Nanotechnology Utilizing Ferroptosis Inducers in Cancer Treatment


如何引用文章

全文:

详细

Current cancer treatment options have presented numerous challenges in terms of reaching high efficacy. As a result, an immediate step must be taken to create novel therapies that can achieve more than satisfying outcomes in the fight against tumors. Ferroptosis, an emerging form of regulated cell death (RCD) that is reliant on iron and reactive oxygen species, has garnered significant attention in the field of cancer therapy. Ferroptosis has been reported to be induced by a variety of small molecule compounds known as ferroptosis inducers (FINs), as well as several licensed chemotherapy medicines. These compounds' low solubility, systemic toxicity, and limited capacity to target tumors are some of the significant limitations that have hindered their clinical effectiveness. A novel cancer therapy paradigm has been created by the hypothesis that ferroptosis induced by nanoparticles has superior preclinical properties to that induced by small drugs and can overcome apoptosis resistance. Knowing the different ideas behind the preparation of nanomaterials that target ferroptosis can be very helpful in generating new ideas. Simultaneously, more improvement in nanomaterial design is needed to make them appropriate for therapeutic treatment. This paper first discusses the fundamentals of nanomedicine-based ferroptosis to highlight the potential and characteristics of ferroptosis in the context of cancer treatment. The latest study on nanomedicine applications for ferroptosis-based anticancer therapy is then highlighted.

作者简介

Soghra Farzipour

Cardiovascular Diseases Research Center, Department of Cardiology, Heshmat Hospital, School of Medicine, Guilan University of Medical Sciences

Email: info@benthamscience.net

Fatemeh Jalali Zefrei

Cardiovascular Diseases Research Center, Department of Cardiology, Heshmat Hospital, School of Medicine, Guilan University of Medical Sciences

Email: info@benthamscience.net

Saeed Bahadorikhalili

Department of Electronic Engineering, Universitat Rovira i Virgili

Email: info@benthamscience.net

Maryam Alvandi

Cardiovascular Research Center, Hamadan University of Medical Sciences

Email: info@benthamscience.net

Arsalan Salari

Cardiovascular Diseases Research Center, Department of Cardiology, Heshmat Hospital, School of Medicine,, Guilan University of Medical Sciences,

Email: info@benthamscience.net

Zahra Shaghaghi

Cardiovascular Research Center, Hamadan University of Medical Sciences

编辑信件的主要联系方式.
Email: info@benthamscience.net

参考

  1. Miller, K.D.; Nogueira, L.; Mariotto, A.B.; Rowland, J.H.; Yabroff, K.R.; Alfano, C.M.; Jemal, A.; Kramer, J.L.; Siegel, R.L. Cancer treatment and survivorship statistics, 2019. CA Cancer J. Clin., 2019, 69(5), 363-385. doi: 10.3322/caac.21565 PMID: 31184787
  2. Zhang, C.; Liu, X.; Jin, S.; Chen, Y.; Guo, R. Ferroptosis in cancer therapy: A novel approach to reversing drug resistance. Mol. Cancer, 2022, 21(1), 47. doi: 10.1186/s12943-022-01530-y PMID: 35151318
  3. Hosseinimehr, S.J.; Allahgholipour, S.Z.; Farzipour, S.; Ghasemi, A.; Asgarian-Omran, H. The radiosensitizing effect of olanzapine as an antipsychotic medication on glioblastoma cell. Curr. Radiopharm., 2022, 15(1), 50-55. doi: 10.2174/1874471014666210120100448 PMID: 33494694
  4. Mancardi, D.; Mezzanotte, M.; Arrigo, E.; Barinotti, A.; Roetto, A. Iron overload, oxidative stress, and ferroptosis in the failing heart and liver. Antioxidants, 2021, 10(12), 1864. doi: 10.3390/antiox10121864 PMID: 34942967
  5. Shaghaghi, Z.; Farzipour, S.; Jalali, F.; Alvandi, M. Ferroptosis inhibitors as new therapeutic insights into radiation-induced heart disease. Cardiovasc. Hematol. Agents Med. Chem., 2023, 21(1), 2-9. doi: 10.2174/1871525720666220713101736 PMID: 35838214
  6. Kulik, L.; El-Serag, H.B. Epidemiology and management of hepatocellular carcinoma. Gastroenterology, 2019, 156(2), 477-491.e1. doi: 10.1053/j.gastro.2018.08.065 PMID: 30367835
  7. Nie, Q.; Hu, Y.; Yu, X.; Li, X.; Fang, X. Induction and application of ferroptosis in cancer therapy. Cancer Cell Int., 2022, 22(1), 12. doi: 10.1186/s12935-021-02366-0 PMID: 34996454
  8. Clemente, S.M.; Martínez-Costa, O.H.; Monsalve, M.; Samhan-Arias, A.K. Targeting lipid peroxidation for cancer treatment. Molecules, 2020, 25(21), 5144. doi: 10.3390/molecules25215144 PMID: 33167334
  9. Lee, J.J.; Chang-Chien, G.P.; Lin, S.; Hsiao, Y.T.; Ke, M.C.; Chen, A.; Lin, T.K. 5-Lipoxygenase inhibition protects retinal pigment epithelium from sodium iodate-induced ferroptosis and prevents retinal degeneration. Oxid. Med. Cell. Longev., 2022, 2022, 1-21. doi: 10.1155/2022/1792894 PMID: 35251467
  10. Farzipour, S.; Shaghaghi, Z.; Motieian, S.; Alvandi, M.; Yazdi, A.; Asadzadeh, B.; Abbasi, S. Ferroptosis inhibitors as potential new therapeutic targets for cardiovascular disease. Mini Rev. Med. Chem., 2022, 22(17), 2271-2286. doi: 10.2174/1389557522666220218123404 PMID: 35184711
  11. Tu, H.; Tang, L.J.; Luo, X.J.; Ai, K.L.; Peng, J. Insights into the novel function of system Xc- in regulated cell death. Eur. Rev. Med. Pharmacol. Sci., 2021, 25(3), 1650-1662. doi: 10.26355/eurrev_202102_24876 PMID: 33629335
  12. Li, F.J.; Long, H.Z.; Zhou, Z.W.; Luo, H.Y.; Xu, S.G.; Gao, L.C. System Xc−/GSH/GPX4 axis: An important antioxidant system for the ferroptosis in drug-resistant solid tumor therapy. Front. Pharmacol., 2022, 13, 910292. doi: 10.3389/fphar.2022.910292 PMID: 36105219
  13. Sodani, K.; Patel, A.; Kathawala, R.J.; Chen, Z.S. Multidrug resistance associated proteins in multidrug resistance. Chin. J. Cancer, 2012, 31(2), 58-72. doi: 10.5732/cjc.011.10329 PMID: 22098952
  14. Liang, X.; You, Z.; Chen, X.; Li, J. Targeting ferroptosis in colorectal cancer. Metabolites, 2022, 12(8), 745. doi: 10.3390/metabo12080745 PMID: 36005616
  15. Daher, B.; Parks, S.K.; Durivault, J.; Cormerais, Y.; Baidarjad, H.; Tambutte, E. Genetic ablation of the cystine transporter xCT in PDAC cells inhibits mTORC1, growth, survival, and tumor formation via nutrient and oxidative stresses. Cancer Res., 2022, 79(15), 3877-3890. doi: 10.1158/0008-5472.CAN-18-3855
  16. Panieri, E.; Buha, A.; Telkoparan-Akillilar, P.; Cevik, D.; Kouretas, D.; Veskoukis, A.; Skaperda, Z.; Tsatsakis, A.; Wallace, D.; Suzen, S.; Saso, L. Potential applications of NRF2 modulators in cancer therapy. Antioxidants, 2020, 9(3), 193. doi: 10.3390/antiox9030193 PMID: 32106613
  17. Zhang, J.; Gao, M.; Niu, Y.; Sun, J. Identification of a novel ferroptosis inducer for gastric cancer treatment using drug repurposing strategy. Front. Mol. Biosci., 2022, 9, 860525. doi: 10.3389/fmolb.2022.860525 PMID: 35860356
  18. Li, J.; Cao, F.; Yin, H.; Huang, Z.; Lin, Z.; Mao, N.; Sun, B.; Wang, G. Ferroptosis: Past, present and future. Cell Death Dis., 2020, 11(2), 88. doi: 10.1038/s41419-020-2298-2 PMID: 32015325
  19. Bao, Z.; Hua, L.; Ye, Y.; Wang, D.; Li, C.; Xie, Q.; Wakimoto, H.; Gong, Y.; Ji, J. MEF2C silencing downregulates NF2 and E-cadherin and enhances Erastin-induced ferroptosis in meningioma. Neuro-oncol., 2021, 23(12), 2014-2027. doi: 10.1093/neuonc/noab114 PMID: 33984142
  20. Li, R.; Guiney, L.M.; Chang, C.H.; Mansukhani, N.D.; Ji, Z.; Wang, X.; Liao, Y.P.; Jiang, W.; Sun, B.; Hersam, M.C.; Nel, A.E.; Xia, T. Surface oxidation of graphene oxide determines membrane damage, lipid peroxidation, and cytotoxicity in macrophages in a pulmonary toxicity model. ACS Nano, 2018, 12(2), 1390-1402. doi: 10.1021/acsnano.7b07737 PMID: 29328670
  21. Zhang, X.; Ma, Y.; Wan, J.; Yuan, J.; Wang, D.; Wang, W.; Sun, X.; Meng, Q. Biomimetic nanomaterials triggered ferroptosis for cancer theranostics. Front Chem., 2021, 9, 768248. doi: 10.3389/fchem.2021.768248 PMID: 34869212
  22. Portilla, Y.; Mulens-Arias, V.; Paradela, A.; Ramos-Fernández, A.; Pérez-Yagüe, S.; Morales, M.P.; Barber, D.F. The surface coating of iron oxide nanoparticles drives their intracellular trafficking and degradation in endolysosomes differently depending on the cell type. Biomaterials, 2022, 281, 121365. doi: 10.1016/j.biomaterials.2022.121365 PMID: 35038611
  23. Wang, J.; Sui, L.; Huang, J.; Miao, L.; Nie, Y.; Wang, K.; Yang, Z.; Huang, Q.; Gong, X.; Nan, Y.; Ai, K. MoS2-based nanocomposites for cancer diagnosis and therapy. Bioact. Mater., 2021, 6(11), 4209-4242. doi: 10.1016/j.bioactmat.2021.04.021 PMID: 33997503
  24. Zheng, H.; Jiang, J.; Xu, S.; Liu, W.; Xie, Q.; Cai, X.; Zhang, J.; Liu, S.; Li, R. Nanoparticle induced ferroptosis: detection methods, mechanisms and applications. Nanoscale, 2021, 13(4), 2266-2285. doi: 10.1039/D0NR08478F PMID: 33480938
  25. Allemailem, K.S.; Almatroudi, A.; Alrumaihi, F.; Almatroodi, S.A.; Alkurbi, M.O.; Basfar, G.T.; Rahmani, A.H.; Khan, A.A. Novel approaches of dysregulating lysosome functions in cancer cells by specific drugs and its nanoformulations: A smart approach of modern therapeutics. Int. J. Nanomed., 2021, 16, 5065-5098. doi: 10.2147/IJN.S321343 PMID: 34345172
  26. Wang, F.; Salvati, A.; Boya, P. Lysosome-dependent cell death and deregulated autophagy induced by amine-modified polystyrene nanoparticles. Open Biol., 2018, 8(4), 170271. doi: 10.1098/rsob.170271 PMID: 29643148
  27. Meyer-Schwesinger, C. Lysosome function in glomerular health and disease. Cell Tissue Res., 2021, 385(2), 371-392. doi: 10.1007/s00441-020-03375-7 PMID: 33433692
  28. Yuan, Z.; Liu, T.; Wang, H.; Xue, L.; Wang, J. Fatty acids metabolism: The bridge between ferroptosis and ionizing radiation. Front. Cell Dev. Biol., 2021, 9, 675617. doi: 10.3389/fcell.2021.675617 PMID: 34249928
  29. Zhang, D.; Cui, P.; Dai, Z.; Yang, B.; Yao, X.; Liu, Q.; Hu, Z.; Zheng, X. Tumor microenvironment responsive FePt/MoS2 nanocomposites with chemotherapy and photothermal therapy for enhancing cancer immunotherapy. Nanoscale, 2019, 11(42), 19912-19922. doi: 10.1039/C9NR05684J PMID: 31599915
  30. Liu, M.; Xu, Y.; Zhao, Y.; Wang, Z.; Shi, D. Hydroxyl radical-involved cancer therapy via Fenton reactions. Front. Chem. Sci. Eng., 2022, 16(3), 345-363. doi: 10.1007/s11705-021-2077-3
  31. Wang, F.; Franco, R.; Skotak, M.; Hu, G.; Chandra, N. Mechanical stretch exacerbates the cell death in SH-SY5Y cells exposed to paraquat: mitochondrial dysfunction and oxidative stress. Neurotoxicology, 2014, 41, 54-63. doi: 10.1016/j.neuro.2014.01.002 PMID: 24462953
  32. Zhao, Y.; Zhao, W.; Lim, Y.C.; Liu, T. Salinomycin-loaded gold nanoparticles for treating cancer stem cells by ferroptosis-induced cell death. Mol. Pharm., 2019, 16(6), 2532-2539. doi: 10.1021/acs.molpharmaceut.9b00132 PMID: 31009228
  33. Zhou, J.; Lei, M.; Peng, X.L.; Wei, D.X.; Yan, L.K. Fenton reaction induced by fe-based nanoparticles for tumor therapy. J. Biomed. Nanotechnol., 2021, 17(8), 1510-1524. doi: 10.1166/jbn.2021.3130 PMID: 34544529
  34. Wang, Y.; Gao, F.; Li, X.; Niu, G.; Yang, Y.; Li, H.; Jiang, Y. Tumor microenvironment-responsive fenton nanocatalysts for intensified anticancer treatment. J. Nanobiotechnology, 2022, 20(1), 69. doi: 10.1186/s12951-022-01278-z PMID: 35123493
  35. Sagasser, J.; Ma, B.N.; Baecker, D.; Salcher, S.; Hermann, M.; Lamprecht, J.; Angerer, S.; Obexer, P.; Kircher, B.; Gust, R. A new approach in cancer treatment: Discovery of chloridoN, N ′-disalicylidene-1,2-phenylenediamineiron(III) Complexes as Ferroptosis Inducers. J. Med. Chem., 2019, 62(17), 8053-8061. doi: 10.1021/acs.jmedchem.9b00814 PMID: 31369259
  36. Liang, H.; Guo, J.; Shi, Y.; Zhao, G.; Sun, S.; Sun, X. Porous yolk-shell Fe/Fe3O4 nanoparticles with controlled exposure of highly active Fe(0) for cancer therapy. Biomaterials, 2021, 268, 120530. doi: 10.1016/j.biomaterials.2020.120530 PMID: 33296795
  37. Huang, K.J.; Wei, Y.H.; Chiu, Y.C.; Wu, S.R.; Shieh, D.B. Assessment of zero-valent iron-based nanotherapeutics for ferroptosis induction and resensitization strategy in cancer cells. Biomater. Sci., 2019, 7(4), 1311-1322. doi: 10.1039/C8BM01525B PMID: 30734774
  38. Wen, J.; Chen, H.; Ren, Z.; Zhang, P.; Chen, J.; Jiang, S. Ultrasmall iron oxide nanoparticles induced ferroptosis via Beclin1/ATG5-dependent autophagy pathway. Nano Converg., 2021, 8(1), 10. doi: 10.1186/s40580-021-00260-z PMID: 33796911
  39. Zhao, Y.; Huang, Z.; Peng, H. Molecular mechanisms of ferroptosis and its roles in hematologic malignancies. Front. Oncol., 2021, 11, 743006. doi: 10.3389/fonc.2021.743006 PMID: 34778060
  40. Chen, S.; Yang, J.; Liang, Z.; Li, Z.; Xiong, W.; Fan, Q.; Shen, Z.; Liu, J.; Xu, Y. Synergistic functional nanomedicine enhances ferroptosis therapy for breast tumors by a blocking defensive redox system. ACS Appl. Mater. Interfaces, 2023, 15(2), 2705-2713. doi: 10.1021/acsami.2c19585 PMID: 36622364
  41. Yang, H.; Yao, X.; Liu, Y.; Shen, X.; Li, M.; Luo, Z. Ferroptosis nanomedicine: Clinical challenges and opportunities for modulating tumor metabolic and immunological landscape. ACS Nano, 2023, 17(16), 15328-15353. doi: 10.1021/acsnano.3c04632 PMID: 37573530
  42. Klein, S.; Dell’Arciprete, M.L.; Wegmann, M.; Distel, L.V.R.; Neuhuber, W.; Gonzalez, M.C.; Kryschi, C. Oxidized silicon nanoparticles for radiosensitization of cancer and tissue cells. Biochem. Biophys. Res. Commun., 2013, 434(2), 217-222. doi: 10.1016/j.bbrc.2013.03.042 PMID: 23535374
  43. Benavides, B.S.; Valandro, S.; Cioloboc, D.; Taylor, A.B.; Schanze, K.S.; Kurtz, D.M., Jr Structure of a zinc porphyrin-substituted bacterioferritin and photophysical properties of iron reduction. Biochemistry, 2020, 59(16), 1618-1629. doi: 10.1021/acs.biochem.9b01103 PMID: 32283930
  44. Chu, H.; Cao, T.; Dai, G.; Liu, B.; Duan, H.; Kong, C. Recent advances in functionalized upconversion nanoparticles for light-activated tumor therapy. RSC Adv., 2021, 11, 35472-35488. doi: 10.1039/D1RA05638G
  45. Meng, Z.; Xue, H.; Wang, T.; Chen, B.; Dong, X.; Yang, L.; Dai, J.; Lou, X.; Xia, F. Aggregation-induced emission photosensitizer-based photodynamic therapy in cancer: From chemical to clinical. J. Nanobiotechnol., 2022, 20(1), 344. doi: 10.1186/s12951-022-01553-z PMID: 35883086
  46. Hu, P.; Wu, T.; Fan, W.; Chen, L.; Liu, Y.; Ni, D.; Bu, W.; Shi, J. Near infrared-assisted Fenton reaction for tumor-specific and mitochondrial DNA-targeted photochemotherapy. Biomaterials, 2017, 141, 86-95. doi: 10.1016/j.biomaterials.2017.06.035 PMID: 28668609
  47. Zhu, J.; Dai, P.; Liu, F.; Li, Y.; Qin, Y.; Yang, Q.; Tian, R.; Fan, A.; Medeiros, S.F.; Wang, Z.; Zhao, Y. Upconverting nanocarriers enable triggered microtubule inhibition and concurrent ferroptosis induction for selective treatment of triple-negative breast cancer. Nano Lett., 2020, 20(9), 6235-6245. doi: 10.1021/acs.nanolett.0c00502 PMID: 32804509
  48. Li, D.; Ren, J.; Li, J.; Zhang, Y.; Lou, Y.; Zhu, J.; Liu, P.; Chen, Y.; Yu, Z.; Zhao, L.; Zhang, L.; Chen, X.; Zhu, J.; Tao, J. Ferroptosis-apoptosis combined anti-melanoma immunotherapy with a NIR-responsive upconverting mSiO2 photodynamic platform. Chem. Eng. J., 2021, 419, 129557. doi: 10.1016/j.cej.2021.129557
  49. Li, J.; Zhou, Y.; Liu, J.; Yang, X.; Zhang, K.; Lei, L.; Hu, H.; Zhang, H.; Ouyang, L.; Gao, H. Metal-phenolic networks with ferroptosis to deliver NIR-responsive CO for synergistic therapy. J. Control. Release, 2022, 352, 313-327. doi: 10.1016/j.jconrel.2022.10.025 PMID: 36272661
  50. Liang, X.; Mu, M.; Chen, B.; Chuan, D.; Zhao, N.; Fan, R.; Tang, X.; Chen, H.; Han, B.; Guo, G. BSA-assisted synthesis of nanoreactors with dual pH and glutathione responses for ferroptosis and photodynamic synergistic therapy of colorectal cancer. Mat. Tod. Adv., 2022, 16, 100308. doi: 10.1016/j.mtadv.2022.100308
  51. Al Sharabati, M.; Sabouni, R.; Husseini, G.A. Biomedical applications of metal−organic frameworks for disease diagnosis and drug delivery: A review. Nanomaterials, 2022, 12(2), 277. doi: 10.3390/nano12020277 PMID: 35055294
  52. Sun, Y.; Zheng, L.; Yang, Y.; Qian, X.; Fu, T.; Li, X.; Yang, Z.; Yan, H.; Cui, C.; Tan, W. Metal organic framework nanocarriers for drug delivery in biomedical applications. Nano-Micro Lett., 2020, 12(1), 103. doi: 10.1007/s40820-020-00423-3 PMID: 34138099
  53. Dai, H.; Yan, H.; Dong, F.; Zhang, L.; Du, N.; Sun, L. Tumor-targeted biomimetic nanoplatform precisely integrates photodynamic therapy and autophagy inhibition for collaborative treatment of oral cancer. Biomater. Sci., 2022, 10, 1456-1469. doi: 10.1039/D1BM01780B
  54. Saeb, M.R.; Rabiee, N.; Mozafari, M.; Mostafavi, E. Metal organic frameworks (MOFs) based nanomaterials for drug delivery. Materials, 2021, 14(13), 3652. doi: 10.3390/ma14133652 PMID: 34208958
  55. Wan, X.; Song, L.; Pan, W.; Zhong, H.; Li, N.; Tang, B. Tumor-targeted cascade nanoreactor based on metal–organic frameworks for synergistic ferroptosis–starvation anticancer therapy. ACS Nano, 2020, 14(9), 11017-11028. doi: 10.1021/acsnano.9b07789 PMID: 32786253
  56. He, H.; Du, L.; Guo, H.; An, Y.; Lu, L.; Chen, Y.; Wang, Y.; Zhong, H.; Shen, J.; Wu, J.; Shuai, X. Redox responsive metal organic framework nanoparticles induces ferroptosis for cancer therapy. Small, 2020, 16(33), 2001251. doi: 10.1002/smll.202001251 PMID: 32677157
  57. Bao, W.; Liu, M.; Meng, J.; Liu, S.; Wang, S.; Jia, R.; Wang, Y.; Ma, G.; Wei, W.; Tian, Z. MOFs-based nanoagent enables dual mitochondrial damage in synergistic antitumor therapy via oxidative stress and calcium overload. Nat. Commun., 2021, 12(1), 6399. doi: 10.1038/s41467-021-26655-4 PMID: 34737274
  58. Xu, W.; Wang, T.; Qian, J.; Wang, J.; Hou, G.; Wang, Y.; Cui, X.; Suo, A.; Wu, D. Fe(II)-hydrazide coordinated all-active metal organic framework for photothermally enhanced tumor penetration and ferroptosis-apoptosis synergistic therapy. Chem. Eng. J., 2022, 437, 135311. doi: 10.1016/j.cej.2022.135311
  59. Pan, W.L.; Tan, Y.; Meng, W.; Huang, N.H.; Zhao, Y.B.; Yu, Z.Q.; Huang, Z.; Zhang, W.H.; Sun, B.; Chen, J.X. Microenvironment-driven sequential ferroptosis, photodynamic therapy, and chemotherapy for targeted breast cancer therapy by a cancer-cell-membrane-coated nanoscale metal-organic framework. Biomaterials, 2022, 283, 121449. doi: 10.1016/j.biomaterials.2022.121449 PMID: 35247637
  60. Dong, J.; Ma, K.; Pei, Y.; Pei, Z. Core shell metal organic frameworks with pH/GSH dual-responsiveness for combined chemo–chemodynamic therapy. Chem. Commun., 2022, 58(88), 12341-12344. doi: 10.1039/D2CC04218E PMID: 36259985
  61. Jasim, K.A.; Gesquiere, A.J. Ultrastable and biofunctionalizable conjugated polymer nanoparticles with encapsulated iron for ferroptosis assisted chemodynamic therapy. Mol. Pharm., 2019, 16(12), 4852-4866. doi: 10.1021/acs.molpharmaceut.9b00737 PMID: 31613630
  62. Li, J.; Li, J.; Pu, Y.; Li, S.; Gao, W.; He, B. PDT-enhanced ferroptosis by a polymer nanoparticle with ph-activated singlet oxygen generation and superb biocompatibility for cancer therapy. Biomacromolecules, 2021, 22(3), 1167-1176. doi: 10.1021/acs.biomac.0c01679 PMID: 33566577
  63. Gao, M.; Deng, J.; Liu, F.; Fan, A.; Wang, Y.; Wu, H.; Ding, D.; Kong, D.; Wang, Z.; Peer, D.; Zhao, Y. Triggered ferroptotic polymer micelles for reversing multidrug resistance to chemotherapy. Biomaterials, 2019, 223, 119486. doi: 10.1016/j.biomaterials.2019.119486 PMID: 31520887
  64. Zhang, Z.; Ding, Y.; Li, J.; Wang, L.; Xin, X.; Yan, J.; Wu, J.; Yuan, A.; Hu, Y. Versatile iron-vitamin K3 derivative-based nanoscale coordination polymer augments tumor ferroptotic therapy. Nano Res., 2021, 14(7), 2398-2409. doi: 10.1007/s12274-020-3241-7
  65. Xu, L.; Wang, J.; Wang, J.; Lu, S.Y.; Yang, Q.; Chen, C.; Yang, H.; Hong, F.; Wu, C.; Zhao, Q.; Cao, Y.; Liu, H. Polypyrrole-iron phosphate-glucose oxidase-based nanocomposite with cascade catalytic capacity for tumor synergistic apoptosis-ferroptosis therapy. Chem. Eng. J., 2022, 427, 131671. doi: 10.1016/j.cej.2021.131671
  66. Yu, Y.; Meng, Y.; Xu, X.; Tong, T.; He, C.; Wang, L.; Wang, K.; Zhao, M.; You, X.; Zhang, W.; Jiang, L.; Wu, J.; Zhao, M. A ferroptosis-inducing and leukemic cell-targeting drug nanocarrier formed by redox-responsive cysteine polymer for acute myeloid leukemia therapy. ACS Nano, 2023, 17(4), 3334-3345. doi: 10.1021/acsnano.2c06313 PMID: 36752654
  67. Ding, Y.; Wan, J.; Zhang, Z.; Wang, F.; Guo, J.; Wang, C. Localized Fe(II)-induced cytotoxic reactive oxygen species generating nanosystem for enhanced anticancer therapy. ACS Appl. Mater. Interfaces, 2018, 10(5), 4439-4449. doi: 10.1021/acsami.7b16999 PMID: 29337533
  68. Shen, Z.; Liu, T.; Li, Y.; Lau, J.; Yang, Z.; Fan, W.; Zhou, Z.; Shi, C.; Ke, C.; Bregadze, V.I.; Mandal, S.K.; Liu, Y.; Li, Z.; Xue, T.; Zhu, G.; Munasinghe, J.; Niu, G.; Wu, A.; Chen, X. Fenton-reaction-acceleratable magnetic nanoparticles for ferroptosis therapy of orthotopic brain tumors. ACS Nano, 2018, 12(11), 11355-11365. doi: 10.1021/acsnano.8b06201 PMID: 30375848
  69. Zhang, Z.; Pan, Y.; Cun, J.E.; Li, J.; Guo, Z.; Pan, Q.; Gao, W.; Pu, Y.; Luo, K.; He, B. A reactive oxygen species-replenishing coordination polymer nanomedicine disrupts redox homeostasis and induces concurrent apoptosis-ferroptosis for combinational cancer therapy. Acta Biomater., 2022, 151, 480-490. doi: 10.1016/j.actbio.2022.07.055 PMID: 35926781
  70. Yu, Y.; Huang, Z.; Chen, Q.; Zhang, Z.; Jiang, H.; Gu, R.; Ding, Y.; Hu, Y. Iron-based nanoscale coordination polymers synergistically induce immunogenic ferroptosis by blocking dihydrofolate reductase for cancer immunotherapy. Biomaterials, 2022, 288, 121724. doi: 10.1016/j.biomaterials.2022.121724 PMID: 36038420
  71. Lin, J.; Zhang, J.; Wang, K.; Guo, S.; Yang, W. Zwitterionic polymer coated sorafenib-loaded Fe3O4 composite nanoparticles induced ferroptosis for cancer therapy. J. Mater. Chem. B., 2022, 10, 5784-5795. doi: 10.1039/D2TB01242A
  72. Sun, X.; Yang, X.; Wang, J.; Shang, Y.; Wang, P.; Sheng, X.; Liu, X.; Sun, J.; He, Z.; Zhang, S.; Luo, C. Self-engineered lipid peroxidation nano-amplifier for ferroptosis-driven antitumor therapy. Chem. Eng. J., 2023, 451, 138991. doi: 10.1016/j.cej.2022.138991
  73. Bae, C.; Kim, H.; Kook, Y.M.; Lee, C.; Kim, C.; Yang, C.; Park, M.H.; Piao, Y.; Koh, W.G.; Lee, K. Induction of ferroptosis using functionalized iron-based nanoparticles for anti-cancer therapy. Mater. Today Bio, 2022, 17, 100457. doi: 10.1016/j.mtbio.2022.100457 PMID: 36388450
  74. Fernández-Acosta, R.; Iriarte-Mesa, C.; Alvarez-Alminaque, D.; Hassannia, B.; Wiernicki, B.; Díaz-García, A.M.; Vandenabeele, P.; Vanden, B.T.; Pardo, A.G.L. Novel iron oxide nanoparticles induce ferroptosis in a panel of cancer cell lines. Molecules, 2022, 27(13), 3970. doi: 10.3390/molecules27133970 PMID: 35807217
  75. Li, P.; Gao, M.; Hu, Z.; Xu, T.; Chen, J.; Ma, Y.; Li, S.; Gu, Y. Synergistic ferroptosis and macrophage re-polarization using engineering exosome-mimic M1 nanovesicles for cancer metastasis suppression. Chem. Eng. J., 2021, 409, 128217. doi: 10.1016/j.cej.2020.128217
  76. Jiang, Q.; Wang, K.; Zhang, X.; Ouyang, B.; Liu, H.; Pang, Z.; Yang, W. Platelet membrane-camouflaged magnetic nanoparticles for ferroptosis-enhanced cancer immunotherapy. Small, 2020, 16(22), 2001704. doi: 10.1002/smll.202001704 PMID: 32338436
  77. Yang, J.; Ma, S.; Xu, R.; Wei, Y.; Zhang, J.; Zuo, T.; Wang, Z.; Deng, H.; Yang, N.; Shen, Q. Smart biomimetic metal organic frameworks based on ROS-ferroptosis-glycolysis regulation for enhanced tumor chemo-immunotherapy. J. Control. Release, 2021, 334, 21-33. doi: 10.1016/j.jconrel.2021.04.013 PMID: 33872626
  78. Yang, R.Z.; Xu, W.N.; Zheng, H.L.; Zheng, X.F.; Li, B.; Jiang, L.S.; Jiang, S.D. Involvement of oxidative stress-induced annulus fibrosus cell and nucleus pulposus cell ferroptosis in intervertebral disc degeneration pathogenesis. J. Cell. Physiol., 2021, 236(4), 2725-2739. doi: 10.1002/jcp.30039 PMID: 32892384
  79. Zhu, L.; Zhong, Y.; Wu, S.; Yan, M.; Cao, Y.; Mou, N.; Wang, G.; Sun, D.; Wu, W. Cell membrane camouflaged biomimetic nanoparticles: Focusing on tumor theranostics. Mater. Today Bio, 2022, 14, 100228. doi: 10.1016/j.mtbio.2022.100228 PMID: 35265826
  80. Wang, S.; Li, F.; Qiao, R.; Hu, X.; Liao, H.; Chen, L.; Wu, J.; Wu, H.; Zhao, M.; Liu, J.; Chen, R.; Ma, X.; Kim, D.; Sun, J.; Davis, T.P.; Chen, C.; Tian, J.; Hyeon, T.; Ling, D. Arginine-rich manganese silicate nanobubbles as a ferroptosis-inducing agent for tumor-targeted theranostics. ACS Nano, 2018, 12(12), 12380-12392. doi: 10.1021/acsnano.8b06399 PMID: 30495919
  81. Xu, T.; Ma, Y.; Yuan, Q.; Hu, H.; Hu, X.; Qian, Z.; Rolle, J.K.; Gu, Y.; Li, S. Enhanced ferroptosis by oxygen-boosted phototherapy based on a 2-in-1 nanoplatform of ferrous hemoglobin for tumor synergistic therapy. ACS Nano, 2020, 14(3), 3414-3425. doi: 10.1021/acsnano.9b09426 PMID: 32155051
  82. Wang, X.; Wu, M.; Zhang, X.; Li, F.; Zeng, Y.; Lin, X.; Liu, X.; Liu, J. Hypoxia-responsive nanoreactors based on self-enhanced photodynamic sensitization and triggered ferroptosis for cancer synergistic therapy. J. Nanobiotechnol., 2021, 19(1), 204. doi: 10.1186/s12951-021-00952-y PMID: 34238297
  83. Xu, R.; Yang, J.; Qian, Y.; Deng, H.; Wang, Z.; Ma, S.; Wei, Y.; Yang, N.; Shen, Q. Ferroptosis/pyroptosis dual-inductive combinational anti-cancer therapy achieved by transferrin decorated nanoMOF. Nanoscale Horiz., 2021, 6(4), 348-356. doi: 10.1039/D0NH00674B PMID: 33687417
  84. Xue, C.C.; Li, M.H.; Zhao, Y.; Zhou, J.; Hu, Y.; Cai, K.Y.; Zhao, Y.; Yu, S.H.; Luo, Z. Tumor microenvironment-activatable Fe-doxorubicin preloaded amorphous CaCO3 nanoformulation triggers ferroptosis in target tumor cells. Sci. Adv., 2020, 6(18), eaax1346. doi: 10.1126/sciadv.aax1346 PMID: 32494659
  85. Ou, W.; Mulik, R.S.; Anwar, A.; McDonald, J.G.; He, X.; Corbin, I.R. Low-density lipoprotein docosahexaenoic acid nanoparticles induce ferroptotic cell death in hepatocellular carcinoma. Free Radic. Biol. Med., 2017, 112, 597-607. doi: 10.1016/j.freeradbiomed.2017.09.002 PMID: 28893626
  86. Chen, Z.; Wang, W.; Abdul Razak, S.R.; Han, T.; Ahmad, N.H.; Li, X. Ferroptosis as a potential target for cancer therapy. Cell Death Dis., 2023, 14(7), 460. doi: 10.1038/s41419-023-05930-w PMID: 37488128
  87. Liu, Y.; Zhu, X.; Lu, Y.; Wang, X.; Zhang, C.; Sun, H.; Ma, G. Antigen-inorganic hybrid flowers-based vaccines with enhanced room temperature stability and effective anticancer immunity. Adv. Healthc. Mater., 2019, 8(21), 1900660. doi: 10.1002/adhm.201900660 PMID: 31583853
  88. Liu, Y.H.; Zang, X.Y.; Wang, J.C.; Huang, S.S.; Xu, J.; Zhang, P. Diagnosis and management of immune related adverse events (irAEs) in cancer immunotherapy. Biomed. Pharmacother., 2019, 120, 109437. doi: 10.1016/j.biopha.2019.109437 PMID: 31590992
  89. Fu, L.H.; Hu, Y.R.; Qi, C.; He, T.; Jiang, S.; Jiang, C.; He, J.; Qu, J.; Lin, J.; Huang, P. Biodegradable manganese-doped calcium phosphate nanotheranostics for traceable cascade reaction-enhanced anti-tumor therapy. ACS Nano, 2019, 13(12), 13985-13994. doi: 10.1021/acsnano.9b05836 PMID: 31833366
  90. Cioloboc, D.; Kennedy, C.; Boice, E.N.; Clark, E.R.; Kurtz, D.M., Jr Trojan horse for light-triggered bifurcated production of singlet oxygen and fenton-reactive iron within cancer cells. Biomacromolecules, 2018, 19(1), 178-187. doi: 10.1021/acs.biomac.7b01433 PMID: 29192767
  91. Zhang, K.; Meng, X.; Yang, Z.; Cao, Y.; Cheng, Y.; Wang, D.; Lu, H.; Shi, Z.; Dong, H.; Zhang, X. Cancer cell membrane camouflaged nanoprobe for catalytic ratiometric photoacoustic imaging of MicroRNA in living mice. Adv. Mater., 2019, 31(12), 1807888. doi: 10.1002/adma.201807888 PMID: 30730070
  92. Yang, Z.; Du, Y.; Sun, Q.; Peng, Y.; Wang, R.; Zhou, Y.; Wang, Y.; Zhang, C.; Qi, X. Albumin-based nanotheranostic probe with hypoxia alleviating potentiates synchronous multimodal imaging and phototherapy for glioma. ACS Nano, 2020, 14(5), 6191-6212. doi: 10.1021/acsnano.0c02249 PMID: 32320600
  93. An, P.; Gu, D.; Gao, Z.; Fan, F.; Jiang, Y.; Sun, B. Hypoxia-augmented and photothermally enhanced ferroptotic therapy with high specificity and efficiency. J. Mater. Chem. B Mater. Biol. Med., 2020, 8(1), 78-87. doi: 10.1039/C9TB02268F PMID: 31769461
  94. Li, Z.; Chen, L.; Chen, C.; Zhou, Y.; Hu, D.; Yang, J.; Chen, Y.; Zhuo, W.; Mao, M.; Zhang, X.; Xu, L.; Wang, L.; Zhou, J. Targeting ferroptosis in breast cancer. Biomark. Res., 2020, 8(1), 58. doi: 10.1186/s40364-020-00230-3 PMID: 33292585
  95. Wang, J.; Wang, Z.; Zhong, Y.; Zou, Y.; Wang, C.; Wu, H.; Lee, A.; Yang, W.; Wang, X.; Liu, Y.; Zhang, D.; Yan, J.; Hao, M.; Zheng, M.; Chung, R.; Bai, F.; Shi, B. Central metal-derived co-assembly of biomimetic GdTPP/ZnTPP porphyrin nanocomposites for enhanced dual-modal imaging-guided photodynamic therapy. Biomaterials, 2020, 229, 119576. doi: 10.1016/j.biomaterials.2019.119576 PMID: 31704467
  96. Li, L.; Fu, J.; Wang, X.; Chen, Q.; Zhang, W.; Cao, Y.; Ran, H. Biomimetic "Nanoplatelets" as a targeted drug delivery platform for breast cancer theranostics. ACS Appl. Mater. Interfaces, 2021, 13(3), 3605-3621. doi: 10.1021/acsami.0c19259 PMID: 33449625
  97. Guan, Q.; Zhou, L.L.; Dong, Y.B. Ferroptosis in cancer therapeutics: A materials chemistry perspective. J. Mater. Chem. B Mater. Biol. Med., 2021, 9(43), 8906-8936. doi: 10.1039/D1TB01654G PMID: 34505861
  98. Niu, W.; Xiao, Q.; Wang, X.; Zhu, J.; Li, J.; Liang, X.; Peng, Y.; Wu, C.; Lu, R.; Pan, Y.; Luo, J.; Zhong, X.; He, H.; Rong, Z.; Fan, J.B.; Wang, Y. A biomimetic drug delivery system by integrating grapefruit extracellular vesicles and doxorubicin-loaded heparin-based nanoparticles for glioma therapy. Nano Lett., 2021, 21(3), 1484-1492. doi: 10.1021/acs.nanolett.0c04753 PMID: 33475372
  99. Bahmani, B.; Gong, H.; Luk, B.T.; Haushalter, K.J.; DeTeresa, E.; Previti, M.; Zhou, J.; Gao, W.; Bui, J.D.; Zhang, L.; Fang, R.H.; Zhang, J. Intratumoral immunotherapy using platelet-cloaked nanoparticles enhances antitumor immunity in solid tumors. Nat. Commun., 2021, 12(1), 1999. doi: 10.1038/s41467-021-22311-z PMID: 33790276
  100. Fang, X.; Wu, X.; Li, Z.; Jiang, L.; Lo, W.S.; Chen, G.; Gu, Y.; Wong, W.T. Biomimetic Anti-PD-1 Peptide-Loaded 2D FePSe 3 nanosheets for efficient photothermal and enhanced immune therapy with multimodal MR/PA/Thermal Imaging. Adv. Sci., 2021, 8(2), 2003041. doi: 10.1002/advs.202003041 PMID: 33511018
  101. Wang, S.; Yang, X.; Zhou, L.; Li, J.; Chen, H. 2D nanostructures beyond graphene: Preparation, biocompatibility and biodegradation behaviors. J. Mater. Chem. B Mater. Biol. Med., 2020, 8(15), 2974-2989. doi: 10.1039/C9TB02845E PMID: 32207478
  102. Yuan, P.; Dou, G.; Liu, T.; Guo, X.; Bai, Y.; Chu, D.; Liu, S.; Chen, X.; Jin, Y. On-demand manipulation of tumorigenic microenvironments by nano-modulator for synergistic tumor therapy. Biomaterials, 2021, 275, 120956. doi: 10.1016/j.biomaterials.2021.120956 PMID: 34146890
  103. Shao, F.; Wu, Y.; Tian, Z.; Liu, S. Biomimetic nanoreactor for targeted cancer starvation therapy and cascade amplificated chemotherapy. Biomaterials, 2021, 274, 120869. doi: 10.1016/j.biomaterials.2021.120869 PMID: 33984636
  104. Zhao, Y.; Xiao, X.; Zou, M.; Ding, B.; Xiao, H.; Wang, M.; Jiang, F.; Cheng, Z.; Ma, P.; Lin, J. Retracted: Nanozyme-initiated In Situ cascade reactions for self-amplified biocatalytic immunotherapy. Adv. Mater., 2021, 33(3), 2006363. doi: 10.1002/adma.202006363 PMID: 33283339
  105. Huang, S.; Le, H.; Hong, G.; Chen, G.; Zhang, F.; Lu, L.; Zhang, X.; Qiu, Y.; Wang, Z.; Zhang, Q.; Ouyang, G.; Shen, J. An all-in-one biomimetic iron-small interfering RNA nanoplatform induces ferroptosis for cancer therapy. Acta Biomater., 2022, 148, 244-257. doi: 10.1016/j.actbio.2022.06.017 PMID: 35709941
  106. Chen, J.; Wang, Y.; Han, L.; Wang, R.; Gong, C.; Yang, G.; Li, Z.; Gao, S.; Yuan, Y. A ferroptosis-inducing biomimetic nanocomposite for the treatment of drug-resistant prostate cancer. Mater. Today Bio, 2022, 17, 100484. doi: 10.1016/j.mtbio.2022.100484 PMID: 36388460
  107. Zhang, Z.; Ji, Y.; Hu, N.; Yu, Q.; Zhang, X.; Li, J.; Wu, F.; Xu, H.; Tang, Q.; Li, X. Ferroptosis-induced anticancer effect of resveratrol with a biomimetic nano-delivery system in colorectal cancer treatment. Asi. J. Pharmac. Sci., 2022, 17(5), 751-766. doi: 10.1016/j.ajps.2022.07.006 PMID: 36382309
  108. Liu, B.; Ji, Q.; Cheng, Y.; Liu, M.; Zhang, B.; Mei, Q.; Liu, D.; Zhou, S. Biomimetic GBM-targeted drug delivery system boosting ferroptosis for immunotherapy of orthotopic drug-resistant GBM. J. Nanobiotechnol., 2022, 20(1), 161. doi: 10.1186/s12951-022-01360-6 PMID: 35351131
  109. Chen, K.; Li, H.; Zhou, A.; Zhou, X.; Xu, Y.; Ge, H.; Ning, X. Cell membrane camouflaged metal oxide–black phosphorus biomimetic nanocomplex enhances photo-chemo-dynamic ferroptosis. ACS Appl. Mater. Interfaces, 2022, 14(23), 26557-26570. doi: 10.1021/acsami.2c08413 PMID: 35658416
  110. Zhu, M.; Wu, P.; Li, Y.; Zhang, L.; Zong, Y.; Wan, M. Synergistic therapy for orthotopic gliomas via biomimetic nanosonosensitizer-mediated sonodynamic therapy and ferroptosis. Biomater. Sci., 2022, 10(14), 3911-3923. doi: 10.1039/D2BM00562J PMID: 35699471
  111. Li, Q.; Su, R.; Bao, X.; Cao, K.; Du, Y.; Wang, N.; Wang, J.; Xing, F.; Yan, F.; Huang, K.; Feng, S. Glycyrrhetinic acid nanoparticles combined with ferrotherapy for improved cancer immunotherapy. Acta Biomater., 2022, 144, 109-120. doi: 10.1016/j.actbio.2022.03.030 PMID: 35314366
  112. Bilbao-Asensio, M.; Ruiz-de-Angulo, A.; Arguinzoniz, A.G.; Cronin, J.; Llop, J.; Zabaleta, A.; Michue-Seijas, S.; Sosnowska, D.; Arnold, J.N.; Mareque-Rivas, J.C. Redox-triggered nanomedicine via lymphatic delivery: Inhibition of melanoma growth by ferroptosis enhancement and a Pt(IV)-prodrug chemoimmunotherapy approach. Adv. Ther., 2023, 6(2), 2200179. doi: 10.1002/adtp.202200179
  113. He, Z.; Zhou, H.; Zhang, Y.; Du, X.; Liu, S.; Ji, J.; Yang, X.; Zhai, G. Oxygen-boosted biomimetic nanoplatform for synergetic phototherapy/ferroptosis activation and reversal of immune-suppressed tumor microenvironment. Biomaterials, 2022, 290, 121832. doi: 10.1016/j.biomaterials.2022.121832 PMID: 36228518
  114. Xue, C.; Zhang, H.; Wang, X.; Du, H.; Lu, L.; Fei, Y.; Li, Y.; Zhang, Y.; Li, M.; Luo, Z. Bio-inspired engineered ferritin-albumin nanocomplexes for targeted ferroptosis therapy. J. Control. Release, 2022, 351, 581-596. doi: 10.1016/j.jconrel.2022.09.051 PMID: 36181916
  115. Sun, Y.; Wang, Y.; Han, R.; Ren, Z.; Chen, X.; Dong, W.; Choi, S.; Liu, Q.; Wang, X. Ultrasound cascade regulation of nano-oxygen hybrids triggering ferroptosis augmented sonodynamic anticancer therapy. Nano Res., 2023, 16(5), 7280-7292. doi: 10.1007/s12274-023-5377-0
  116. Kim, S.E.; Zhang, L.; Ma, K.; Riegman, M.; Chen, F.; Ingold, I.; Conrad, M.; Turker, M.Z.; Gao, M.; Jiang, X.; Monette, S.; Pauliah, M.; Gonen, M.; Zanzonico, P.; Quinn, T.; Wiesner, U.; Bradbury, M.S.; Overholtzer, M. Ultrasmall nanoparticles induce ferroptosis in nutrient-deprived cancer cells and suppress tumour growth. Nat. Nanotechnol., 2016, 11(11), 977-985. doi: 10.1038/nnano.2016.164 PMID: 27668796
  117. Yang, J.; Gong, Y.; Sontag, D.P.; Corbin, I.; Minuk, G.Y. Effects of low-density lipoprotein docosahexaenoic acid nanoparticles on cancer stem cells isolated from human hepatoma cell lines. Mol. Biol. Rep., 2018, 45(5), 1023-1036. doi: 10.1007/s11033-018-4252-2 PMID: 30069818
  118. Luo, L.; Wang, H.; Tian, W.; Li, X.; Zhu, Z.; Huang, R.; Luo, H. Targeting ferroptosis-based cancer therapy using nanomaterials: Strategies and applications. Theranostics, 2021, 11(20), 9937-9952. doi: 10.7150/thno.65480 PMID: 34815796
  119. Zeng, Q.; Ma, X.; Song, Y.; Chen, Q.; Jiao, Q.; Zhou, L. Targeting regulated cell death in tumor nanomedicines. Theranostics, 2022, 12(2), 817-841. doi: 10.7150/thno.67932 PMID: 34976215
  120. Cao, Y.; Zhang, S.; Lv, Z.; Yin, N.; Zhang, H.; Song, P. An intelligent nanoplatform for orthotopic glioblastoma therapy by nonferrous ferroptosis; (51)2209227. doi: 10.1002/adfm.202209227
  121. Wang, W.T.; Han, C.; Sun, Y.M.; Chen, T.Q.; Chen, Y.Q. Noncoding RNAs in cancer therapy resistance and targeted drug development. J. Hematol. Oncol., 2019, 12(1), 55. doi: 10.1186/s13045-019-0748-z PMID: 31174564
  122. Joaquim, M.; Escobar-Henriques, M. Role of mitofusins and mitophagy in life or death decisions. Front. Cell Dev. Biol., 2020, 8, 572182. doi: 10.3389/fcell.2020.572182 PMID: 33072754
  123. Kang, R.; Kroemer, G.; Tang, D. The tumor suppressor protein p53 and the ferroptosis network. Free Radic. Biol. Med., 2019, 133, 162-168. doi: 10.1016/j.freeradbiomed.2018.05.074 PMID: 29800655
  124. Zhang, Y.; Xia, M.; Zhou, Z.; Hu, X.; Wang, J.; Zhang, M.; Li, Y.; Sun, L.; Chen, F.; Yu, H. p53 promoted ferroptosis in ovarian cancer cells treated with human serum incubated-superparamagnetic iron oxides. Int. J. Nanomed., 2021, 16, 283-296. doi: 10.2147/IJN.S282489 PMID: 33469287
  125. Tarangelo, A.; Magtanong, L.; Bieging-Rolett, K.T.; Li, Y.; Ye, J.; Attardi, L.D.; Dixon, S.J. p53 suppresses metabolic stress-induced ferroptosis in cancer cells. Cell Rep., 2018, 22(3), 569-575. doi: 10.1016/j.celrep.2017.12.077 PMID: 29346757
  126. Bersuker, K.; Hendricks, J.M.; Li, Z.; Magtanong, L.; Ford, B.; Tang, P.H.; Roberts, M.A.; Tong, B.; Maimone, T.J.; Zoncu, R.; Bassik, M.C.; Nomura, D.K.; Dixon, S.J.; Olzmann, J.A. The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis. Nature, 2019, 575(7784), 688-692. doi: 10.1038/s41586-019-1705-2 PMID: 31634900
  127. Minetti, G. Mevalonate pathway, selenoproteins, redox balance, immune system, COVID-19: Reasoning about connections. Med. Hypotheses, 2020, 144, 110128. doi: 10.1016/j.mehy.2020.110128 PMID: 32758903
  128. Shaghaghi, Z.; Alvandi, M.; Farzipour, S.; Dehbanpour, M.R.; Nosrati, S. A review of effects of atorvastatin in cancer therapy. Med. Oncol., 2022, 40(1), 27. doi: 10.1007/s12032-022-01892-9 PMID: 36459301
  129. Shaghaghi, Z.; Alvandi, M.; Farzipour, S.; Talebpour Amiri, F.; Dehbanpour, M. A review of applications of nanoceria in cancer. J. Maz. Univ. Med. Sci, 2022, 213, 186-200.

补充文件

附件文件
动作
1. JATS XML

版权所有 © Bentham Science Publishers, 2024