Potential of Nanomedicines as an Alternative for the Treatment of Colorectal Cancer - A Review
- Authors: Nicolau Costa K.1, Barros L.A.2, da Silva Soares I.L.2, Oshiro-Junior J.A.1
-
Affiliations:
- Post-graduation Program in Technological Development and Innovation in Medicines (PPgDITM), Universidade Federal da Paraíba
- , UNIFACISA
- Issue: Vol 24, No 7 (2024)
- Pages: 477-487
- Section: Oncology
- URL: https://rjsocmed.com/1871-5206/article/view/644254
- DOI: https://doi.org/10.2174/0118715206269415231128100926
- ID: 644254
Cite item
Full Text
Abstract
:Colorectal cancer is the third most common cancer and the second in cases of cancer-related death. Polytherapy generates many adverse effects, leading the patient to give up. Nanotechnology has been studied in recent years to circumvent limitations. Groups composed of polymeric, lipid, and inorganic nanoparticles are the most purpose. Thus, the objective of this work is to bring information on how nanosystems can improve the chemotherapeutic treatment for colorectal cancer. Therefore, a search in journals such as \"LILACS\", \"SciELO\" and \"PubMed/Medline\" was performed, resulting in 25,000 articles found when applied the search engines \"nanoparticle,\" \"colorectal cancer,\" \"malignant neoplasms,\" and \"chemotherapy.\" After inclusion and exclusion factors, 24 articles remained, which were used as the basis for this integrative review. The results reveal that, regardless of the choice of matrix, nanoparticles showed an increase in bioavailability of the active, increasing the half-life by up to 13 times, modified release, as well as a significant reduction in tumor size, with cell viability up to 20% lower than the free drug tested, in different colorectal cancer cell lines, such as HCT-116, HT-29, and CaCo-2. However, more in vivo and clinical studies need to be performed, regardless of the formulation of its matrix, aiming at a higher rate of safety for patients and stability of the formulations, as well as knowledge of detailed indices of its pharmacokinetics and pharmacodynamics, seeking to avoid further damage to the recipient organism.
About the authors
Kammila Nicolau Costa
Post-graduation Program in Technological Development and Innovation in Medicines (PPgDITM), Universidade Federal da Paraíba
Email: info@benthamscience.net
Larissa Alves Barros
, UNIFACISA
Email: info@benthamscience.net
Ingrid Larissa da Silva Soares
, UNIFACISA
Email: info@benthamscience.net
João Augusto Oshiro-Junior
Post-graduation Program in Technological Development and Innovation in Medicines (PPgDITM), Universidade Federal da Paraíba
Author for correspondence.
Email: info@benthamscience.net
References
- Parry, B.R.; Tan, B.K.; Parry, S.; Goh, H.S. Colorectal cancer in the young adult. Singapore Med. J., 1995, 36(3), 306-308. PMID: 8553099
- Sabir, F.; Barani, M.; Mukhtar, M.; Rahdar, A.; Cucchiarini, M.; Zafar, M.N.; Behl, T.; Bungau, S. Nanodiagnosis and nanotreatment of cardiovascular diseases: An overview. Chemosensors, 2021, 9(4), 67. doi: 10.3390/chemosensors9040067
- Montminy, E.M.; Jang, A.; Conner, M.; Karlitz, J.J. Screening for colorectal cancer. Med. Clin. North Am., 2020, 104(6), 1023-1036. doi: 10.1016/j.mcna.2020.08.004 PMID: 33099448
- Biller, L.H.; Schrag, D. Diagnosis and treatment of metastatic colorectal cancer: A review JAMA, 2021, 325(7), 669-685. doi: 10.1001/jama.2021.0106 PMID: 33591350
- Xie, Y.H.; Chen, Y.X.; Fang, J.Y. Comprehensive review of targeted therapy for colorectal cancer. Signal Transduct. Target. Ther., 2020, 5(1), 22. doi: 10.1038/s41392-020-0116-z PMID: 32296018
- Solomon, M.J.; Mahon, K.; Shannassy, S.O. Management of colorectal cancer. BMJ, 2019, 366, 145561. doi: 10.1136/bmj.l4561
- Oncoguia, I. Types of cancer: Colorectal cancer. 2022. Available from: http://www.oncoguia.org.br/conteudo/quimioterapia-para-cancer-colorretal/3229/180/ (Accessed Jul 11, 2022).
- Guo, S.; Li, Z.; Feng, J.; Xiong, W.; Yang, J.; Lu, X.; Yang, S.; Xu, Y.; Wu, A.; Shen, Z. Cycloacceleration of ferroptosis and calcicoptosis for magnetic resonance imaging-guided colorectal cancer therapy. Nano Today, 2022, 47(December), 101663. doi: 10.1016/j.nantod.2022.101663
- Smaglo, B.G. Role for neoadjuvant systemic therapy for potentially resectable pancreatic cancer. Cancers, 2023, 15(8), 2377. doi: 10.3390/cancers15082377 PMID: 37190305
- Treatment protocols for gastrointestinal tumors. 2019.
- Ministry of Health. Ambulatory Information System - Oncology, 30th ed; , 2022.
- Schirrmacher, V. From chemotherapy to biological therapy: A review of novel concepts to reduce the side effects of systemic cancer treatment. Int. J. Oncol., 2018, 54(2), 407-419. doi: 10.3892/ijo.2018.4661 PMID: 30570109
- Rejhová, A.; Opattová, A.; Čumová, A.; Slíva, D.; Vodička, P. Natural compounds and combination therapy in colorectal cancer treatment. Eur. J. Med. Chem., 2018, 144, 582-594. doi: 10.1016/j.ejmech.2017.12.039 PMID: 29289883
- Costa, K.M.N.; de Sousa, L.B.C.; de Melo, D.F.; da Silva Lima, D.P.; de Lima Damasceno, B.P.G.; Oshiro-Junior, J.A. siRNA loaded in drug delivery nanosystems as a strategy for breast cancer treatment. Interdisciplinary Cancer Res., 2023, 28(2), 1-21.
- Costa, K.M.N.; Barros, R.M.; Jorge, E.O.; Sato, M.R.; Chorilli, M.; de Lima Damasceno, B.P.G.; Nicholas, D.; Callan, J.F.; Oshiro Junior, J.A. Doxorubicin-loaded nanostructured lipid carriers functionalized with folic acid against MCF-7 breast cancer cell line. J. Nanopart. Res., 2023, 25(4), 56. doi: 10.1007/s11051-023-05704-7
- Costa, K.M.N.; Araújo, C.B.B.; Barros, A.L.S.; Sato, M.R.; Oshiro-Júnior, J.A. Nanostructured Lipid Carrier as a Strategy for the Treatment of Breast Cancer. In: Interdisciplinary Cancer Res; Springer Cham, 2022; pp. 1-35. doi: 10.1007/16833_2022_13
- Santos, K.L.M.; Nunes, A.M.A. de Mendonça y Araujo, S.E.D.; de Melo, D.F.; de Lima Damasceno, B.P.G.; Sato, M.R.; Oshiro-Junior, J.A. Photodynamic potential of hexadecafluoro zinc phthalocyanine in nanostructured lipid carriers: physicochemical characterization, drug delivery and antimicrobial effect against Candida albicans. Lasers Med. Sci., 2022, 37(8), 3183-3191. doi: 10.1007/s10103-022-03594-0 PMID: 35723829
- Hsu, J.F.; Chu, S.M.; Liao, C.C.; Wang, C.J.; Wang, Y.S.; Lai, M.Y.; Wang, H.C.; Huang, H.R.; Tsai, M.H. Nanotechnology and nanocarrier-based drug delivery as the potential therapeutic strategy for glioblastoma multiforme: An update. Cancers, 2021, 13(2), 195. doi: 10.3390/cancers13020195 PMID: 33430494
- Sun, Y.; Ma, W.; Yang, Y.; He, M.; Li, A.; Bai, L.; Yu, B.; Yu, Z. Cancer nanotechnology: Enhancing tumor cell response to chemotherapy for hepatocellular carcinoma therapy. Asian Journal of Pharmaceutical Sciences, 2019, 14(6), 581-594. doi: 10.1016/j.ajps.2019.04.005 PMID: 32104485
- Choudhury, H.; Pandey, M.; Yin, T.H.; Kaur, T.; Jia, G.W.; Tan, S.Q.L.; Weijie, H.; Yang, E.K.S.; Keat, C.G.; Bhattamishra, S.K.; Kesharwani, P.; Md, S.; Molugulu, N.; Pichika, M.R.; Gorain, B. Rising horizon in circumventing multidrug resistance in chemotherapy with nanotechnology. Mater. Sci. Eng. C, 2019, 101, 596-613. doi: 10.1016/j.msec.2019.04.005 PMID: 31029353
- Zhao, C.Y.; Cheng, R.; Yang, Z.; Tian, Z.M. Nanotechnology for cancer therapy based on chemotherapy. Molecules, 2018, 23(4), 826. doi: 10.3390/molecules23040826 PMID: 29617302
- Carvalho, M.R.; Reis, R.L.; Oliveira, J.M. Dendrimer nanoparticles for colorectal cancer applications. J. Mater. Chem. B Mater. Biol. Med., 2020, 8(6), 1128-1138. doi: 10.1039/C9TB02289A PMID: 31971528
- Hamzehzadeh, L.; Imanparast, A.; Tajbakhsh, A.; Rezaee, M.; Pasdar, A. New approaches to use nanoparticles for treatment of colorectal cancer: A brief review. Nanomedicine Res. J., 2016, 1(2), 59-68. doi: 10.7508/NMRJ.2016.02.001
- Sousa, A.R.; Oliveira, M.J.; Sarmento, B. Impact of CEA-targeting nanoparticles for drug delivery in colorectal cancer. J. Pharmacol. Exp. Ther., 2019, 370(3), 657-670. doi: 10.1124/jpet.118.254441 PMID: 30670480
- Pavitra, E.; Dariya, B.; Srivani, G.; Kang, S.M.; Alam, A.; Sudhir, P.R.; Kamal, M.A.; Raju, G.S.R.; Han, Y.K.; Lakkakula, B.V.K.S.; Nagaraju, G.P.; Huh, Y.S. Engineered nanoparticles for imaging and drug delivery in colorectal cancer. Semin. Cancer Biol., 2021, 69, 293-306. doi: 10.1016/j.semcancer.2019.06.017 PMID: 31260733
- Cabeza, L.; Perazzoli, G.; Mesas, C.; Jiménez-Luna, C.; Prados, J.; Rama, A.R.; Melguizo, C. Nanoparticles in colorectal cancer therapy: latest in vivo assays, clinical trials, and patents. AAPS Pharm. Sci. Tech., 2020, 21(5), 178. doi: 10.1208/s12249-020-01731-y PMID: 32591920
- Cisterna, B.A.; Kamaly, N.; Choi, W.I.; Tavakkoli, A.; Farokhzad, O.C.; Vilos, C. Targeted nanoparticles for colorectal cancer. Nanomedicine, 2016, 11(18), 2443-2456. doi: 10.2217/nnm-2016-0194 PMID: 27529192
- Ghorbani, F.; Kokhaei, P.; Ghorbani, M.; Eslami, M. Application of different nanoparticles in the diagnosis of colorectal cancer. Gene Rep., 2020, 21(October), 100896. doi: 10.1016/j.genrep.2020.100896
- Silvestre, A.L.P.; Oshiro-Júnior, J.A.; Garcia, C.; Turco, B.O.; da Silva Leite, J.M.; de Lima Damasceno, B.P.G.; Soares, J.C.M.; Chorilli, M. Monoclonal antibodies carried in drug delivery nanosystems as a strategy for cancer treatment. Curr. Med. Chem., 2021, 28(2), 401-418. doi: 10.2174/1875533XMTAzfNzkzy PMID: 31965938
- Oshiro-Júnior, J.A.; Rodero, C.; Hanck-Silva, G.; Sato, M.R.; Alves, R.C.; Eloy, J.O.; Chorilli, M. Stimuli-responsive drug delivery nanocarriers in the treatment of breast cancer. Curr. Med. Chem., 2020, 27(15), 2494-2513. doi: 10.2174/0929867325666181009120610 PMID: 30306849
- Kang, H.; Rho, S.; Stiles, W.R.; Hu, S.; Baek, Y.; Hwang, D.W.; Kashiwagi, S.; Kim, M.S.; Choi, H.S. Size-dependent epr effect of polymeric nanoparticles on tumor targeting. Adv. Healthc. Mater., 2020, 9(1), 1901223. doi: 10.1002/adhm.201901223 PMID: 31794153
- Zielińska, A.; Carreiró, F.; Oliveira, A.M.; Neves, A.; Pires, B.; Venkatesh, D.N.; Durazzo, A.; Lucarini, M.; Eder, P.; Silva, A.M.; Santini, A; Souto, E.B. Polymeric nanoparticles: Production, characterization, toxicology and ecotoxicology molecules, 2020, 25, 3731.
- Bhattacharya, S. Anti-EGFR-mAb and 5-fluorouracil conjugated polymeric nanoparticles for colorectal cancer. Recent Patents Anticancer Drug Discov., 2021, 16(1), 84-100. doi: 10.2174/22123970MTEyvNTYd3 PMID: 33349222
- Zumaya, A.L.V.; Rimpelová, S. tějdířová, M.; Ulbrich, P.; Vilčáková, J.; Hassouna, F. Antibody conjugated PLGA nanocarriers and superparmagnetic nanoparticles for targeted delivery of oxaliplatin to cells from colorectal carcinoma. Int. J. Mol. Sci., 2022, 23(3), 1200. doi: 10.3390/ijms23031200 PMID: 35163122
- Jena, G.K.; Patra, C.N.; Dixit, P.K. Cytotoxicity and pharmacokinetic studies of PLGA based capecitabine loaded nanoparticles. Indian J. Pharm. Educ. Res., 2020, 54(2), 349-356. doi: 10.5530/ijper.54.2.40
- Hasan-Nasab, B.; Ebrahimnejad, P.; Ebrahimi, P.; Sharifi, F.; Salili, M.; Shahlaee, F.; Nokhodchi, A. A promising targeting system to enrich irinotecan antitumor efficacy: Folic acid targeted nanoparticles. J. Drug Deliv. Sci. Technol., 2021, 63, 102543. doi: 10.1016/j.jddst.2021.102543
- Araújo, G.M.F.; Araújo, G.M.F.; Barros, A.R.A.; Barros, A.R.A.; Oshiro-Junior, J.A.; Oshiro-Junior, J.A.; Soares, L.F.; Soares, L.F.; da Rocha, L.G.; da Rocha, L.G.; de Lima, Á.A.N.; de Lima, Á.A.N.; da Silva, J.A.; da Silva, J.A.; Converti, A.; Converti, A.; Damasceno, B.P.G.L.; Damasceno, B.P.G.L. Nanoemulsions loaded with amphotericin B: Development, characterization and leishmanicidal activity. Curr. Pharm. Des., 2019, 25(14), 1616-1622. doi: 10.2174/1381612825666190705202030 PMID: 31298163
- Alves, L.P.; da Silva Oliveira, K.; da Paixão Santos, J.A.; da Silva Leite, J.M.; Rocha, B.P.; de Lucena Nogueira, P.; de Araújo Rêgo, R.I.; Oshiro-Junior, J.A.; Damasceno, B.P.G.L. A review on developments and prospects of anti-inflammatory in microemulsions. J. Drug Deliv. Sci. Technol., 2020, 60, 102008. doi: 10.1016/j.jddst.2020.102008
- Nicolau Costa, K.M.; Sato, M.R.; Barbosa, T.L.A.; Rodrigues, M.G.F.; Medeiros, A.C.D.; Damasceno, B.P.G.L.; Oshiro-Júnior, J.A. Curcumin-loaded micelles dispersed in ureasil-polyether materials for a novel sustained-release formulation. Pharmaceutics, 2021, 13(5), 675. doi: 10.3390/pharmaceutics13050675 PMID: 34066727
- de, F.; de Oliveira, C. E. Development of nanosystems containing tambjamins: Physicochemical characterization and in vitro validation in a colorectal cancer line (HCT-116); Thesis (Doctorate in Biotechnology), Federal University of Ceara, 2017, p. 153.
- Nanostructured lipid carriers containing doxorubicin, docosahexaenoic acid and α-tocopherol succinate: Formulation, characterization and evaluation of therapeutic potential against cancer; Federal University of Minas Gerais, 2020.
- Serrano, D.A.C. Nanotechnology for diagnosis and treatment of colorectal cancer; Lusophone University of Humanities and Technologies, 2021.
- Mohamed, J.M.; Alqahtani, A.; Ahmad, F.; Krishnaraju, V.; Kalpana, K. Pectin co-functionalized dual layered solid lipid nanoparticle made by soluble curcumin for the targeted potential treatment of colorectal cancer. Carbohydr. Polym., 2021, 252(2020), 117180. doi: 10.1016/j.carbpol.2020.117180
- Abel, S.D.A.; Baird, S.K. Honey is cytotoxic towards prostate cancer cells but interacts with the MTT reagent: Considerations for the choice of cell viability assay. Food Chem., 2018, 241, 70-78. doi: 10.1016/j.foodchem.2017.08.083
- Elgizawy, H.A.; Ali, A.A.; Hussein, M.A. Resveratrol: Isolation, and its nanostructured lipid carriers, inhibits cell proliferation, induces cell apoptosis in certain human cell lines carcinoma and exerts protective effect against paraquat-induced hepatotoxicity. J. Med. Food, 2021, 24(1), 89-100. doi: 10.1089/jmf.2019.0286 PMID: 32580673
- Rebouças, L.M. Nanoemulsions based on betulinic acid and linseed oil: A proposal for the treatment of colorectal carcinoma; Federal University of Ceará, 2019.
- Kumar, P.; Nagarajan, A.; Uchil, P.D. Analysis of cell viability by the lactate dehydrogenase assay. Cold Spring Harb. Protoc., 2018, 2018(6), pdb.prot095497. doi: 10.1101/pdb.prot095497 PMID: 29858337
- Preparation and characterization of liposomes containing an Ncyclohexyl- 1,2,4-oxadiazole derivative as a potential antitumor agent in colorectal cancer cell lines (HCT-116), Federal University of Ceara, 2020.
- de Oliveira, V.N.M.; dos Santos, F.G.; Ferreira, V.P.G.; Araújo, H.M.; do Ó Pessoa, C.; Nicolete, R.; de Oliveira, R.N. Focused microwave irradiation-assisted synthesis of N -cyclohexyl-1,2,4-oxadiazole derivatives with antitumor activity. Synth. Commun., 2018, 48(19), 2522-2532. doi: 10.1080/00397911.2018.1509350
- Sen, K.; Banerjee, S.; Mandal, M. Dual drug loaded liposome bearing apigenin and 5-Fluorouracil for synergistic therapeutic efficacy in colorectal cancer. Colloids Surf. B Biointerfaces, 2019, 180(March), 9-22. doi: 10.1016/j.colsurfb.2019.04.035 PMID: 31015105
- Giraldez Alvarez, L.D.; De Carvalho Lacerda, Y.É.; Ferraz Sousa, A.K.; Santos de Brito, B.; Gonçalves Santos, M.; Ferreira Rabelo de Melo, N. Pharmacological potential of natural products for cancer treatment. Infarma - Ciências Farm., 2021, 33(1), 31-40. doi: 10.14450/2318-9312.v33.e1.a2021
- Study of the correlation between the coating of luminescent nanoparticles with folic acid and the properties of cellular internalization and biocompatibility, University of Brasilia, 2018.
- Liu, Y.; Bhattarai, P.; Dai, Z.; Chen, X. Photothermal therapy and photoacoustic imaging via nanotheranostics in fighting cancer. Chem. Soc. Rev., 2019, 48(7), 2053-2108. doi: 10.1039/C8CS00618K PMID: 30259015
- Bayda, S.; Hadla, M.; Palazzolo, S.; Riello, P.; Corona, G.; Toffoli, G.; Rizzolio, F. Inorganic nanoparticles for cancer therapy: A transition from lab to clinic. Curr. Med. Chem., 2018, 25(34), 4269-4303. doi: 10.2174/0929867325666171229141156 PMID: 29284391
- Hosseinkazemi, H.; Samani, S.; ONeill, A.; Soezi, M.; Moghoofei, M.; Azhdari, M.H.; Aavani, F.; Nazbar, A.; Keshel, S.H.; Doroudian, M. Applications of iron oxide nanoparticles against breast cancer. J. Nanomater., 2022, 2022, 1-12. doi: 10.1155/2022/6493458
- Amaldoss, M.J.N.; Yang, J.L.; Koshy, P.; Unnikrishnan, A.; Sorrell, C.C. Inorganic nanoparticle-based advanced cancer therapies: Promising combination strategies. Drug Discov. Today, 2022, 27(12), 103386. doi: 10.1016/j.drudis.2022.103386 PMID: 36182068
- Shah, A.S.; Surnar, B.; Kolishetti, N.; Dhar, S. Intersection of inorganic chemistry and nanotechnology for the creation of new cancer therapies. Acc. Mater. Res., 2022, 3(3), 283-296. doi: 10.1021/accountsmr.1c00178 PMID: 37091880
- Kobal, M.B. Silica-coated gold nanoparticles (AuSHINs) as photothermal agents in the therapy of cells derived from mammary carcinoma -as photothermal agents in the therapy of mammary carcinoma-derived cells. 2022.
- Li, Z.; Deng, J.; Sun, J.; Ma, Y. Hyperthermia targeting the tumor microenvironment facilitates immune checkpoint inhibitors. Front. Immunol., 2020, 11, 595207. doi: 10.3389/fimmu.2020.595207 PMID: 33240283
- Mulens-Arias, V.; Nicolás-Boluda, A.; Pinto, A.; Balfourier, A.; Carn, F.; Silva, A.K.A.; Pocard, M.; Gazeau, F. Tumor-selective immune-active mild hyperthermia associated with chemotherapy in colon peritoneal metastasis by photoactivation of fluorouracil-gold nanoparticle complexes. ACS Nano, 2021, 15(2), 3330-3348. doi: 10.1021/acsnano.0c10276 PMID: 33528985
- Xia, Y. Silencing KLK12 expression via RGDfC-decorated selenium nanoparticles for the treatment of colorectal cancer in vitro and in vivo. Mater. Sci. Eng. C, 2020, 110(2019), 110594. doi: 10.1016/j.msec.2019.110594
- K., S. V.; K., M. HCT116 cells cytotoxic response to multifuctionalized 5- fluorouracil MWCNTs conjugates in colorectal cancer. Int. J. Curr. Sci. Res. Rev., 2021, 4(8), 906-918. doi: 10.47191/ijcsrr/V4-i8-08
- Hashemzadeh, A.; Amerizadeh, F.; Asgharzadeh, F.; Drummen, G.P.C.; Hassanian, S.M.; Landarani, M.; Avan, A.; Sabouri, Z.; Darroudi, M.; Khazaei, M. Magnetic amine-functionalized UiO-66 for oxaliplatin delivery to colon cancer cells: In vitro studies. J. Cluster Sci., 2022, 33(5), 2345-2361. doi: 10.1007/s10876-021-02158-6
- Kamil, M.; Al-Mosawi, A.; Bahrami, A.R.; Nekooei, S.; Saljooghi, A.S.; Matin, M.M. Using magnetic mesoporous silica nanoparticles armed with EpCAM aptamer as an efficient platform for specific delivery of 5-fluorouracil to colorectal cancer cells. Front. Bioeng. Biotechnol., 2023, 10, 1095837. doi: 10.3389/fbioe.2022.1095837 PMID: 36686226
- Wang, S.; Zhou, L.; Tian, H.; Li, B.; Su, M.; Li, Q.; Nice, E.C.; Huang, C.; Shao, J.; He, T. Site-specific nanomodulator capable of modulation apoptosis for enhanced colorectal cancer chemo-photothermal therapy. J. Nanobiotechnol., 2023, 21(1), 24. doi: 10.1186/s12951-023-01779-5 PMID: 36670444
- Saito, R. de F.; Lana, M. V. G.; Medrano, R. F. V.; Chammas, R. Oncologia Molecular., 2010.
- Vieira, D.B.; Gamarra, L.F. Advances in the use of nanocarriers for cancer diagnosis and treatment. Einstein, 2016, 14(1), 99-103. doi: 10.1590/S1679-45082016RB3475 PMID: 27074238
- Sousa, A.R.; Oliveira, A.V.; Oliveira, M.J.; Sarmento, B. Nanotechnology-based siRNA delivery strategies for metastatic colorectal cancer therapy. Int. J. Pharm., 2019, 568, 118530. doi: 10.1016/j.ijpharm.2019.118530 PMID: 31323369
- Smith, T.; Affram, K.; Nottingham, E.L.; Han, B.; Amissah, F.; Krishnan, S.; Trevino, J.; Agyare, E. Application of smart solid lipid nanoparticles to enhance the efficacy of 5-fluorouracil in the treatment of colorectal cancer. Sci. Rep., 2020, 10(1), 16989. doi: 10.1038/s41598-020-73218-6 PMID: 33046724
- Fluorouracil. 2022. Available from: https://go.drugbank.com/drugs/DB00544
- Fluorouracil. 2022. Available from: https://pubchem.ncbi.nlm.nih.gov/#query=fluorouracil
- Longley, D.B.; Harkin, D.P.; Johnston, P.G. 5-Fluorouracil: Mechanisms of action and clinical strategies. Nat. Rev. Cancer, 2003, 3(5), 330-338. doi: 10.1038/nrc1074 PMID: 12724731
- Sethy, C.; Kundu, C.N. 5-Fluorouracil (5-FU) resistance and the new strategy to enhance the sensitivity against cancer: Implication of DNA repair inhibition. Biomed. Pharmacother., 2021, 137, 111285. doi: 10.1016/j.biopha.2021.111285 PMID: 33485118
- Capecitabine. 2022. Available from: https://pubchem.ncbi.nlm.nih. gov/compound/60953#section=Mechanism-of-Action (accessed Oct. 11, 2022).
- Capecitabine. 2022. Available from: https://go.drugbank.com/drugs/DB01101 (accessed Oct. 11, 2022).
- Walko, C.M.; Lindley, C. Capecitabine: A review. Clin. Ther., 2005, 27(1), 23-44. doi: 10.1016/j.clinthera.2005.01.005 PMID: 15763604
- Ezati, N.; Abdouss, M.; Rouhani, M.; Kerr, P.G.; Kowsari, E. Novel serotonin decorated molecularly imprinted polymer nanoparticles based on biodegradable materials; A potential self-targeted delivery system for Irinotecan. React. Funct. Polym., 2022, 181(December), 105437. doi: 10.1016/j.reactfunctpolym.2022.105437
- Kciuk, M.; Marciniak, B.; Kontek, R. Irinotecanstill an important player in cancer chemotherapy: A comprehensive overview. Int. J. Mol. Sci., 2020, 21(14), 4919. doi: 10.3390/ijms21144919 PMID: 32664667
- Irinotecan. 2022. Available from: https://pubchem.ncbi.nlm.nih. gov/compound/60838#section=Drug-Warnings
- Irinotecan. 2022. Available from: https://go.drugbank.com/drugs/DB00762
- Patil, A.S.; Gadad, A.P. Development and evaluation of high oxaliplatin loaded CS-g-PNIPAAm co-polymeric nanoparticles for thermo and pH responsive delivery. Indian J. Pharm. Edu. Res., 2018, 52(1), 62-70. doi: 10.5530/ijper.52.1.7
- Oxaliplatin. 2022. Available from: https://pubchem.ncbi.nlm.nih. gov/compound/9887053#section=Toxicological-Information
- Oxaliplatin. 2022. Available from: https://go.drugbank.com/drugs/DB00526
- Branca, J.J.V.; Carrino, D.; Gulisano, M.; Ghelardini, C.; Di Cesare Mannelli, L.; Pacini, A. Oxaliplatin-induced neuropathy: Genetic and epigenetic profile to better understand how to ameliorate this side effect. Front. Mol. Biosci., 2021, 8, 643824. doi: 10.3389/fmolb.2021.643824 PMID: 34026827
- Drott, J.; Fomichov, V.; Starkhammar, H.; Börjeson, S.; Kjellgren, K.; Berterö, C. Oxaliplatin-induced neurotoxic side effects and their impact on daily activities. Cancer Nurs., 2019, 42(6), E40-E48. doi: 10.1097/NCC.0000000000000674 PMID: 31658096
- Cruz-Nova, P.; Ancira-Cortez, A.; Ferro-Flores, G.; Ocampo-García, B.; Gibbens-Bandala, B. Controlled-release nanosystems with a dual function of targeted therapy and radiotherapy in colorectal cancer. Pharmaceutics, 2022, 14(5), 1095. doi: 10.3390/pharmaceutics14051095 PMID: 35631681
- Gulart, B.D.; Marcondes Sari, M.H.; Ferreira, L.M. The association of cetuximabe in colorrectal cancer therapy: A literature reviewDiscip. Sci. Ciênc. Saúde, 2021, 22(1), 333-352. doi: 10.37777/dscs.v22n1-026
- Cetuximab. 2022. Available from: https://go.drugbank.com/drugs/DB00002
- Bevacizumab. 2022. Available from: https://go.drugbank.com/drugs/DB00112
- Panitumumab. 2022. Available from: https://go.drugbank.com/drugs/DB01269
- Ramucirumab. 2022. Available from: https://go.drugbank.com/drugs/DB05578
- Khaledi, S.; Jafari, S.; Hamidi, S.; Molavi, O.; Davaran, S. Preparation and characterization of PLGA-PEG-PLGA polymeric nanoparticles for co-delivery of 5-Fluorouracil and Chrysin. J. Biomater. Sci. Polym. Ed., 2020, 31(9), 1107-1126. doi: 10.1080/09205063.2020.1743946 PMID: 32249693
- Hudita, A.; Radu, I.C.; Galateanu, B.; Ginghina, O.; Herman, H.; Balta, C.; Rosu, M.; Zaharia, C.; Costache, M.; Tanasa, E.; Velonia, K.; Tsatsakis, A.; Hermenean, A. Bioinspired silk fibroin nano-delivery systems protect against 5-FU induced gastrointestinal mucositis in a mouse model and display antitumor effects on HT-29 colorectal cancer cells in vitro. Nanotoxicology, 2021, 15(7), 1-22. doi: 10.1080/17435390.2021.1943032 PMID: 34213984
- Mansoori, B.; Mohammadi, A.; Abedi-Gaballu, F.; Abbaspour, S.; Ghasabi, M.; Yekta, R.; Shirjang, S.; Dehghan, G.; Hamblin, M.R.; Baradaran, B. Hyaluronic acid-decorated liposomal nanoparticles for targeted delivery of 5-fluorouracil into HT-29 colorectal cancer cells. J. Cell. Physiol., 2020, 235(10), 6817-6830. doi: 10.1002/jcp.29576 PMID: 31989649
- Jahangiri, S.; Khoei, S.; Khoee, S.; Safa, M.; Shirvalilou, S.; Pirhajati Mahabadi, V. Potential anti-tumor activity of 13.56 MHz alternating magnetic hyperthermia and chemotherapy on the induction of apoptosis in human colon cancer cell lines HT29 and HCT116 by up-regulation of Bax, cleaved caspase 3&9, and cleaved PARP proteins. Cancer Nanotechnol., 2021, 12(1), 34. doi: 10.1186/s12645-021-00108-5 PMID: 33456622
- Bilardo, R.; Traldi, F.; Vdovchenko, A.; Resmini, M. Influence of surface chemistry and morphology of nanoparticles on protein corona formation. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2022, 14(4), e1788. doi: 10.1002/wnan.1788 PMID: 35257495
- Freitas, S.C.; Sanderson, D.; Caspani, S.; Magalhães, R.; Cortés-Llanos, B.; Granja, A.; Reis, S.; Belo, J.H.; Azevedo, J.; Gómez-Gaviro, M.V.; Sousa, C.T. New frontiers in colorectal cancer treatment combining nanotechnology with photo- and radiotherapy. Cancers, 2023, 15(2), 383. doi: 10.3390/cancers15020383 PMID: 36672333
- Gogoi, P.; Kaur, G.; Singh, N.K. Nanotechnology for colorectal cancer detection and treatment. World J. Gastroenterol., 2022, 28(46), 6497-6511. doi: 10.3748/wjg.v28.i46.6497 PMID: 36569271
- Kim, S.; Buddolla, V.; Lee, K. Recent insights into nanotechnology development for detection and treatment of colorectal cancer. Int. J. Nanomedicine, 2016, 11, 2491-2504. doi: 10.2147/IJN.S108715 PMID: 27330292
- Matos, A.I.; Carreira, B.; Peres, C.; Moura, L.I.F.; Conniot, J.; Fourniols, T.; Scomparin, A.; Martínez-Barriocanal, Á.; Arango, D.; Conde, J.P.; Préat, V.; Satchi-Fainaro, R.; Florindo, H.F. Nanotechnology is an important strategy for combinational innovative chemo-immunotherapies against colorectal cancer. J. Control. Release, 2019, 307, 108-138. doi: 10.1016/j.jconrel.2019.06.017 PMID: 31226355
- Sahu, T.; Ratre, Y.K.; Chauhan, S.; Bhaskar, L.V.K.S.; Nair, M.P.; Verma, H.K. Nanotechnology based drug delivery system: Current strategies and emerging therapeutic potential for medical science. J. Drug Deliv. Sci. Technol., 2021, 63(April), 102487. doi: 10.1016/j.jddst.2021.102487
- Anjum, S.; Ishaque, S.; Fatima, H.; Farooq, W.; Hano, C.; Abbasi, B.H.; Anjum, I. Emerging applications of nanotechnology in healthcare systems: Grand challenges and perspectives. Pharmaceuticals, 2021, 14(8), 707. doi: 10.3390/ph14080707 PMID: 34451803
Supplementary files
