, 167, 113830. doi: 10.1016/j.lwt.2022.113830
  7. Choi, S.B.; Park, C.H.; Choi, M.K.; Jun, D.W.; Park, S. Improvement of insulin resistance and insulin secretion by water extracts of Cordyceps militaris, Phellinus linteus, and Paecilomyces tenuipes in 90% pancreatectomized rats. Biosci. Biotechnol. Biochem., 2004, 68(11), 2257-2264. doi: 10.1271/bbb.68.2257 PMID: 15564662
  8. Lee, C.T.; Huang, K.S.; Shaw, J.F.; Chen, J.R.; Kuo, W.S.; Shen, G.; Grumezescu, A.M.; Holban, A.M.; Wang, Y.T.; Wang, J.S.; Hsiang, Y.P.; Lin, Y.M.; Hsu, H.H.; Yang, C.H. Trends in the immunomodulatory effects of cordyceps militaris: Total extracts, polysaccharides and cordycepin. Front. Pharmacol., 2020, 11, 575704. doi: 10.3389/fphar.2020.575704 PMID: 33328984
  9. Liu, X.C.; Zhu, Z.Y.; Liu, Y.L.; Sun, H.Q. Comparisons of the anti-tumor activity of polysaccharides from fermented mycelia and cultivated fruiting bodies of Cordyceps militaris in vitro. Int. J. Biol. Macromol., 2019, 130, 307-314. doi: 10.1016/j.ijbiomac.2019.02.155 PMID: 30825564
  10. Won, S.Y.; Park, E.H. Anti-inflammatory and related pharmacological activities of cultured mycelia and fruiting bodies of Cordyceps militaris. J. Ethnopharmacol., 2005, 96(3), 555-561. doi: 10.1016/j.jep.2004.10.009 PMID: 15619578
  11. Yoo, H.S.; Shin, J.W.; Cho, J.H.; Son, C.G.; Lee, Y.W.; Park, S.Y.; Cho, C.K. Effects of Cordyceps militaris extract on angiogenesis and tumor growth. Acta Pharmacol. Sin., 2004, 25(5), 657-665. PMID: 15132834
  12. Joshi, M. Anticancer, antibacterial and antioxidant activities of cordyceps militaris. Indian J. Exp. Biol., 2019, 57, 15-20.
  13. Wang, B.S.; Lee, C.P.; Chen, Z.T.; Yu, H.M.; Duh, P.D. Comparison of the hepatoprotective activity between cultured Cordyceps militaris and natural Cordyceps sinensis. J. Funct. Foods, 2012, 4(2), 489-495. doi: 10.1016/j.jff.2012.02.009
  14. Yu, S.H.; Dubey, N.K.; Li, W.S.; Liu, M.C.; Chiang, H.S.; Leu, S.J.; Shieh, Y.H.; Tsai, F.C.; Deng, W.P. Cordyceps militaris treatment preserves renal function in type 2 diabetic nephropathy mice. PLoS One, 2016, 11(11), e0166342. doi: 10.1371/journal.pone.0166342 PMID: 27832180
  15. Sun, H.; Yu, X.; Li, T.; Zhu, Z. Structure and hypoglycemic activity of a novel exopolysaccharide of Cordyceps militaris. Int. J. Biol. Macromol., 2021, 166, 496-508. doi: 10.1016/j.ijbiomac.2020.10.207 PMID: 33129900
  16. Wang, L.; Xu, N.; Zhang, J.; Zhao, H.; Lin, L.; Jia, S.; Jia, L.; Tsai, F.C.; Deng, W.P. Antihyperlipidemic and hepatoprotective activities of residue polysaccharide from Cordyceps militaris SU-12. Carbohydr. Polym., 2015, 131, 355-362. doi: 10.1016/j.carbpol.2015.06.016 PMID: 26256194
  17. Kim, Y.O.; Kim, H.J.; Abu-Taweel, G.M.; Oh, J.; Sung, G.H. Neuroprotective and therapeutic effect of Cordyceps militaris on ischemia-induced neuronal death and cognitive impairments. Saudi J. Biol. Sci., 2019, 26(7), 1352-1357. doi: 10.1016/j.sjbs.2018.08.011 PMID: 31762595
  18. Das, S.K.; Masuda, M.; Sakurai, A.; Sakakibara, M. Medicinal uses of the mushroom Cordyceps militaris: Current state and prospects. Fitoterapia, 2010, 81(8), 961-968. doi: 10.1016/j.fitote.2010.07.010 PMID: 20650308
  19. Shin, S.; Lee, S.; Kwon, J.; Moon, S.; Lee, S.; Lee, C.K.; Cho, K.; Ha, N.J.; Kim, K. Cordycepin suppresses expression of diabetes regulating genes by inhibition of lipopolysaccharide-induced inflammation in macrophages. Immune Netw., 2009, 9(3), 98-105. doi: 10.4110/in.2009.9.3.98 PMID: 20107539
  20. Zhou, X.; Gong, Z.; Su, Y.; Lin, J.; Tang, K. Cordyceps fungi: Natural products, pharmacological functions and developmental products. J. Pharm. Pharmacol., 2009, 61(3), 279-291. doi: 10.1211/jpp.61.03.0002 PMID: 19222900
  21. Smiderle, F.R.; Sassaki, G.L.; Van Griensven, L.J.L.D.; Iacomini, M. Isolation and chemical characterization of a glucogalactomannan of the medicinal mushroom Cordyceps militaris. Carbohydr. Polym., 2013, 97(1), 74-80. doi: 10.1016/j.carbpol.2013.04.049 PMID: 23769519
  22. Lu, M.C.; El-Shazly, M.; Wu, T.Y.; Du, Y.C.; Chang, T.T.; Chen, C.F.; Hsu, Y.M.; Lai, K.H.; Chiu, C.P.; Chang, F.R.; Wu, Y.C. Recent research and development of Antrodia cinnamomea. Pharmacol. Ther., 2013, 139(2), 124-156. doi: 10.1016/j.pharmthera.2013.04.001 PMID: 23563277
  23. Chiu, C.P.; Hwang, T.L.; Chan, Y.; El-Shazly, M.; Wu, T.Y.; Lo, I.W.; Hsu, Y.M.; Lai, K.H.; Hou, M.F.; Yuan, S.S.; Chang, F.R.; Wu, Y.C. Research and development of Cordyceps in Taiwan. Food Sci. Hum. Wellness, 2016, 5(4), 177-185. doi: 10.1016/j.fshw.2016.08.001
  24. Holliday, J. Cordyceps: A highly coveted medicinal mushroom. In: Medicinal Plants and Fungi: Recent Advances in Research and Development; Springer: Singapore, 2017; pp. 59-91. doi: 10.1007/978-981-10-5978-0_3
  25. Reis, F.S.; Martins, A.; Vasconcelos, M.H.; Morales, P.; Ferreira, I.C.F.R. Functional foods based on extracts or compounds derived from mushrooms. Trends Food Sci. Technol., 2017, 66, 48-62. doi: 10.1016/j.tifs.2017.05.010
  26. Sung, J.M.; Choi, Y.S.; Lee, H.K.; Kim, S.H.; Kim, Y.O.; Sung, G.H. Production of fruiting body using cultures of entomopathogenic fungal species. Korean J. Mycol., 1999, 27, 15-19.
  27. Sung, J.M.; Choi, Y.S.; Shrestha, B.; Park, Y.J. Investigation on artificial fruiting of Cordyceps militaris. Hanguk Kyun. Hakoe Chi, 2002, 30(1), 6-10. doi: 10.4489/KJM.2002.30.1.006
  28. Sato, H.; Shimazu, M. Homothallism in Cordyceps militaris. In: Book of abstracts; 7th international mycological congress; Oslo, Norway, 2002.
  29. Shrestha, B.; Kim, H.K.; Sung, G.H.; Spatafora, J.W.; Sung, J.M. Bipolar heterothallism, a principal mating system of Cordyceps militaris In Vitro. Biotechnol. Bioprocess Eng.; BBE, 2004, 9(6), 440-446. doi: 10.1007/BF02933483
  30. Shrestha, B.; Choi, S.K.; Kim, H.K.; Kim, T.W.; Sung, J.M. Genetic analysis of pigmentation in Cordyceps militaris. Mycobiology, 2005, 33(3), 125-130. doi: 10.4489/MYCO.2005.33.3.125 PMID: 24049487
  31. Shrestha, B.; Han, S.K.; Lee, W.H.; Choi, S.K.; Lee, J.O.; Sung, J.M. Distribution and in vitro Fruiting of Cordyceps militaris in Korea. Mycobiology, 2005, 33(4), 178-181. doi: 10.4489/MYCO.2005.33.4.178 PMID: 24049497
  32. Jin, C.Y.; Kim, G.Y.; Choi, Y.H. Induction of apoptosis by aqueous extract of Cordyceps militaris through activation of caspases and inactivation of Akt in human breast cancer MDA-MB-231 Cells. J. Microbiol. Biotechnol., 2008, 18(12), 1997-2003. PMID: 19131705
  33. Park, S.E.; Yoo, H.S.; Jin, C.Y.; Hong, S.H.; Lee, Y.W.; Kim, B.W.; Lee, S.H.; Kim, W.J.; Cho, C.K.; Choi, Y.H. Induction of apoptosis and inhibition of telomerase activity in human lung carcinoma cells by the water extract of Cordyceps militaris. Food Chem. Toxicol., 2009, 47(7), 1667-1675. doi: 10.1016/j.fct.2009.04.014 PMID: 19393284
  34. Yang, C-H.; Kao, Y-H.; Huang, K-S.; Wang, C-Y.; Lin, L-W. Cordyceps militaris and mycelial fermentation induced apoptosis and autophagy of human glioblastoma cells. Cell Death Dis., 2012, 3(11), e431. doi: 10.1038/cddis.2012.172 PMID: 23190603
  35. Ruma, M.W.; Putranto, E.W.; Kondo, E.; Watanabe, R.; Saito, K.; Inoue, Y.; Yamamoto, K.I.; Nakata, S.; Kaihata, M.; Murata, H.; Sakaguchi, M. Extract of Cordyceps militaris inhibits angiogenesis and suppresses tumor growth of human malignant melanoma cells. Int. J. Oncol., 2014, 45(1), 209-218. doi: 10.3892/ijo.2014.2397 PMID: 24789042
  36. Park, C.; Hong, S.; Lee, J.Y.; Kim, G.Y.; Choi, B.; Lee, Y.; Park, D.; Park, Y.M.; Jeong, Y.K.; Choi, Y. Growth inhibition of U937 leukemia cells by aqueous extract of Cordyceps militaris through induction of apoptosis. Oncol. Rep., 2005, 13(6), 1211-1216. doi: 10.3892/or.13.6.1211 PMID: 15870944
  37. Rao, Y.K.; Fang, S.H.; Wu, W.S.; Tzeng, Y.M. Constituents isolated from Cordyceps militaris suppress enhanced inflammatory mediator’s production and human cancer cell proliferation. J. Ethnopharmacol., 2010, 131(2), 363-367. doi: 10.1016/j.jep.2010.07.020 PMID: 20633630
  38. Reis, F.S.; Barros, L.; Calhelha, R.C.; Ćirić, A.; van Griensven, L.J.L.D.; Soković, M.; Ferreira, I.C.F.R. The methanolic extract of Cordyceps militaris (L.) Link fruiting body shows antioxidant, antibacterial, antifungal and antihuman tumor cell lines properties. Food Chem. Toxicol., 2013, 62, 91-98. doi: 10.1016/j.fct.2013.08.033 PMID: 23994083
  39. Jo, E.; Jang, H.J.; Yang, K.E.; Jang, M.S.; Huh, Y.H.; Yoo, H.S.; Park, J.S.; Jang, I.S.; Park, S.J. Cordyceps militaris induces apoptosis in ovarian cancer cells through TNF-α/TNFR1-mediated inhibition of NF-κB phosphorylation. BMC Complement. Med. Thera., 2020, 20(1), 1-12. doi: 10.1186/s12906-019-2780-5 PMID: 32020859
  40. Lee, E.J.; Kim, W.J.; Moon, S.K. Cordycepin suppresses TNF‐alpha‐induced invasion, migration and matrix metalloproteinase‐9 expression in human bladder cancer cells. Phytother. Res., 2010, 24(12), 1755-1761. doi: 10.1002/ptr.3132 PMID: 20564512
  41. Guo, Z.; Chen, W.; Dai, G.; Huang, Y. Cordycepin suppresses the migration and invasion of human liver cancer cells by downregulating the expression of CXCR4. Int. J. Mol. Med., 2019, 45(1), 141-150. doi: 10.3892/ijmm.2019.4391 PMID: 31746344
  42. Liu, P.; Ma, J.; Liang, R.; He, X.; Zhao, G. Development of an efficient method for separation and purification of cordycepin from liquid fermentation of Cordyceps militaris and analysis of cordycepin antitumor activity. Heliyon, 2023, 9(3), e14184. doi: 10.1016/j.heliyon.2023.e14184 PMID: 36923906
  43. Sangiliyandi, G.; Kanth, S.B.; Kalishwaralal, K.; Gurunathan, S. Antitumor activity of silver nanoparticles in Dalton’s lymphoma ascites tumor model. Int. J. Nanomedicine, 2010, 5, 753-762. doi: 10.2147/IJN.S11727 PMID: 21042421
  44. Zhao, R.; Guo, C. Optimizing on liquid culture media of Cordyceps sinensis mycelia. J. Tianj. Normal Univ., 2008, 28, 8-11.
  45. Tuli, H.S.; Sandhu, S.S.; Kashyap, D.; Sharma, A.K. Optimization of extraction conditions and antimicrobial potential of a bioactive metabolite, cordycepin from Cordyceps militaris 3936. World J. Pharm. Pharm. Sci., 2014, 3, 1525-1535.
  46. Harbourne, J.B. Phytochemical Methods: A Guide to Modern Technique of Plant Analysis, 3rd ed.; Chapman and Hall Ltd: London, 1998.
  47. Raaman, N. Phytochemical techniques, 1st ed.; New Delhi Publishing Agency: New Delhi, 2006. doi: 10.59317/9789390083404
  48. Khandelwal, K.R. Practical pharmacognosy, 19th ed.; Nirali Prakashan: Pune, 2009.
  49. Shah, P.; Modi, H.; Shukla, M.; Lahiri, S.K. Preliminary phytochemical analysis and antibacterial activity of Ganoderma lucidum collected from Dang district of Gujarat, India. Int. J. Curr. Microbiol. Appl. Sci., 2014, 3, 246-255.
  50. Strober, W. Trypan blue exclusion test of cell viability. Curr. Protoc. Immunol., 1997, 21(1), 3B. doi: 10.1002/0471142735.ima03bs21 PMID: 18432654
  51. Tian, T.; Song, L.; Zheng, Q.; Hu, X.; Yu, R. Induction of apoptosis by Cordyceps militaris fraction in human chronic myeloid leukemia K562 cells involved with mitochondrial dysfunction. Pharmacogn. Mag., 2014, 10(39), 325-331. doi: 10.4103/0973-1296.137374 PMID: 25210321
  52. Kumar, P.; Nagarajan, A.; Uchil, P.D. Analysis of cell viability by the lactate dehydrogenase assay. Cold Spring Harb. Protoc., 2018, 2018(6), pdb.prot095497. doi: 10.1101/pdb.prot095497 PMID: 29858337
  53. Squier, M.K.T.; Cohen, J.J. Standard quantitative assays for apoptosis. Mol. Biotechnol., 2001, 19(3), 305-312. doi: 10.1385/MB:19:3:305 PMID: 11721626
  54. Meng, X.Y.; Zhang, H.X.; Mezei, M.; Cui, M. Molecular docking: A powerful approach for structure-based drug discovery. Curr. Computeraided Drug Des., 2011, 7(2), 146-157. doi: 10.2174/157340911795677602 PMID: 21534921
  55. Alvarez, J.C. High-throughput docking as a source of novel drug leads. Curr. Opin. Chem. Biol., 2004, 8(4), 365-370. doi: 10.1016/j.cbpa.2004.05.001 PMID: 15288245
  56. Bitencourt-Ferreira, G.; De Azevedo, W.F. Molegro virtual docker for docking. Methods Mol. Biol., 2019, 2053, 146-167. doi: 10.1007/978-1-4939-9752-7_10
  57. Thomsen, R.; Christensen, M.H. MolDock: A new technique for high-accuracy molecular docking. J. Med. Chem., 2006, 49(11), 3315-3321. doi: 10.1021/jm051197e PMID: 16722650
  58. Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera-A visualization system for exploratory research and analysis. J. Comput. Chem., 2004, 25(13), 1605-1612. doi: 10.1002/jcc.20084 PMID: 15264254
  59. Goddard, T.D.; Huang, C.C.; Ferrin, T.E. Visualizing density maps with UCSF Chimera. J. Struct. Biol., 2007, 157(1), 281-287. doi: 10.1016/j.jsb.2006.06.010 PMID: 16963278
  60. BIOVIA Discovery Studio Visualizer. Available from: https://www. 3dsbiovia.com/products/collaborative-science/biovia-discovery-studio/ (Accessed January 12, 2021).
  61. Cheng, F.; Li, W.; Zhou, Y.; Shen, J.; Wu, Z.; Liu, G.; Lee, P.W.; Tang, Y. admetSAR: A comprehensive source and free tool for assessment of chemical ADMET properties. J. Chem. Inf. Model., 2012, 52(11), 3099-3105. doi: 10.1021/ci300367a PMID: 23092397
  62. Pires, D.E.V.; Blundell, T.L.; Ascher, D.B. pkCSM: Predicting small-molecule pharmacokinetic and toxicity properties using graph based signatures. J. Med. Chem., 2015, 58(9), 4066-4072. doi: 10.1021/acs.jmedchem.5b00104 PMID: 25860834
  63. Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep., 2017, 7(1), 42717. doi: 10.1038/srep42717 PMID: 28256516
  64. Yang, H.; Lou, C.; Sun, L.; Li, J.; Cai, Y.; Wang, Z.; Li, W.; Liu, G.; Tang, Y. admetSAR 2.0: Web-service for prediction and optimization of chemical ADMET properties. Bioinformatics, 2019, 35(6), 1067-1069. doi: 10.1093/bioinformatics/bty707 PMID: 30165565
  65. Park, J.P.; Kim, S.W.; Hwang, H.J.; Yun, J.W. Optimization of submerged culture conditions for the mycelial growth and exo-biopolymer production by Cordyceps militaris. Lett. Appl. Microbiol., 2001, 33(1), 76-81. doi: 10.1046/j.1472-765X.2001.00950.x PMID: 11442820
  66. Xiao, J.H.; Chen, D.X.; Liu, J.W.; Liu, Z.L.; Wan, W.H.; Fang, N.; Xiao, Y.; Qi, Y.; Liang, Z.Q. Optimization of submerged culture requirements for the production of mycelial growth and exopolysaccharide by Cordyceps jiangxiensis JXPJ 0109. J. Appl. Microbiol., 2004, 96(5), 1105-1116. doi: 10.1111/j.1365-2672.2004.02235.x PMID: 15078528
  67. Tong, Y.K.; Kuang, T.; Wu, Y.X.; Zhang, Q.Y.; Ren, J. Comparison of components of Cordyceps mycelium and natural Cordyceps sinensis. Shipin Yanjiu Yu Kaifa, 1997, 18(4), 40-42.
  68. Jiang, X.L.; Sun, Y. The determination of active components in various Cordyceps militaris strains. Acta Edulis Fungi, 1999, 6, 47-50.
  69. Cohen, N.; Cohen, J.; Asatiani, M.D.; Varshney, V.K.; Yu, H.T.; Yang, Y.C.; Li, Y.H.; Mau, J.L.; Wasser, S.P. Chemical composition and nutritional and medicinal value of fruit bodies and submerged cultured mycelia of culinary-medicinal higher Basidiomycetes mushrooms. Int. J. Med. Mushrooms, 2014, 16(3), 273-291. doi: 10.1615/IntJMedMushr.v16.i3.80 PMID: 24941169
  70. Zhang, J.; Wen, C.; Duan, Y.; Zhang, H.; Ma, H. Advance in Cordyceps militaris (Linn) Link polysaccharides: Isolation, structure, and bioactivities: A review. Int. J. Biol. Macromol., 2019, 132, 906-914. doi: 10.1016/j.ijbiomac.2019.04.020 PMID: 30954592
  71. Basak, S.; Sengupta, S.; Chattopadhyay, K. Understanding biochemical processes in the presence of sub-diffusive behavior of biomolecules in solution and living cells. Biophys. Rev., 2019, 11(6), 851-872. doi: 10.1007/s12551-019-00580-9 PMID: 31444739
  72. Lee, H.H.; Lee, S.; Lee, K.; Shin, Y.S.; Kang, H.; Cho, H. Anti-cancer effect of Cordyceps militaris in human colorectal carcinoma RKO cells via cell cycle arrest and mitochondrial apoptosis. Daru, 2015, 23(1), 35. doi: 10.1186/s40199-015-0117-6 PMID: 26141646
  73. Wang, X.A.; Xiang, S.S.; Li, H.F.; Wu, X.S.; Li, M.L.; Shu, Y.J.; Zhang, F.; Cao, Y.; Ye, Y.Y.; Bao, R.F.; Weng, H.; Wu, W.G.; Mu, J.S.; Hu, Y.P.; Jiang, L.; Tan, Z.J.; Lu, W.; Wang, P.; Liu, Y.B. Cordycepin induces S phase arrest and apoptosis in human gallbladder cancer cells. Molecules, 2014, 19(8), 11350-11365. doi: 10.3390/molecules190811350 PMID: 25090123
  74. Liao, Y.; Ling, J.; Zhang, G.; Liu, F.; Tao, S.; Han, Z.; Chen, S.; Chen, Z.; Le, H. Cordycepin induces cell cycle arrest and apoptosis by inducing DNA damage and up-regulation of p53 in Leukemia cells. Cell Cycle, 2015, 14(5), 761-771. doi: 10.1080/15384101.2014.1000097 PMID: 25590866
  75. Xu, J.C.; Zhou, X.P.; Wang, X.A.; Xu, M.D.; Chen, T.; Chen, T.Y.; Zhou, P.H.; Zhang, Y.Q. Cordycepin induces apoptosis and G2/M phase arrest through the erk pathways in esophageal cancer cells. J. Cancer, 2019, 10(11), 2415-2424. doi: 10.7150/jca.32071 PMID: 31258746
  76. Lu, H.; Li, X.; Zhang, J.; Shi, H.; Zhu, X.; He, X. Effects of cordycepin on HepG2 and EA.hy926 cells: Potential antiproliferative, antimetastatic and anti-angiogenic effects on hepatocellular carcinoma. Oncol. Lett., 2014, 7(5), 1556-1562. doi: 10.3892/ol.2014.1965 PMID: 24765175
  77. Song, J.; Wang, Y.; Teng, M.; Zhang, S.; Yin, M.; Lu, J.; Liu, Y.; Lee, R.J.; Wang, D.; Teng, L. Cordyceps militaris induces tumor cell death via the caspase-dependent mitochondrial pathway in HepG2 and MCF-7 cells. Mol. Med. Rep., 2016, 13(6), 5132-5140. doi: 10.3892/mmr.2016.5175 PMID: 27109250
  78. Hu, Z.; Lai, Y.; Ma, C.; Zuo, L.; Xiao, G.; Gao, H.; Xie, B.; Huang, X.; Gan, H.; Huang, D.; Yao, N.; Feng, B.; Ru, J.; Chen, Y.; Cai, D. Cordyceps militaris extract induces apoptosis and pyroptosis via caspase‐3/PARP/GSDME pathways in A549 cell line. Food Sci. Nutr., 2022, 10(1), 21-38. doi: 10.1002/fsn3.2636 PMID: 35035907
  79. Bai, K.C.; Sheu, F. A novel protein from edible fungi Cordyceps militaris that induces apoptosis. J. Food Drug Anal., 2018, 26(1), 21-30. doi: 10.1016/j.jfda.2016.10.013 PMID: 29389557
  80. Wang, Y.; Kanneganti, T.D. From pyroptosis, apoptosis and necroptosis to PANoptosis: A mechanistic compendium of programmed cell death pathways. Comput. Struct. Biotechnol. J., 2021, 19, 4641-4657. doi: 10.1016/j.csbj.2021.07.038 PMID: 34504660
  81. Baskić, D.; Popović, S.; Ristić, P.; Arsenijević, N. Analysis of cycloheximide-induced apoptosis in human leukocytes: Fluorescence microscopy using annexin V/propidium iodide versus acridin orange/ethidium bromide. Cell Biol. Int., 2006, 30(11), 924-932. doi: 10.1016/j.cellbi.2006.06.016 PMID: 16895761
  82. Liu, K.; Liu, P.; Liu, R.; Wu, X. Dual AO/EB staining to detect apoptosis in osteosarcoma cells compared with flow cytometry. Med. Sci. Monit. Basic Res., 2015, 21, 15-20. doi: 10.12659/MSMBR.893327 PMID: 25664686
  83. Lee, H.; Kim, Y.J.; Kim, H.W.; Lee, D.H.; Sung, M.K.; Park, T. Induction of apoptosis by Cordyceps militaris through activation of caspase-3 in leukemia HL-60 cells. Biol. Pharm. Bull., 2006, 29(4), 670-674. doi: 10.1248/bpb.29.670 PMID: 16595897
  84. Moldoveanu, T.; Follis, A.V.; Kriwacki, R.W.; Green, D.R. Many players in BCL-2 family affairs. Trends Biochem. Sci., 2014, 39(3), 101-111. doi: 10.1016/j.tibs.2013.12.006 PMID: 24503222
  85. Adams, J.M.; Cory, S. The BCL-2 arbiters of apoptosis and their growing role as cancer targets. Cell Death Differ., 2018, 25(1), 27-36. doi: 10.1038/cdd.2017.161 PMID: 29099483
  86. Pandey, P.; Saleh, A.; Nakazawa, A.; Kumar, S.; Srinivasula, S.M.; Kumar, V.; Weichselbaum, R.; Nalin, C.; Alnemri, E.S.; Kufe, D.; Kharbanda, S. Negative regulation of cytochrome c-mediated oligomerization of Apaf-1 and activation of procaspase-9 by heat shock protein 90. EMBO J., 2000, 19(16), 4310-4322. doi: 10.1093/emboj/19.16.4310 PMID: 10944114
  87. Oldendorf, W.H. Lipid solubility and drug penetration of the blood brain barrier. Exp. Biol. Med., 1974, 147(3), 813-816. doi: 10.3181/00379727-147-38444 PMID: 4445171

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers