Nanotechnology Utilizing Ferroptosis Inducers in Cancer Treatment
- 作者: Farzipour S.1, Jalali Zefrei F.1, Bahadorikhalili S.2, Alvandi M.3, Salari A.4, Shaghaghi Z.3
-
隶属关系:
- Cardiovascular Diseases Research Center, Department of Cardiology, Heshmat Hospital, School of Medicine, Guilan University of Medical Sciences
- Department of Electronic Engineering, Universitat Rovira i Virgili
- Cardiovascular Research Center, Hamadan University of Medical Sciences
- Cardiovascular Diseases Research Center, Department of Cardiology, Heshmat Hospital, School of Medicine,, Guilan University of Medical Sciences,
- 期: 卷 24, 编号 8 (2024)
- 页面: 571-589
- 栏目: Oncology
- URL: https://rjsocmed.com/1871-5206/article/view/644279
- DOI: https://doi.org/10.2174/0118715206278427231215111526
- ID: 644279
如何引用文章
全文:
详细
Current cancer treatment options have presented numerous challenges in terms of reaching high efficacy. As a result, an immediate step must be taken to create novel therapies that can achieve more than satisfying outcomes in the fight against tumors. Ferroptosis, an emerging form of regulated cell death (RCD) that is reliant on iron and reactive oxygen species, has garnered significant attention in the field of cancer therapy. Ferroptosis has been reported to be induced by a variety of small molecule compounds known as ferroptosis inducers (FINs), as well as several licensed chemotherapy medicines. These compounds' low solubility, systemic toxicity, and limited capacity to target tumors are some of the significant limitations that have hindered their clinical effectiveness. A novel cancer therapy paradigm has been created by the hypothesis that ferroptosis induced by nanoparticles has superior preclinical properties to that induced by small drugs and can overcome apoptosis resistance. Knowing the different ideas behind the preparation of nanomaterials that target ferroptosis can be very helpful in generating new ideas. Simultaneously, more improvement in nanomaterial design is needed to make them appropriate for therapeutic treatment. This paper first discusses the fundamentals of nanomedicine-based ferroptosis to highlight the potential and characteristics of ferroptosis in the context of cancer treatment. The latest study on nanomedicine applications for ferroptosis-based anticancer therapy is then highlighted.
作者简介
Soghra Farzipour
Cardiovascular Diseases Research Center, Department of Cardiology, Heshmat Hospital, School of Medicine, Guilan University of Medical Sciences
Email: info@benthamscience.net
Fatemeh Jalali Zefrei
Cardiovascular Diseases Research Center, Department of Cardiology, Heshmat Hospital, School of Medicine, Guilan University of Medical Sciences
Email: info@benthamscience.net
Saeed Bahadorikhalili
Department of Electronic Engineering, Universitat Rovira i Virgili
Email: info@benthamscience.net
Maryam Alvandi
Cardiovascular Research Center, Hamadan University of Medical Sciences
Email: info@benthamscience.net
Arsalan Salari
Cardiovascular Diseases Research Center, Department of Cardiology, Heshmat Hospital, School of Medicine,, Guilan University of Medical Sciences,
Email: info@benthamscience.net
Zahra Shaghaghi
Cardiovascular Research Center, Hamadan University of Medical Sciences
编辑信件的主要联系方式.
Email: info@benthamscience.net
参考
- Miller, K.D.; Nogueira, L.; Mariotto, A.B.; Rowland, J.H.; Yabroff, K.R.; Alfano, C.M.; Jemal, A.; Kramer, J.L.; Siegel, R.L. Cancer treatment and survivorship statistics, 2019. CA Cancer J. Clin., 2019, 69(5), 363-385. doi: 10.3322/caac.21565 PMID: 31184787
- Zhang, C.; Liu, X.; Jin, S.; Chen, Y.; Guo, R. Ferroptosis in cancer therapy: A novel approach to reversing drug resistance. Mol. Cancer, 2022, 21(1), 47. doi: 10.1186/s12943-022-01530-y PMID: 35151318
- Hosseinimehr, S.J.; Allahgholipour, S.Z.; Farzipour, S.; Ghasemi, A.; Asgarian-Omran, H. The radiosensitizing effect of olanzapine as an antipsychotic medication on glioblastoma cell. Curr. Radiopharm., 2022, 15(1), 50-55. doi: 10.2174/1874471014666210120100448 PMID: 33494694
- Mancardi, D.; Mezzanotte, M.; Arrigo, E.; Barinotti, A.; Roetto, A. Iron overload, oxidative stress, and ferroptosis in the failing heart and liver. Antioxidants, 2021, 10(12), 1864. doi: 10.3390/antiox10121864 PMID: 34942967
- Shaghaghi, Z.; Farzipour, S.; Jalali, F.; Alvandi, M. Ferroptosis inhibitors as new therapeutic insights into radiation-induced heart disease. Cardiovasc. Hematol. Agents Med. Chem., 2023, 21(1), 2-9. doi: 10.2174/1871525720666220713101736 PMID: 35838214
- Kulik, L.; El-Serag, H.B. Epidemiology and management of hepatocellular carcinoma. Gastroenterology, 2019, 156(2), 477-491.e1. doi: 10.1053/j.gastro.2018.08.065 PMID: 30367835
- Nie, Q.; Hu, Y.; Yu, X.; Li, X.; Fang, X. Induction and application of ferroptosis in cancer therapy. Cancer Cell Int., 2022, 22(1), 12. doi: 10.1186/s12935-021-02366-0 PMID: 34996454
- Clemente, S.M.; Martínez-Costa, O.H.; Monsalve, M.; Samhan-Arias, A.K. Targeting lipid peroxidation for cancer treatment. Molecules, 2020, 25(21), 5144. doi: 10.3390/molecules25215144 PMID: 33167334
- Lee, J.J.; Chang-Chien, G.P.; Lin, S.; Hsiao, Y.T.; Ke, M.C.; Chen, A.; Lin, T.K. 5-Lipoxygenase inhibition protects retinal pigment epithelium from sodium iodate-induced ferroptosis and prevents retinal degeneration. Oxid. Med. Cell. Longev., 2022, 2022, 1-21. doi: 10.1155/2022/1792894 PMID: 35251467
- Farzipour, S.; Shaghaghi, Z.; Motieian, S.; Alvandi, M.; Yazdi, A.; Asadzadeh, B.; Abbasi, S. Ferroptosis inhibitors as potential new therapeutic targets for cardiovascular disease. Mini Rev. Med. Chem., 2022, 22(17), 2271-2286. doi: 10.2174/1389557522666220218123404 PMID: 35184711
- Tu, H.; Tang, L.J.; Luo, X.J.; Ai, K.L.; Peng, J. Insights into the novel function of system Xc- in regulated cell death. Eur. Rev. Med. Pharmacol. Sci., 2021, 25(3), 1650-1662. doi: 10.26355/eurrev_202102_24876 PMID: 33629335
- Li, F.J.; Long, H.Z.; Zhou, Z.W.; Luo, H.Y.; Xu, S.G.; Gao, L.C. System Xc−/GSH/GPX4 axis: An important antioxidant system for the ferroptosis in drug-resistant solid tumor therapy. Front. Pharmacol., 2022, 13, 910292. doi: 10.3389/fphar.2022.910292 PMID: 36105219
- Sodani, K.; Patel, A.; Kathawala, R.J.; Chen, Z.S. Multidrug resistance associated proteins in multidrug resistance. Chin. J. Cancer, 2012, 31(2), 58-72. doi: 10.5732/cjc.011.10329 PMID: 22098952
- Liang, X.; You, Z.; Chen, X.; Li, J. Targeting ferroptosis in colorectal cancer. Metabolites, 2022, 12(8), 745. doi: 10.3390/metabo12080745 PMID: 36005616
- Daher, B.; Parks, S.K.; Durivault, J.; Cormerais, Y.; Baidarjad, H.; Tambutte, E. Genetic ablation of the cystine transporter xCT in PDAC cells inhibits mTORC1, growth, survival, and tumor formation via nutrient and oxidative stresses. Cancer Res., 2022, 79(15), 3877-3890. doi: 10.1158/0008-5472.CAN-18-3855
- Panieri, E.; Buha, A.; Telkoparan-Akillilar, P.; Cevik, D.; Kouretas, D.; Veskoukis, A.; Skaperda, Z.; Tsatsakis, A.; Wallace, D.; Suzen, S.; Saso, L. Potential applications of NRF2 modulators in cancer therapy. Antioxidants, 2020, 9(3), 193. doi: 10.3390/antiox9030193 PMID: 32106613
- Zhang, J.; Gao, M.; Niu, Y.; Sun, J. Identification of a novel ferroptosis inducer for gastric cancer treatment using drug repurposing strategy. Front. Mol. Biosci., 2022, 9, 860525. doi: 10.3389/fmolb.2022.860525 PMID: 35860356
- Li, J.; Cao, F.; Yin, H.; Huang, Z.; Lin, Z.; Mao, N.; Sun, B.; Wang, G. Ferroptosis: Past, present and future. Cell Death Dis., 2020, 11(2), 88. doi: 10.1038/s41419-020-2298-2 PMID: 32015325
- Bao, Z.; Hua, L.; Ye, Y.; Wang, D.; Li, C.; Xie, Q.; Wakimoto, H.; Gong, Y.; Ji, J. MEF2C silencing downregulates NF2 and E-cadherin and enhances Erastin-induced ferroptosis in meningioma. Neuro-oncol., 2021, 23(12), 2014-2027. doi: 10.1093/neuonc/noab114 PMID: 33984142
- Li, R.; Guiney, L.M.; Chang, C.H.; Mansukhani, N.D.; Ji, Z.; Wang, X.; Liao, Y.P.; Jiang, W.; Sun, B.; Hersam, M.C.; Nel, A.E.; Xia, T. Surface oxidation of graphene oxide determines membrane damage, lipid peroxidation, and cytotoxicity in macrophages in a pulmonary toxicity model. ACS Nano, 2018, 12(2), 1390-1402. doi: 10.1021/acsnano.7b07737 PMID: 29328670
- Zhang, X.; Ma, Y.; Wan, J.; Yuan, J.; Wang, D.; Wang, W.; Sun, X.; Meng, Q. Biomimetic nanomaterials triggered ferroptosis for cancer theranostics. Front Chem., 2021, 9, 768248. doi: 10.3389/fchem.2021.768248 PMID: 34869212
- Portilla, Y.; Mulens-Arias, V.; Paradela, A.; Ramos-Fernández, A.; Pérez-Yagüe, S.; Morales, M.P.; Barber, D.F. The surface coating of iron oxide nanoparticles drives their intracellular trafficking and degradation in endolysosomes differently depending on the cell type. Biomaterials, 2022, 281, 121365. doi: 10.1016/j.biomaterials.2022.121365 PMID: 35038611
- Wang, J.; Sui, L.; Huang, J.; Miao, L.; Nie, Y.; Wang, K.; Yang, Z.; Huang, Q.; Gong, X.; Nan, Y.; Ai, K. MoS2-based nanocomposites for cancer diagnosis and therapy. Bioact. Mater., 2021, 6(11), 4209-4242. doi: 10.1016/j.bioactmat.2021.04.021 PMID: 33997503
- Zheng, H.; Jiang, J.; Xu, S.; Liu, W.; Xie, Q.; Cai, X.; Zhang, J.; Liu, S.; Li, R. Nanoparticle induced ferroptosis: detection methods, mechanisms and applications. Nanoscale, 2021, 13(4), 2266-2285. doi: 10.1039/D0NR08478F PMID: 33480938
- Allemailem, K.S.; Almatroudi, A.; Alrumaihi, F.; Almatroodi, S.A.; Alkurbi, M.O.; Basfar, G.T.; Rahmani, A.H.; Khan, A.A. Novel approaches of dysregulating lysosome functions in cancer cells by specific drugs and its nanoformulations: A smart approach of modern therapeutics. Int. J. Nanomed., 2021, 16, 5065-5098. doi: 10.2147/IJN.S321343 PMID: 34345172
- Wang, F.; Salvati, A.; Boya, P. Lysosome-dependent cell death and deregulated autophagy induced by amine-modified polystyrene nanoparticles. Open Biol., 2018, 8(4), 170271. doi: 10.1098/rsob.170271 PMID: 29643148
- Meyer-Schwesinger, C. Lysosome function in glomerular health and disease. Cell Tissue Res., 2021, 385(2), 371-392. doi: 10.1007/s00441-020-03375-7 PMID: 33433692
- Yuan, Z.; Liu, T.; Wang, H.; Xue, L.; Wang, J. Fatty acids metabolism: The bridge between ferroptosis and ionizing radiation. Front. Cell Dev. Biol., 2021, 9, 675617. doi: 10.3389/fcell.2021.675617 PMID: 34249928
- Zhang, D.; Cui, P.; Dai, Z.; Yang, B.; Yao, X.; Liu, Q.; Hu, Z.; Zheng, X. Tumor microenvironment responsive FePt/MoS2 nanocomposites with chemotherapy and photothermal therapy for enhancing cancer immunotherapy. Nanoscale, 2019, 11(42), 19912-19922. doi: 10.1039/C9NR05684J PMID: 31599915
- Liu, M.; Xu, Y.; Zhao, Y.; Wang, Z.; Shi, D. Hydroxyl radical-involved cancer therapy via Fenton reactions. Front. Chem. Sci. Eng., 2022, 16(3), 345-363. doi: 10.1007/s11705-021-2077-3
- Wang, F.; Franco, R.; Skotak, M.; Hu, G.; Chandra, N. Mechanical stretch exacerbates the cell death in SH-SY5Y cells exposed to paraquat: mitochondrial dysfunction and oxidative stress. Neurotoxicology, 2014, 41, 54-63. doi: 10.1016/j.neuro.2014.01.002 PMID: 24462953
- Zhao, Y.; Zhao, W.; Lim, Y.C.; Liu, T. Salinomycin-loaded gold nanoparticles for treating cancer stem cells by ferroptosis-induced cell death. Mol. Pharm., 2019, 16(6), 2532-2539. doi: 10.1021/acs.molpharmaceut.9b00132 PMID: 31009228
- Zhou, J.; Lei, M.; Peng, X.L.; Wei, D.X.; Yan, L.K. Fenton reaction induced by fe-based nanoparticles for tumor therapy. J. Biomed. Nanotechnol., 2021, 17(8), 1510-1524. doi: 10.1166/jbn.2021.3130 PMID: 34544529
- Wang, Y.; Gao, F.; Li, X.; Niu, G.; Yang, Y.; Li, H.; Jiang, Y. Tumor microenvironment-responsive fenton nanocatalysts for intensified anticancer treatment. J. Nanobiotechnology, 2022, 20(1), 69. doi: 10.1186/s12951-022-01278-z PMID: 35123493
- Sagasser, J.; Ma, B.N.; Baecker, D.; Salcher, S.; Hermann, M.; Lamprecht, J.; Angerer, S.; Obexer, P.; Kircher, B.; Gust, R. A new approach in cancer treatment: Discovery of chloridoN, N ′-disalicylidene-1,2-phenylenediamineiron(III) Complexes as Ferroptosis Inducers. J. Med. Chem., 2019, 62(17), 8053-8061. doi: 10.1021/acs.jmedchem.9b00814 PMID: 31369259
- Liang, H.; Guo, J.; Shi, Y.; Zhao, G.; Sun, S.; Sun, X. Porous yolk-shell Fe/Fe3O4 nanoparticles with controlled exposure of highly active Fe(0) for cancer therapy. Biomaterials, 2021, 268, 120530. doi: 10.1016/j.biomaterials.2020.120530 PMID: 33296795
- Huang, K.J.; Wei, Y.H.; Chiu, Y.C.; Wu, S.R.; Shieh, D.B. Assessment of zero-valent iron-based nanotherapeutics for ferroptosis induction and resensitization strategy in cancer cells. Biomater. Sci., 2019, 7(4), 1311-1322. doi: 10.1039/C8BM01525B PMID: 30734774
- Wen, J.; Chen, H.; Ren, Z.; Zhang, P.; Chen, J.; Jiang, S. Ultrasmall iron oxide nanoparticles induced ferroptosis via Beclin1/ATG5-dependent autophagy pathway. Nano Converg., 2021, 8(1), 10. doi: 10.1186/s40580-021-00260-z PMID: 33796911
- Zhao, Y.; Huang, Z.; Peng, H. Molecular mechanisms of ferroptosis and its roles in hematologic malignancies. Front. Oncol., 2021, 11, 743006. doi: 10.3389/fonc.2021.743006 PMID: 34778060
- Chen, S.; Yang, J.; Liang, Z.; Li, Z.; Xiong, W.; Fan, Q.; Shen, Z.; Liu, J.; Xu, Y. Synergistic functional nanomedicine enhances ferroptosis therapy for breast tumors by a blocking defensive redox system. ACS Appl. Mater. Interfaces, 2023, 15(2), 2705-2713. doi: 10.1021/acsami.2c19585 PMID: 36622364
- Yang, H.; Yao, X.; Liu, Y.; Shen, X.; Li, M.; Luo, Z. Ferroptosis nanomedicine: Clinical challenges and opportunities for modulating tumor metabolic and immunological landscape. ACS Nano, 2023, 17(16), 15328-15353. doi: 10.1021/acsnano.3c04632 PMID: 37573530
- Klein, S.; DellArciprete, M.L.; Wegmann, M.; Distel, L.V.R.; Neuhuber, W.; Gonzalez, M.C.; Kryschi, C. Oxidized silicon nanoparticles for radiosensitization of cancer and tissue cells. Biochem. Biophys. Res. Commun., 2013, 434(2), 217-222. doi: 10.1016/j.bbrc.2013.03.042 PMID: 23535374
- Benavides, B.S.; Valandro, S.; Cioloboc, D.; Taylor, A.B.; Schanze, K.S.; Kurtz, D.M., Jr Structure of a zinc porphyrin-substituted bacterioferritin and photophysical properties of iron reduction. Biochemistry, 2020, 59(16), 1618-1629. doi: 10.1021/acs.biochem.9b01103 PMID: 32283930
- Chu, H.; Cao, T.; Dai, G.; Liu, B.; Duan, H.; Kong, C. Recent advances in functionalized upconversion nanoparticles for light-activated tumor therapy. RSC Adv., 2021, 11, 35472-35488. doi: 10.1039/D1RA05638G
- Meng, Z.; Xue, H.; Wang, T.; Chen, B.; Dong, X.; Yang, L.; Dai, J.; Lou, X.; Xia, F. Aggregation-induced emission photosensitizer-based photodynamic therapy in cancer: From chemical to clinical. J. Nanobiotechnol., 2022, 20(1), 344. doi: 10.1186/s12951-022-01553-z PMID: 35883086
- Hu, P.; Wu, T.; Fan, W.; Chen, L.; Liu, Y.; Ni, D.; Bu, W.; Shi, J. Near infrared-assisted Fenton reaction for tumor-specific and mitochondrial DNA-targeted photochemotherapy. Biomaterials, 2017, 141, 86-95. doi: 10.1016/j.biomaterials.2017.06.035 PMID: 28668609
- Zhu, J.; Dai, P.; Liu, F.; Li, Y.; Qin, Y.; Yang, Q.; Tian, R.; Fan, A.; Medeiros, S.F.; Wang, Z.; Zhao, Y. Upconverting nanocarriers enable triggered microtubule inhibition and concurrent ferroptosis induction for selective treatment of triple-negative breast cancer. Nano Lett., 2020, 20(9), 6235-6245. doi: 10.1021/acs.nanolett.0c00502 PMID: 32804509
- Li, D.; Ren, J.; Li, J.; Zhang, Y.; Lou, Y.; Zhu, J.; Liu, P.; Chen, Y.; Yu, Z.; Zhao, L.; Zhang, L.; Chen, X.; Zhu, J.; Tao, J. Ferroptosis-apoptosis combined anti-melanoma immunotherapy with a NIR-responsive upconverting mSiO2 photodynamic platform. Chem. Eng. J., 2021, 419, 129557. doi: 10.1016/j.cej.2021.129557
- Li, J.; Zhou, Y.; Liu, J.; Yang, X.; Zhang, K.; Lei, L.; Hu, H.; Zhang, H.; Ouyang, L.; Gao, H. Metal-phenolic networks with ferroptosis to deliver NIR-responsive CO for synergistic therapy. J. Control. Release, 2022, 352, 313-327. doi: 10.1016/j.jconrel.2022.10.025 PMID: 36272661
- Liang, X.; Mu, M.; Chen, B.; Chuan, D.; Zhao, N.; Fan, R.; Tang, X.; Chen, H.; Han, B.; Guo, G. BSA-assisted synthesis of nanoreactors with dual pH and glutathione responses for ferroptosis and photodynamic synergistic therapy of colorectal cancer. Mat. Tod. Adv., 2022, 16, 100308. doi: 10.1016/j.mtadv.2022.100308
- Al Sharabati, M.; Sabouni, R.; Husseini, G.A. Biomedical applications of metal−organic frameworks for disease diagnosis and drug delivery: A review. Nanomaterials, 2022, 12(2), 277. doi: 10.3390/nano12020277 PMID: 35055294
- Sun, Y.; Zheng, L.; Yang, Y.; Qian, X.; Fu, T.; Li, X.; Yang, Z.; Yan, H.; Cui, C.; Tan, W. Metal organic framework nanocarriers for drug delivery in biomedical applications. Nano-Micro Lett., 2020, 12(1), 103. doi: 10.1007/s40820-020-00423-3 PMID: 34138099
- Dai, H.; Yan, H.; Dong, F.; Zhang, L.; Du, N.; Sun, L. Tumor-targeted biomimetic nanoplatform precisely integrates photodynamic therapy and autophagy inhibition for collaborative treatment of oral cancer. Biomater. Sci., 2022, 10, 1456-1469. doi: 10.1039/D1BM01780B
- Saeb, M.R.; Rabiee, N.; Mozafari, M.; Mostafavi, E. Metal organic frameworks (MOFs) based nanomaterials for drug delivery. Materials, 2021, 14(13), 3652. doi: 10.3390/ma14133652 PMID: 34208958
- Wan, X.; Song, L.; Pan, W.; Zhong, H.; Li, N.; Tang, B. Tumor-targeted cascade nanoreactor based on metalorganic frameworks for synergistic ferroptosisstarvation anticancer therapy. ACS Nano, 2020, 14(9), 11017-11028. doi: 10.1021/acsnano.9b07789 PMID: 32786253
- He, H.; Du, L.; Guo, H.; An, Y.; Lu, L.; Chen, Y.; Wang, Y.; Zhong, H.; Shen, J.; Wu, J.; Shuai, X. Redox responsive metal organic framework nanoparticles induces ferroptosis for cancer therapy. Small, 2020, 16(33), 2001251. doi: 10.1002/smll.202001251 PMID: 32677157
- Bao, W.; Liu, M.; Meng, J.; Liu, S.; Wang, S.; Jia, R.; Wang, Y.; Ma, G.; Wei, W.; Tian, Z. MOFs-based nanoagent enables dual mitochondrial damage in synergistic antitumor therapy via oxidative stress and calcium overload. Nat. Commun., 2021, 12(1), 6399. doi: 10.1038/s41467-021-26655-4 PMID: 34737274
- Xu, W.; Wang, T.; Qian, J.; Wang, J.; Hou, G.; Wang, Y.; Cui, X.; Suo, A.; Wu, D. Fe(II)-hydrazide coordinated all-active metal organic framework for photothermally enhanced tumor penetration and ferroptosis-apoptosis synergistic therapy. Chem. Eng. J., 2022, 437, 135311. doi: 10.1016/j.cej.2022.135311
- Pan, W.L.; Tan, Y.; Meng, W.; Huang, N.H.; Zhao, Y.B.; Yu, Z.Q.; Huang, Z.; Zhang, W.H.; Sun, B.; Chen, J.X. Microenvironment-driven sequential ferroptosis, photodynamic therapy, and chemotherapy for targeted breast cancer therapy by a cancer-cell-membrane-coated nanoscale metal-organic framework. Biomaterials, 2022, 283, 121449. doi: 10.1016/j.biomaterials.2022.121449 PMID: 35247637
- Dong, J.; Ma, K.; Pei, Y.; Pei, Z. Core shell metal organic frameworks with pH/GSH dual-responsiveness for combined chemochemodynamic therapy. Chem. Commun., 2022, 58(88), 12341-12344. doi: 10.1039/D2CC04218E PMID: 36259985
- Jasim, K.A.; Gesquiere, A.J. Ultrastable and biofunctionalizable conjugated polymer nanoparticles with encapsulated iron for ferroptosis assisted chemodynamic therapy. Mol. Pharm., 2019, 16(12), 4852-4866. doi: 10.1021/acs.molpharmaceut.9b00737 PMID: 31613630
- Li, J.; Li, J.; Pu, Y.; Li, S.; Gao, W.; He, B. PDT-enhanced ferroptosis by a polymer nanoparticle with ph-activated singlet oxygen generation and superb biocompatibility for cancer therapy. Biomacromolecules, 2021, 22(3), 1167-1176. doi: 10.1021/acs.biomac.0c01679 PMID: 33566577
- Gao, M.; Deng, J.; Liu, F.; Fan, A.; Wang, Y.; Wu, H.; Ding, D.; Kong, D.; Wang, Z.; Peer, D.; Zhao, Y. Triggered ferroptotic polymer micelles for reversing multidrug resistance to chemotherapy. Biomaterials, 2019, 223, 119486. doi: 10.1016/j.biomaterials.2019.119486 PMID: 31520887
- Zhang, Z.; Ding, Y.; Li, J.; Wang, L.; Xin, X.; Yan, J.; Wu, J.; Yuan, A.; Hu, Y. Versatile iron-vitamin K3 derivative-based nanoscale coordination polymer augments tumor ferroptotic therapy. Nano Res., 2021, 14(7), 2398-2409. doi: 10.1007/s12274-020-3241-7
- Xu, L.; Wang, J.; Wang, J.; Lu, S.Y.; Yang, Q.; Chen, C.; Yang, H.; Hong, F.; Wu, C.; Zhao, Q.; Cao, Y.; Liu, H. Polypyrrole-iron phosphate-glucose oxidase-based nanocomposite with cascade catalytic capacity for tumor synergistic apoptosis-ferroptosis therapy. Chem. Eng. J., 2022, 427, 131671. doi: 10.1016/j.cej.2021.131671
- Yu, Y.; Meng, Y.; Xu, X.; Tong, T.; He, C.; Wang, L.; Wang, K.; Zhao, M.; You, X.; Zhang, W.; Jiang, L.; Wu, J.; Zhao, M. A ferroptosis-inducing and leukemic cell-targeting drug nanocarrier formed by redox-responsive cysteine polymer for acute myeloid leukemia therapy. ACS Nano, 2023, 17(4), 3334-3345. doi: 10.1021/acsnano.2c06313 PMID: 36752654
- Ding, Y.; Wan, J.; Zhang, Z.; Wang, F.; Guo, J.; Wang, C. Localized Fe(II)-induced cytotoxic reactive oxygen species generating nanosystem for enhanced anticancer therapy. ACS Appl. Mater. Interfaces, 2018, 10(5), 4439-4449. doi: 10.1021/acsami.7b16999 PMID: 29337533
- Shen, Z.; Liu, T.; Li, Y.; Lau, J.; Yang, Z.; Fan, W.; Zhou, Z.; Shi, C.; Ke, C.; Bregadze, V.I.; Mandal, S.K.; Liu, Y.; Li, Z.; Xue, T.; Zhu, G.; Munasinghe, J.; Niu, G.; Wu, A.; Chen, X. Fenton-reaction-acceleratable magnetic nanoparticles for ferroptosis therapy of orthotopic brain tumors. ACS Nano, 2018, 12(11), 11355-11365. doi: 10.1021/acsnano.8b06201 PMID: 30375848
- Zhang, Z.; Pan, Y.; Cun, J.E.; Li, J.; Guo, Z.; Pan, Q.; Gao, W.; Pu, Y.; Luo, K.; He, B. A reactive oxygen species-replenishing coordination polymer nanomedicine disrupts redox homeostasis and induces concurrent apoptosis-ferroptosis for combinational cancer therapy. Acta Biomater., 2022, 151, 480-490. doi: 10.1016/j.actbio.2022.07.055 PMID: 35926781
- Yu, Y.; Huang, Z.; Chen, Q.; Zhang, Z.; Jiang, H.; Gu, R.; Ding, Y.; Hu, Y. Iron-based nanoscale coordination polymers synergistically induce immunogenic ferroptosis by blocking dihydrofolate reductase for cancer immunotherapy. Biomaterials, 2022, 288, 121724. doi: 10.1016/j.biomaterials.2022.121724 PMID: 36038420
- Lin, J.; Zhang, J.; Wang, K.; Guo, S.; Yang, W. Zwitterionic polymer coated sorafenib-loaded Fe3O4 composite nanoparticles induced ferroptosis for cancer therapy. J. Mater. Chem. B., 2022, 10, 5784-5795. doi: 10.1039/D2TB01242A
- Sun, X.; Yang, X.; Wang, J.; Shang, Y.; Wang, P.; Sheng, X.; Liu, X.; Sun, J.; He, Z.; Zhang, S.; Luo, C. Self-engineered lipid peroxidation nano-amplifier for ferroptosis-driven antitumor therapy. Chem. Eng. J., 2023, 451, 138991. doi: 10.1016/j.cej.2022.138991
- Bae, C.; Kim, H.; Kook, Y.M.; Lee, C.; Kim, C.; Yang, C.; Park, M.H.; Piao, Y.; Koh, W.G.; Lee, K. Induction of ferroptosis using functionalized iron-based nanoparticles for anti-cancer therapy. Mater. Today Bio, 2022, 17, 100457. doi: 10.1016/j.mtbio.2022.100457 PMID: 36388450
- Fernández-Acosta, R.; Iriarte-Mesa, C.; Alvarez-Alminaque, D.; Hassannia, B.; Wiernicki, B.; Díaz-García, A.M.; Vandenabeele, P.; Vanden, B.T.; Pardo, A.G.L. Novel iron oxide nanoparticles induce ferroptosis in a panel of cancer cell lines. Molecules, 2022, 27(13), 3970. doi: 10.3390/molecules27133970 PMID: 35807217
- Li, P.; Gao, M.; Hu, Z.; Xu, T.; Chen, J.; Ma, Y.; Li, S.; Gu, Y. Synergistic ferroptosis and macrophage re-polarization using engineering exosome-mimic M1 nanovesicles for cancer metastasis suppression. Chem. Eng. J., 2021, 409, 128217. doi: 10.1016/j.cej.2020.128217
- Jiang, Q.; Wang, K.; Zhang, X.; Ouyang, B.; Liu, H.; Pang, Z.; Yang, W. Platelet membrane-camouflaged magnetic nanoparticles for ferroptosis-enhanced cancer immunotherapy. Small, 2020, 16(22), 2001704. doi: 10.1002/smll.202001704 PMID: 32338436
- Yang, J.; Ma, S.; Xu, R.; Wei, Y.; Zhang, J.; Zuo, T.; Wang, Z.; Deng, H.; Yang, N.; Shen, Q. Smart biomimetic metal organic frameworks based on ROS-ferroptosis-glycolysis regulation for enhanced tumor chemo-immunotherapy. J. Control. Release, 2021, 334, 21-33. doi: 10.1016/j.jconrel.2021.04.013 PMID: 33872626
- Yang, R.Z.; Xu, W.N.; Zheng, H.L.; Zheng, X.F.; Li, B.; Jiang, L.S.; Jiang, S.D. Involvement of oxidative stress-induced annulus fibrosus cell and nucleus pulposus cell ferroptosis in intervertebral disc degeneration pathogenesis. J. Cell. Physiol., 2021, 236(4), 2725-2739. doi: 10.1002/jcp.30039 PMID: 32892384
- Zhu, L.; Zhong, Y.; Wu, S.; Yan, M.; Cao, Y.; Mou, N.; Wang, G.; Sun, D.; Wu, W. Cell membrane camouflaged biomimetic nanoparticles: Focusing on tumor theranostics. Mater. Today Bio, 2022, 14, 100228. doi: 10.1016/j.mtbio.2022.100228 PMID: 35265826
- Wang, S.; Li, F.; Qiao, R.; Hu, X.; Liao, H.; Chen, L.; Wu, J.; Wu, H.; Zhao, M.; Liu, J.; Chen, R.; Ma, X.; Kim, D.; Sun, J.; Davis, T.P.; Chen, C.; Tian, J.; Hyeon, T.; Ling, D. Arginine-rich manganese silicate nanobubbles as a ferroptosis-inducing agent for tumor-targeted theranostics. ACS Nano, 2018, 12(12), 12380-12392. doi: 10.1021/acsnano.8b06399 PMID: 30495919
- Xu, T.; Ma, Y.; Yuan, Q.; Hu, H.; Hu, X.; Qian, Z.; Rolle, J.K.; Gu, Y.; Li, S. Enhanced ferroptosis by oxygen-boosted phototherapy based on a 2-in-1 nanoplatform of ferrous hemoglobin for tumor synergistic therapy. ACS Nano, 2020, 14(3), 3414-3425. doi: 10.1021/acsnano.9b09426 PMID: 32155051
- Wang, X.; Wu, M.; Zhang, X.; Li, F.; Zeng, Y.; Lin, X.; Liu, X.; Liu, J. Hypoxia-responsive nanoreactors based on self-enhanced photodynamic sensitization and triggered ferroptosis for cancer synergistic therapy. J. Nanobiotechnol., 2021, 19(1), 204. doi: 10.1186/s12951-021-00952-y PMID: 34238297
- Xu, R.; Yang, J.; Qian, Y.; Deng, H.; Wang, Z.; Ma, S.; Wei, Y.; Yang, N.; Shen, Q. Ferroptosis/pyroptosis dual-inductive combinational anti-cancer therapy achieved by transferrin decorated nanoMOF. Nanoscale Horiz., 2021, 6(4), 348-356. doi: 10.1039/D0NH00674B PMID: 33687417
- Xue, C.C.; Li, M.H.; Zhao, Y.; Zhou, J.; Hu, Y.; Cai, K.Y.; Zhao, Y.; Yu, S.H.; Luo, Z. Tumor microenvironment-activatable Fe-doxorubicin preloaded amorphous CaCO3 nanoformulation triggers ferroptosis in target tumor cells. Sci. Adv., 2020, 6(18), eaax1346. doi: 10.1126/sciadv.aax1346 PMID: 32494659
- Ou, W.; Mulik, R.S.; Anwar, A.; McDonald, J.G.; He, X.; Corbin, I.R. Low-density lipoprotein docosahexaenoic acid nanoparticles induce ferroptotic cell death in hepatocellular carcinoma. Free Radic. Biol. Med., 2017, 112, 597-607. doi: 10.1016/j.freeradbiomed.2017.09.002 PMID: 28893626
- Chen, Z.; Wang, W.; Abdul Razak, S.R.; Han, T.; Ahmad, N.H.; Li, X. Ferroptosis as a potential target for cancer therapy. Cell Death Dis., 2023, 14(7), 460. doi: 10.1038/s41419-023-05930-w PMID: 37488128
- Liu, Y.; Zhu, X.; Lu, Y.; Wang, X.; Zhang, C.; Sun, H.; Ma, G. Antigen-inorganic hybrid flowers-based vaccines with enhanced room temperature stability and effective anticancer immunity. Adv. Healthc. Mater., 2019, 8(21), 1900660. doi: 10.1002/adhm.201900660 PMID: 31583853
- Liu, Y.H.; Zang, X.Y.; Wang, J.C.; Huang, S.S.; Xu, J.; Zhang, P. Diagnosis and management of immune related adverse events (irAEs) in cancer immunotherapy. Biomed. Pharmacother., 2019, 120, 109437. doi: 10.1016/j.biopha.2019.109437 PMID: 31590992
- Fu, L.H.; Hu, Y.R.; Qi, C.; He, T.; Jiang, S.; Jiang, C.; He, J.; Qu, J.; Lin, J.; Huang, P. Biodegradable manganese-doped calcium phosphate nanotheranostics for traceable cascade reaction-enhanced anti-tumor therapy. ACS Nano, 2019, 13(12), 13985-13994. doi: 10.1021/acsnano.9b05836 PMID: 31833366
- Cioloboc, D.; Kennedy, C.; Boice, E.N.; Clark, E.R.; Kurtz, D.M., Jr Trojan horse for light-triggered bifurcated production of singlet oxygen and fenton-reactive iron within cancer cells. Biomacromolecules, 2018, 19(1), 178-187. doi: 10.1021/acs.biomac.7b01433 PMID: 29192767
- Zhang, K.; Meng, X.; Yang, Z.; Cao, Y.; Cheng, Y.; Wang, D.; Lu, H.; Shi, Z.; Dong, H.; Zhang, X. Cancer cell membrane camouflaged nanoprobe for catalytic ratiometric photoacoustic imaging of MicroRNA in living mice. Adv. Mater., 2019, 31(12), 1807888. doi: 10.1002/adma.201807888 PMID: 30730070
- Yang, Z.; Du, Y.; Sun, Q.; Peng, Y.; Wang, R.; Zhou, Y.; Wang, Y.; Zhang, C.; Qi, X. Albumin-based nanotheranostic probe with hypoxia alleviating potentiates synchronous multimodal imaging and phototherapy for glioma. ACS Nano, 2020, 14(5), 6191-6212. doi: 10.1021/acsnano.0c02249 PMID: 32320600
- An, P.; Gu, D.; Gao, Z.; Fan, F.; Jiang, Y.; Sun, B. Hypoxia-augmented and photothermally enhanced ferroptotic therapy with high specificity and efficiency. J. Mater. Chem. B Mater. Biol. Med., 2020, 8(1), 78-87. doi: 10.1039/C9TB02268F PMID: 31769461
- Li, Z.; Chen, L.; Chen, C.; Zhou, Y.; Hu, D.; Yang, J.; Chen, Y.; Zhuo, W.; Mao, M.; Zhang, X.; Xu, L.; Wang, L.; Zhou, J. Targeting ferroptosis in breast cancer. Biomark. Res., 2020, 8(1), 58. doi: 10.1186/s40364-020-00230-3 PMID: 33292585
- Wang, J.; Wang, Z.; Zhong, Y.; Zou, Y.; Wang, C.; Wu, H.; Lee, A.; Yang, W.; Wang, X.; Liu, Y.; Zhang, D.; Yan, J.; Hao, M.; Zheng, M.; Chung, R.; Bai, F.; Shi, B. Central metal-derived co-assembly of biomimetic GdTPP/ZnTPP porphyrin nanocomposites for enhanced dual-modal imaging-guided photodynamic therapy. Biomaterials, 2020, 229, 119576. doi: 10.1016/j.biomaterials.2019.119576 PMID: 31704467
- Li, L.; Fu, J.; Wang, X.; Chen, Q.; Zhang, W.; Cao, Y.; Ran, H. Biomimetic "Nanoplatelets" as a targeted drug delivery platform for breast cancer theranostics. ACS Appl. Mater. Interfaces, 2021, 13(3), 3605-3621. doi: 10.1021/acsami.0c19259 PMID: 33449625
- Guan, Q.; Zhou, L.L.; Dong, Y.B. Ferroptosis in cancer therapeutics: A materials chemistry perspective. J. Mater. Chem. B Mater. Biol. Med., 2021, 9(43), 8906-8936. doi: 10.1039/D1TB01654G PMID: 34505861
- Niu, W.; Xiao, Q.; Wang, X.; Zhu, J.; Li, J.; Liang, X.; Peng, Y.; Wu, C.; Lu, R.; Pan, Y.; Luo, J.; Zhong, X.; He, H.; Rong, Z.; Fan, J.B.; Wang, Y. A biomimetic drug delivery system by integrating grapefruit extracellular vesicles and doxorubicin-loaded heparin-based nanoparticles for glioma therapy. Nano Lett., 2021, 21(3), 1484-1492. doi: 10.1021/acs.nanolett.0c04753 PMID: 33475372
- Bahmani, B.; Gong, H.; Luk, B.T.; Haushalter, K.J.; DeTeresa, E.; Previti, M.; Zhou, J.; Gao, W.; Bui, J.D.; Zhang, L.; Fang, R.H.; Zhang, J. Intratumoral immunotherapy using platelet-cloaked nanoparticles enhances antitumor immunity in solid tumors. Nat. Commun., 2021, 12(1), 1999. doi: 10.1038/s41467-021-22311-z PMID: 33790276
- Fang, X.; Wu, X.; Li, Z.; Jiang, L.; Lo, W.S.; Chen, G.; Gu, Y.; Wong, W.T. Biomimetic Anti-PD-1 Peptide-Loaded 2D FePSe 3 nanosheets for efficient photothermal and enhanced immune therapy with multimodal MR/PA/Thermal Imaging. Adv. Sci., 2021, 8(2), 2003041. doi: 10.1002/advs.202003041 PMID: 33511018
- Wang, S.; Yang, X.; Zhou, L.; Li, J.; Chen, H. 2D nanostructures beyond graphene: Preparation, biocompatibility and biodegradation behaviors. J. Mater. Chem. B Mater. Biol. Med., 2020, 8(15), 2974-2989. doi: 10.1039/C9TB02845E PMID: 32207478
- Yuan, P.; Dou, G.; Liu, T.; Guo, X.; Bai, Y.; Chu, D.; Liu, S.; Chen, X.; Jin, Y. On-demand manipulation of tumorigenic microenvironments by nano-modulator for synergistic tumor therapy. Biomaterials, 2021, 275, 120956. doi: 10.1016/j.biomaterials.2021.120956 PMID: 34146890
- Shao, F.; Wu, Y.; Tian, Z.; Liu, S. Biomimetic nanoreactor for targeted cancer starvation therapy and cascade amplificated chemotherapy. Biomaterials, 2021, 274, 120869. doi: 10.1016/j.biomaterials.2021.120869 PMID: 33984636
- Zhao, Y.; Xiao, X.; Zou, M.; Ding, B.; Xiao, H.; Wang, M.; Jiang, F.; Cheng, Z.; Ma, P.; Lin, J. Retracted: Nanozyme-initiated In Situ cascade reactions for self-amplified biocatalytic immunotherapy. Adv. Mater., 2021, 33(3), 2006363. doi: 10.1002/adma.202006363 PMID: 33283339
- Huang, S.; Le, H.; Hong, G.; Chen, G.; Zhang, F.; Lu, L.; Zhang, X.; Qiu, Y.; Wang, Z.; Zhang, Q.; Ouyang, G.; Shen, J. An all-in-one biomimetic iron-small interfering RNA nanoplatform induces ferroptosis for cancer therapy. Acta Biomater., 2022, 148, 244-257. doi: 10.1016/j.actbio.2022.06.017 PMID: 35709941
- Chen, J.; Wang, Y.; Han, L.; Wang, R.; Gong, C.; Yang, G.; Li, Z.; Gao, S.; Yuan, Y. A ferroptosis-inducing biomimetic nanocomposite for the treatment of drug-resistant prostate cancer. Mater. Today Bio, 2022, 17, 100484. doi: 10.1016/j.mtbio.2022.100484 PMID: 36388460
- Zhang, Z.; Ji, Y.; Hu, N.; Yu, Q.; Zhang, X.; Li, J.; Wu, F.; Xu, H.; Tang, Q.; Li, X. Ferroptosis-induced anticancer effect of resveratrol with a biomimetic nano-delivery system in colorectal cancer treatment. Asi. J. Pharmac. Sci., 2022, 17(5), 751-766. doi: 10.1016/j.ajps.2022.07.006 PMID: 36382309
- Liu, B.; Ji, Q.; Cheng, Y.; Liu, M.; Zhang, B.; Mei, Q.; Liu, D.; Zhou, S. Biomimetic GBM-targeted drug delivery system boosting ferroptosis for immunotherapy of orthotopic drug-resistant GBM. J. Nanobiotechnol., 2022, 20(1), 161. doi: 10.1186/s12951-022-01360-6 PMID: 35351131
- Chen, K.; Li, H.; Zhou, A.; Zhou, X.; Xu, Y.; Ge, H.; Ning, X. Cell membrane camouflaged metal oxideblack phosphorus biomimetic nanocomplex enhances photo-chemo-dynamic ferroptosis. ACS Appl. Mater. Interfaces, 2022, 14(23), 26557-26570. doi: 10.1021/acsami.2c08413 PMID: 35658416
- Zhu, M.; Wu, P.; Li, Y.; Zhang, L.; Zong, Y.; Wan, M. Synergistic therapy for orthotopic gliomas via biomimetic nanosonosensitizer-mediated sonodynamic therapy and ferroptosis. Biomater. Sci., 2022, 10(14), 3911-3923. doi: 10.1039/D2BM00562J PMID: 35699471
- Li, Q.; Su, R.; Bao, X.; Cao, K.; Du, Y.; Wang, N.; Wang, J.; Xing, F.; Yan, F.; Huang, K.; Feng, S. Glycyrrhetinic acid nanoparticles combined with ferrotherapy for improved cancer immunotherapy. Acta Biomater., 2022, 144, 109-120. doi: 10.1016/j.actbio.2022.03.030 PMID: 35314366
- Bilbao-Asensio, M.; Ruiz-de-Angulo, A.; Arguinzoniz, A.G.; Cronin, J.; Llop, J.; Zabaleta, A.; Michue-Seijas, S.; Sosnowska, D.; Arnold, J.N.; Mareque-Rivas, J.C. Redox-triggered nanomedicine via lymphatic delivery: Inhibition of melanoma growth by ferroptosis enhancement and a Pt(IV)-prodrug chemoimmunotherapy approach. Adv. Ther., 2023, 6(2), 2200179. doi: 10.1002/adtp.202200179
- He, Z.; Zhou, H.; Zhang, Y.; Du, X.; Liu, S.; Ji, J.; Yang, X.; Zhai, G. Oxygen-boosted biomimetic nanoplatform for synergetic phototherapy/ferroptosis activation and reversal of immune-suppressed tumor microenvironment. Biomaterials, 2022, 290, 121832. doi: 10.1016/j.biomaterials.2022.121832 PMID: 36228518
- Xue, C.; Zhang, H.; Wang, X.; Du, H.; Lu, L.; Fei, Y.; Li, Y.; Zhang, Y.; Li, M.; Luo, Z. Bio-inspired engineered ferritin-albumin nanocomplexes for targeted ferroptosis therapy. J. Control. Release, 2022, 351, 581-596. doi: 10.1016/j.jconrel.2022.09.051 PMID: 36181916
- Sun, Y.; Wang, Y.; Han, R.; Ren, Z.; Chen, X.; Dong, W.; Choi, S.; Liu, Q.; Wang, X. Ultrasound cascade regulation of nano-oxygen hybrids triggering ferroptosis augmented sonodynamic anticancer therapy. Nano Res., 2023, 16(5), 7280-7292. doi: 10.1007/s12274-023-5377-0
- Kim, S.E.; Zhang, L.; Ma, K.; Riegman, M.; Chen, F.; Ingold, I.; Conrad, M.; Turker, M.Z.; Gao, M.; Jiang, X.; Monette, S.; Pauliah, M.; Gonen, M.; Zanzonico, P.; Quinn, T.; Wiesner, U.; Bradbury, M.S.; Overholtzer, M. Ultrasmall nanoparticles induce ferroptosis in nutrient-deprived cancer cells and suppress tumour growth. Nat. Nanotechnol., 2016, 11(11), 977-985. doi: 10.1038/nnano.2016.164 PMID: 27668796
- Yang, J.; Gong, Y.; Sontag, D.P.; Corbin, I.; Minuk, G.Y. Effects of low-density lipoprotein docosahexaenoic acid nanoparticles on cancer stem cells isolated from human hepatoma cell lines. Mol. Biol. Rep., 2018, 45(5), 1023-1036. doi: 10.1007/s11033-018-4252-2 PMID: 30069818
- Luo, L.; Wang, H.; Tian, W.; Li, X.; Zhu, Z.; Huang, R.; Luo, H. Targeting ferroptosis-based cancer therapy using nanomaterials: Strategies and applications. Theranostics, 2021, 11(20), 9937-9952. doi: 10.7150/thno.65480 PMID: 34815796
- Zeng, Q.; Ma, X.; Song, Y.; Chen, Q.; Jiao, Q.; Zhou, L. Targeting regulated cell death in tumor nanomedicines. Theranostics, 2022, 12(2), 817-841. doi: 10.7150/thno.67932 PMID: 34976215
- Cao, Y.; Zhang, S.; Lv, Z.; Yin, N.; Zhang, H.; Song, P. An intelligent nanoplatform for orthotopic glioblastoma therapy by nonferrous ferroptosis; (51)2209227. doi: 10.1002/adfm.202209227
- Wang, W.T.; Han, C.; Sun, Y.M.; Chen, T.Q.; Chen, Y.Q. Noncoding RNAs in cancer therapy resistance and targeted drug development. J. Hematol. Oncol., 2019, 12(1), 55. doi: 10.1186/s13045-019-0748-z PMID: 31174564
- Joaquim, M.; Escobar-Henriques, M. Role of mitofusins and mitophagy in life or death decisions. Front. Cell Dev. Biol., 2020, 8, 572182. doi: 10.3389/fcell.2020.572182 PMID: 33072754
- Kang, R.; Kroemer, G.; Tang, D. The tumor suppressor protein p53 and the ferroptosis network. Free Radic. Biol. Med., 2019, 133, 162-168. doi: 10.1016/j.freeradbiomed.2018.05.074 PMID: 29800655
- Zhang, Y.; Xia, M.; Zhou, Z.; Hu, X.; Wang, J.; Zhang, M.; Li, Y.; Sun, L.; Chen, F.; Yu, H. p53 promoted ferroptosis in ovarian cancer cells treated with human serum incubated-superparamagnetic iron oxides. Int. J. Nanomed., 2021, 16, 283-296. doi: 10.2147/IJN.S282489 PMID: 33469287
- Tarangelo, A.; Magtanong, L.; Bieging-Rolett, K.T.; Li, Y.; Ye, J.; Attardi, L.D.; Dixon, S.J. p53 suppresses metabolic stress-induced ferroptosis in cancer cells. Cell Rep., 2018, 22(3), 569-575. doi: 10.1016/j.celrep.2017.12.077 PMID: 29346757
- Bersuker, K.; Hendricks, J.M.; Li, Z.; Magtanong, L.; Ford, B.; Tang, P.H.; Roberts, M.A.; Tong, B.; Maimone, T.J.; Zoncu, R.; Bassik, M.C.; Nomura, D.K.; Dixon, S.J.; Olzmann, J.A. The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis. Nature, 2019, 575(7784), 688-692. doi: 10.1038/s41586-019-1705-2 PMID: 31634900
- Minetti, G. Mevalonate pathway, selenoproteins, redox balance, immune system, COVID-19: Reasoning about connections. Med. Hypotheses, 2020, 144, 110128. doi: 10.1016/j.mehy.2020.110128 PMID: 32758903
- Shaghaghi, Z.; Alvandi, M.; Farzipour, S.; Dehbanpour, M.R.; Nosrati, S. A review of effects of atorvastatin in cancer therapy. Med. Oncol., 2022, 40(1), 27. doi: 10.1007/s12032-022-01892-9 PMID: 36459301
- Shaghaghi, Z.; Alvandi, M.; Farzipour, S.; Talebpour Amiri, F.; Dehbanpour, M. A review of applications of nanoceria in cancer. J. Maz. Univ. Med. Sci, 2022, 213, 186-200.
补充文件
