Potential of Nanomedicines as an Alternative for the Treatment of Colorectal Cancer - A Review


Cite item

Full Text

Abstract

:Colorectal cancer is the third most common cancer and the second in cases of cancer-related death. Polytherapy generates many adverse effects, leading the patient to give up. Nanotechnology has been studied in recent years to circumvent limitations. Groups composed of polymeric, lipid, and inorganic nanoparticles are the most purpose. Thus, the objective of this work is to bring information on how nanosystems can improve the chemotherapeutic treatment for colorectal cancer. Therefore, a search in journals such as \"LILACS\", \"SciELO\" and \"PubMed/Medline\" was performed, resulting in 25,000 articles found when applied the search engines \"nanoparticle,\" \"colorectal cancer,\" \"malignant neoplasms,\" and \"chemotherapy.\" After inclusion and exclusion factors, 24 articles remained, which were used as the basis for this integrative review. The results reveal that, regardless of the choice of matrix, nanoparticles showed an increase in bioavailability of the active, increasing the half-life by up to 13 times, modified release, as well as a significant reduction in tumor size, with cell viability up to 20% lower than the free drug tested, in different colorectal cancer cell lines, such as HCT-116, HT-29, and CaCo-2. However, more in vivo and clinical studies need to be performed, regardless of the formulation of its matrix, aiming at a higher rate of safety for patients and stability of the formulations, as well as knowledge of detailed indices of its pharmacokinetics and pharmacodynamics, seeking to avoid further damage to the recipient organism.

About the authors

Kammila Nicolau Costa

Post-graduation Program in Technological Development and Innovation in Medicines (PPgDITM), Universidade Federal da Paraíba

Email: info@benthamscience.net

Larissa Alves Barros

, UNIFACISA

Email: info@benthamscience.net

Ingrid Larissa da Silva Soares

, UNIFACISA

Email: info@benthamscience.net

João Augusto Oshiro-Junior

Post-graduation Program in Technological Development and Innovation in Medicines (PPgDITM), Universidade Federal da Paraíba

Author for correspondence.
Email: info@benthamscience.net

References

  1. Parry, B.R.; Tan, B.K.; Parry, S.; Goh, H.S. Colorectal cancer in the young adult. Singapore Med. J., 1995, 36(3), 306-308. PMID: 8553099
  2. Sabir, F.; Barani, M.; Mukhtar, M.; Rahdar, A.; Cucchiarini, M.; Zafar, M.N.; Behl, T.; Bungau, S. Nanodiagnosis and nanotreatment of cardiovascular diseases: An overview. Chemosensors, 2021, 9(4), 67. doi: 10.3390/chemosensors9040067
  3. Montminy, E.M.; Jang, A.; Conner, M.; Karlitz, J.J. Screening for colorectal cancer. Med. Clin. North Am., 2020, 104(6), 1023-1036. doi: 10.1016/j.mcna.2020.08.004 PMID: 33099448
  4. Biller, L.H.; Schrag, D. Diagnosis and treatment of metastatic colorectal cancer: A review JAMA, 2021, 325(7), 669-685. doi: 10.1001/jama.2021.0106 PMID: 33591350
  5. Xie, Y.H.; Chen, Y.X.; Fang, J.Y. Comprehensive review of targeted therapy for colorectal cancer. Signal Transduct. Target. Ther., 2020, 5(1), 22. doi: 10.1038/s41392-020-0116-z PMID: 32296018
  6. Solomon, M.J.; Mahon, K.; Shannassy, S.O. Management of colorectal cancer. BMJ, 2019, 366, 145561. doi: 10.1136/bmj.l4561
  7. Oncoguia, I. Types of cancer: Colorectal cancer. 2022. Available from: http://www.oncoguia.org.br/conteudo/quimioterapia-para-cancer-colorretal/3229/180/ (Accessed Jul 11, 2022).
  8. Guo, S.; Li, Z.; Feng, J.; Xiong, W.; Yang, J.; Lu, X.; Yang, S.; Xu, Y.; Wu, A.; Shen, Z. Cycloacceleration of ferroptosis and calcicoptosis for magnetic resonance imaging-guided colorectal cancer therapy. Nano Today, 2022, 47(December), 101663. doi: 10.1016/j.nantod.2022.101663
  9. Smaglo, B.G. Role for neoadjuvant systemic therapy for potentially resectable pancreatic cancer. Cancers, 2023, 15(8), 2377. doi: 10.3390/cancers15082377 PMID: 37190305
  10. Treatment protocols for gastrointestinal tumors. 2019.
  11. Ministry of Health. Ambulatory Information System - Oncology, 30th ed; , 2022.
  12. Schirrmacher, V. From chemotherapy to biological therapy: A review of novel concepts to reduce the side effects of systemic cancer treatment. Int. J. Oncol., 2018, 54(2), 407-419. doi: 10.3892/ijo.2018.4661 PMID: 30570109
  13. Rejhová, A.; Opattová, A.; Čumová, A.; Slíva, D.; Vodička, P. Natural compounds and combination therapy in colorectal cancer treatment. Eur. J. Med. Chem., 2018, 144, 582-594. doi: 10.1016/j.ejmech.2017.12.039 PMID: 29289883
  14. Costa, K.M.N.; de Sousa, L.B.C.; de Melo, D.F.; da Silva Lima, D.P.; de Lima Damasceno, B.P.G.; Oshiro-Junior, J.A. siRNA loaded in drug delivery nanosystems as a strategy for breast cancer treatment. Interdisciplinary Cancer Res., 2023, 28(2), 1-21.
  15. Costa, K.M.N.; Barros, R.M.; Jorge, E.O.; Sato, M.R.; Chorilli, M.; de Lima Damasceno, B.P.G.; Nicholas, D.; Callan, J.F.; Oshiro Junior, J.A. Doxorubicin-loaded nanostructured lipid carriers functionalized with folic acid against MCF-7 breast cancer cell line. J. Nanopart. Res., 2023, 25(4), 56. doi: 10.1007/s11051-023-05704-7
  16. Costa, K.M.N.; Araújo, C.B.B.; Barros, A.L.S.; Sato, M.R.; Oshiro-Júnior, J.A. Nanostructured Lipid Carrier as a Strategy for the Treatment of Breast Cancer. In: Interdisciplinary Cancer Res; Springer Cham, 2022; pp. 1-35. doi: 10.1007/16833_2022_13
  17. Santos, K.L.M.; Nunes, A.M.A. de Mendonça y Araujo, S.E.D.; de Melo, D.F.; de Lima Damasceno, B.P.G.; Sato, M.R.; Oshiro-Junior, J.A. Photodynamic potential of hexadecafluoro zinc phthalocyanine in nanostructured lipid carriers: physicochemical characterization, drug delivery and antimicrobial effect against Candida albicans. Lasers Med. Sci., 2022, 37(8), 3183-3191. doi: 10.1007/s10103-022-03594-0 PMID: 35723829
  18. Hsu, J.F.; Chu, S.M.; Liao, C.C.; Wang, C.J.; Wang, Y.S.; Lai, M.Y.; Wang, H.C.; Huang, H.R.; Tsai, M.H. Nanotechnology and nanocarrier-based drug delivery as the potential therapeutic strategy for glioblastoma multiforme: An update. Cancers, 2021, 13(2), 195. doi: 10.3390/cancers13020195 PMID: 33430494
  19. Sun, Y.; Ma, W.; Yang, Y.; He, M.; Li, A.; Bai, L.; Yu, B.; Yu, Z. Cancer nanotechnology: Enhancing tumor cell response to chemotherapy for hepatocellular carcinoma therapy. Asian Journal of Pharmaceutical Sciences, 2019, 14(6), 581-594. doi: 10.1016/j.ajps.2019.04.005 PMID: 32104485
  20. Choudhury, H.; Pandey, M.; Yin, T.H.; Kaur, T.; Jia, G.W.; Tan, S.Q.L.; Weijie, H.; Yang, E.K.S.; Keat, C.G.; Bhattamishra, S.K.; Kesharwani, P.; Md, S.; Molugulu, N.; Pichika, M.R.; Gorain, B. Rising horizon in circumventing multidrug resistance in chemotherapy with nanotechnology. Mater. Sci. Eng. C, 2019, 101, 596-613. doi: 10.1016/j.msec.2019.04.005 PMID: 31029353
  21. Zhao, C.Y.; Cheng, R.; Yang, Z.; Tian, Z.M. Nanotechnology for cancer therapy based on chemotherapy. Molecules, 2018, 23(4), 826. doi: 10.3390/molecules23040826 PMID: 29617302
  22. Carvalho, M.R.; Reis, R.L.; Oliveira, J.M. Dendrimer nanoparticles for colorectal cancer applications. J. Mater. Chem. B Mater. Biol. Med., 2020, 8(6), 1128-1138. doi: 10.1039/C9TB02289A PMID: 31971528
  23. Hamzehzadeh, L.; Imanparast, A.; Tajbakhsh, A.; Rezaee, M.; Pasdar, A. New approaches to use nanoparticles for treatment of colorectal cancer: A brief review. Nanomedicine Res. J., 2016, 1(2), 59-68. doi: 10.7508/NMRJ.2016.02.001
  24. Sousa, A.R.; Oliveira, M.J.; Sarmento, B. Impact of CEA-targeting nanoparticles for drug delivery in colorectal cancer. J. Pharmacol. Exp. Ther., 2019, 370(3), 657-670. doi: 10.1124/jpet.118.254441 PMID: 30670480
  25. Pavitra, E.; Dariya, B.; Srivani, G.; Kang, S.M.; Alam, A.; Sudhir, P.R.; Kamal, M.A.; Raju, G.S.R.; Han, Y.K.; Lakkakula, B.V.K.S.; Nagaraju, G.P.; Huh, Y.S. Engineered nanoparticles for imaging and drug delivery in colorectal cancer. Semin. Cancer Biol., 2021, 69, 293-306. doi: 10.1016/j.semcancer.2019.06.017 PMID: 31260733
  26. Cabeza, L.; Perazzoli, G.; Mesas, C.; Jiménez-Luna, C.; Prados, J.; Rama, A.R.; Melguizo, C. Nanoparticles in colorectal cancer therapy: latest in vivo assays, clinical trials, and patents. AAPS Pharm. Sci. Tech., 2020, 21(5), 178. doi: 10.1208/s12249-020-01731-y PMID: 32591920
  27. Cisterna, B.A.; Kamaly, N.; Choi, W.I.; Tavakkoli, A.; Farokhzad, O.C.; Vilos, C. Targeted nanoparticles for colorectal cancer. Nanomedicine, 2016, 11(18), 2443-2456. doi: 10.2217/nnm-2016-0194 PMID: 27529192
  28. Ghorbani, F.; Kokhaei, P.; Ghorbani, M.; Eslami, M. Application of different nanoparticles in the diagnosis of colorectal cancer. Gene Rep., 2020, 21(October), 100896. doi: 10.1016/j.genrep.2020.100896
  29. Silvestre, A.L.P.; Oshiro-Júnior, J.A.; Garcia, C.; Turco, B.O.; da Silva Leite, J.M.; de Lima Damasceno, B.P.G.; Soares, J.C.M.; Chorilli, M. Monoclonal antibodies carried in drug delivery nanosystems as a strategy for cancer treatment. Curr. Med. Chem., 2021, 28(2), 401-418. doi: 10.2174/1875533XMTAzfNzkzy PMID: 31965938
  30. Oshiro-Júnior, J.A.; Rodero, C.; Hanck-Silva, G.; Sato, M.R.; Alves, R.C.; Eloy, J.O.; Chorilli, M. Stimuli-responsive drug delivery nanocarriers in the treatment of breast cancer. Curr. Med. Chem., 2020, 27(15), 2494-2513. doi: 10.2174/0929867325666181009120610 PMID: 30306849
  31. Kang, H.; Rho, S.; Stiles, W.R.; Hu, S.; Baek, Y.; Hwang, D.W.; Kashiwagi, S.; Kim, M.S.; Choi, H.S. Size-dependent epr effect of polymeric nanoparticles on tumor targeting. Adv. Healthc. Mater., 2020, 9(1), 1901223. doi: 10.1002/adhm.201901223 PMID: 31794153
  32. Zielińska, A.; Carreiró, F.; Oliveira, A.M.; Neves, A.; Pires, B.; Venkatesh, D.N.; Durazzo, A.; Lucarini, M.; Eder, P.; Silva, A.M.; Santini, A; Souto, E.B. Polymeric nanoparticles: Production, characterization, toxicology and ecotoxicology molecules, 2020, 25, 3731.
  33. Bhattacharya, S. Anti-EGFR-mAb and 5-fluorouracil conjugated polymeric nanoparticles for colorectal cancer. Recent Patents Anticancer Drug Discov., 2021, 16(1), 84-100. doi: 10.2174/22123970MTEyvNTYd3 PMID: 33349222
  34. Zumaya, A.L.V.; Rimpelová, S. Štějdířová, M.; Ulbrich, P.; Vilčáková, J.; Hassouna, F. Antibody conjugated PLGA nanocarriers and superparmagnetic nanoparticles for targeted delivery of oxaliplatin to cells from colorectal carcinoma. Int. J. Mol. Sci., 2022, 23(3), 1200. doi: 10.3390/ijms23031200 PMID: 35163122
  35. Jena, G.K.; Patra, C.N.; Dixit, P.K. Cytotoxicity and pharmacokinetic studies of PLGA based capecitabine loaded nanoparticles. Indian J. Pharm. Educ. Res., 2020, 54(2), 349-356. doi: 10.5530/ijper.54.2.40
  36. Hasan-Nasab, B.; Ebrahimnejad, P.; Ebrahimi, P.; Sharifi, F.; Salili, M.; Shahlaee, F.; Nokhodchi, A. A promising targeting system to enrich irinotecan antitumor efficacy: Folic acid targeted nanoparticles. J. Drug Deliv. Sci. Technol., 2021, 63, 102543. doi: 10.1016/j.jddst.2021.102543
  37. Araújo, G.M.F.; Araújo, G.M.F.; Barros, A.R.A.; Barros, A.R.A.; Oshiro-Junior, J.A.; Oshiro-Junior, J.A.; Soares, L.F.; Soares, L.F.; da Rocha, L.G.; da Rocha, L.G.; de Lima, Á.A.N.; de Lima, Á.A.N.; da Silva, J.A.; da Silva, J.A.; Converti, A.; Converti, A.; Damasceno, B.P.G.L.; Damasceno, B.P.G.L. Nanoemulsions loaded with amphotericin B: Development, characterization and leishmanicidal activity. Curr. Pharm. Des., 2019, 25(14), 1616-1622. doi: 10.2174/1381612825666190705202030 PMID: 31298163
  38. Alves, L.P.; da Silva Oliveira, K.; da Paixão Santos, J.A.; da Silva Leite, J.M.; Rocha, B.P.; de Lucena Nogueira, P.; de Araújo Rêgo, R.I.; Oshiro-Junior, J.A.; Damasceno, B.P.G.L. A review on developments and prospects of anti-inflammatory in microemulsions. J. Drug Deliv. Sci. Technol., 2020, 60, 102008. doi: 10.1016/j.jddst.2020.102008
  39. Nicolau Costa, K.M.; Sato, M.R.; Barbosa, T.L.A.; Rodrigues, M.G.F.; Medeiros, A.C.D.; Damasceno, B.P.G.L.; Oshiro-Júnior, J.A. Curcumin-loaded micelles dispersed in ureasil-polyether materials for a novel sustained-release formulation. Pharmaceutics, 2021, 13(5), 675. doi: 10.3390/pharmaceutics13050675 PMID: 34066727
  40. de, F.; de Oliveira, C. E. Development of nanosystems containing tambjamins: Physicochemical characterization and in vitro validation in a colorectal cancer line (HCT-116); Thesis (Doctorate in Biotechnology), Federal University of Ceara, 2017, p. 153.
  41. Nanostructured lipid carriers containing doxorubicin, docosahexaenoic acid and α-tocopherol succinate: Formulation, characterization and evaluation of therapeutic potential against cancer; Federal University of Minas Gerais, 2020.
  42. Serrano, D.A.C. Nanotechnology for diagnosis and treatment of colorectal cancer; Lusophone University of Humanities and Technologies, 2021.
  43. Mohamed, J.M.; Alqahtani, A.; Ahmad, F.; Krishnaraju, V.; Kalpana, K. Pectin co-functionalized dual layered solid lipid nanoparticle made by soluble curcumin for the targeted potential treatment of colorectal cancer. Carbohydr. Polym., 2021, 252(2020), 117180. doi: 10.1016/j.carbpol.2020.117180
  44. Abel, S.D.A.; Baird, S.K. Honey is cytotoxic towards prostate cancer cells but interacts with the MTT reagent: Considerations for the choice of cell viability assay. Food Chem., 2018, 241, 70-78. doi: 10.1016/j.foodchem.2017.08.083
  45. Elgizawy, H.A.; Ali, A.A.; Hussein, M.A. Resveratrol: Isolation, and its nanostructured lipid carriers, inhibits cell proliferation, induces cell apoptosis in certain human cell lines carcinoma and exerts protective effect against paraquat-induced hepatotoxicity. J. Med. Food, 2021, 24(1), 89-100. doi: 10.1089/jmf.2019.0286 PMID: 32580673
  46. Rebouças, L.M. Nanoemulsions based on betulinic acid and linseed oil: A proposal for the treatment of colorectal carcinoma; Federal University of Ceará, 2019.
  47. Kumar, P.; Nagarajan, A.; Uchil, P.D. Analysis of cell viability by the lactate dehydrogenase assay. Cold Spring Harb. Protoc., 2018, 2018(6), pdb.prot095497. doi: 10.1101/pdb.prot095497 PMID: 29858337
  48. Preparation and characterization of liposomes containing an Ncyclohexyl- 1,2,4-oxadiazole derivative as a potential antitumor agent in colorectal cancer cell lines (HCT-116), Federal University of Ceara, 2020.
  49. de Oliveira, V.N.M.; dos Santos, F.G.; Ferreira, V.P.G.; Araújo, H.M.; do Ó Pessoa, C.; Nicolete, R.; de Oliveira, R.N. Focused microwave irradiation-assisted synthesis of N -cyclohexyl-1,2,4-oxadiazole derivatives with antitumor activity. Synth. Commun., 2018, 48(19), 2522-2532. doi: 10.1080/00397911.2018.1509350
  50. Sen, K.; Banerjee, S.; Mandal, M. Dual drug loaded liposome bearing apigenin and 5-Fluorouracil for synergistic therapeutic efficacy in colorectal cancer. Colloids Surf. B Biointerfaces, 2019, 180(March), 9-22. doi: 10.1016/j.colsurfb.2019.04.035 PMID: 31015105
  51. Giraldez Alvarez, L.D.; De Carvalho Lacerda, Y.É.; Ferraz Sousa, A.K.; Santos de Brito, B.; Gonçalves Santos, M.; Ferreira Rabelo de Melo, N. Pharmacological potential of natural products for cancer treatment. Infarma - Ciências Farm., 2021, 33(1), 31-40. doi: 10.14450/2318-9312.v33.e1.a2021
  52. Study of the correlation between the coating of luminescent nanoparticles with folic acid and the properties of cellular internalization and biocompatibility, University of Brasilia, 2018.
  53. Liu, Y.; Bhattarai, P.; Dai, Z.; Chen, X. Photothermal therapy and photoacoustic imaging via nanotheranostics in fighting cancer. Chem. Soc. Rev., 2019, 48(7), 2053-2108. doi: 10.1039/C8CS00618K PMID: 30259015
  54. Bayda, S.; Hadla, M.; Palazzolo, S.; Riello, P.; Corona, G.; Toffoli, G.; Rizzolio, F. Inorganic nanoparticles for cancer therapy: A transition from lab to clinic. Curr. Med. Chem., 2018, 25(34), 4269-4303. doi: 10.2174/0929867325666171229141156 PMID: 29284391
  55. Hosseinkazemi, H.; Samani, S.; O’Neill, A.; Soezi, M.; Moghoofei, M.; Azhdari, M.H.; Aavani, F.; Nazbar, A.; Keshel, S.H.; Doroudian, M. Applications of iron oxide nanoparticles against breast cancer. J. Nanomater., 2022, 2022, 1-12. doi: 10.1155/2022/6493458
  56. Amaldoss, M.J.N.; Yang, J.L.; Koshy, P.; Unnikrishnan, A.; Sorrell, C.C. Inorganic nanoparticle-based advanced cancer therapies: Promising combination strategies. Drug Discov. Today, 2022, 27(12), 103386. doi: 10.1016/j.drudis.2022.103386 PMID: 36182068
  57. Shah, A.S.; Surnar, B.; Kolishetti, N.; Dhar, S. Intersection of inorganic chemistry and nanotechnology for the creation of new cancer therapies. Acc. Mater. Res., 2022, 3(3), 283-296. doi: 10.1021/accountsmr.1c00178 PMID: 37091880
  58. Kobal, M.B. Silica-coated gold nanoparticles (AuSHINs) as photothermal agents in the therapy of cells derived from mammary carcinoma -as photothermal agents in the therapy of mammary carcinoma-derived cells. 2022.
  59. Li, Z.; Deng, J.; Sun, J.; Ma, Y. Hyperthermia targeting the tumor microenvironment facilitates immune checkpoint inhibitors. Front. Immunol., 2020, 11, 595207. doi: 10.3389/fimmu.2020.595207 PMID: 33240283
  60. Mulens-Arias, V.; Nicolás-Boluda, A.; Pinto, A.; Balfourier, A.; Carn, F.; Silva, A.K.A.; Pocard, M.; Gazeau, F. Tumor-selective immune-active mild hyperthermia associated with chemotherapy in colon peritoneal metastasis by photoactivation of fluorouracil-gold nanoparticle complexes. ACS Nano, 2021, 15(2), 3330-3348. doi: 10.1021/acsnano.0c10276 PMID: 33528985
  61. Xia, Y. Silencing KLK12 expression via RGDfC-decorated selenium nanoparticles for the treatment of colorectal cancer in vitro and in vivo. Mater. Sci. Eng. C, 2020, 110(2019), 110594. doi: 10.1016/j.msec.2019.110594
  62. K., S. V.; K., M. HCT116 cells cytotoxic response to multifuctionalized 5- fluorouracil MWCNTs conjugates in colorectal cancer. Int. J. Curr. Sci. Res. Rev., 2021, 4(8), 906-918. doi: 10.47191/ijcsrr/V4-i8-08
  63. Hashemzadeh, A.; Amerizadeh, F.; Asgharzadeh, F.; Drummen, G.P.C.; Hassanian, S.M.; Landarani, M.; Avan, A.; Sabouri, Z.; Darroudi, M.; Khazaei, M. Magnetic amine-functionalized UiO-66 for oxaliplatin delivery to colon cancer cells: In vitro studies. J. Cluster Sci., 2022, 33(5), 2345-2361. doi: 10.1007/s10876-021-02158-6
  64. Kamil, M.; Al-Mosawi, A.; Bahrami, A.R.; Nekooei, S.; Saljooghi, A.S.; Matin, M.M. Using magnetic mesoporous silica nanoparticles armed with EpCAM aptamer as an efficient platform for specific delivery of 5-fluorouracil to colorectal cancer cells. Front. Bioeng. Biotechnol., 2023, 10, 1095837. doi: 10.3389/fbioe.2022.1095837 PMID: 36686226
  65. Wang, S.; Zhou, L.; Tian, H.; Li, B.; Su, M.; Li, Q.; Nice, E.C.; Huang, C.; Shao, J.; He, T. Site-specific nanomodulator capable of modulation apoptosis for enhanced colorectal cancer chemo-photothermal therapy. J. Nanobiotechnol., 2023, 21(1), 24. doi: 10.1186/s12951-023-01779-5 PMID: 36670444
  66. Saito, R. de F.; Lana, M. V. G.; Medrano, R. F. V.; Chammas, R. Oncologia Molecular., 2010.
  67. Vieira, D.B.; Gamarra, L.F. Advances in the use of nanocarriers for cancer diagnosis and treatment. Einstein, 2016, 14(1), 99-103. doi: 10.1590/S1679-45082016RB3475 PMID: 27074238
  68. Sousa, A.R.; Oliveira, A.V.; Oliveira, M.J.; Sarmento, B. Nanotechnology-based siRNA delivery strategies for metastatic colorectal cancer therapy. Int. J. Pharm., 2019, 568, 118530. doi: 10.1016/j.ijpharm.2019.118530 PMID: 31323369
  69. Smith, T.; Affram, K.; Nottingham, E.L.; Han, B.; Amissah, F.; Krishnan, S.; Trevino, J.; Agyare, E. Application of smart solid lipid nanoparticles to enhance the efficacy of 5-fluorouracil in the treatment of colorectal cancer. Sci. Rep., 2020, 10(1), 16989. doi: 10.1038/s41598-020-73218-6 PMID: 33046724
  70. Fluorouracil. 2022. Available from: https://go.drugbank.com/drugs/DB00544
  71. Fluorouracil. 2022. Available from: https://pubchem.ncbi.nlm.nih.gov/#query=fluorouracil
  72. Longley, D.B.; Harkin, D.P.; Johnston, P.G. 5-Fluorouracil: Mechanisms of action and clinical strategies. Nat. Rev. Cancer, 2003, 3(5), 330-338. doi: 10.1038/nrc1074 PMID: 12724731
  73. Sethy, C.; Kundu, C.N. 5-Fluorouracil (5-FU) resistance and the new strategy to enhance the sensitivity against cancer: Implication of DNA repair inhibition. Biomed. Pharmacother., 2021, 137, 111285. doi: 10.1016/j.biopha.2021.111285 PMID: 33485118
  74. Capecitabine. 2022. Available from: https://pubchem.ncbi.nlm.nih. gov/compound/60953#section=Mechanism-of-Action (accessed Oct. 11, 2022).
  75. Capecitabine. 2022. Available from: https://go.drugbank.com/drugs/DB01101 (accessed Oct. 11, 2022).
  76. Walko, C.M.; Lindley, C. Capecitabine: A review. Clin. Ther., 2005, 27(1), 23-44. doi: 10.1016/j.clinthera.2005.01.005 PMID: 15763604
  77. Ezati, N.; Abdouss, M.; Rouhani, M.; Kerr, P.G.; Kowsari, E. Novel serotonin decorated molecularly imprinted polymer nanoparticles based on biodegradable materials; A potential self-targeted delivery system for Irinotecan. React. Funct. Polym., 2022, 181(December), 105437. doi: 10.1016/j.reactfunctpolym.2022.105437
  78. Kciuk, M.; Marciniak, B.; Kontek, R. Irinotecan—still an important player in cancer chemotherapy: A comprehensive overview. Int. J. Mol. Sci., 2020, 21(14), 4919. doi: 10.3390/ijms21144919 PMID: 32664667
  79. Irinotecan. 2022. Available from: https://pubchem.ncbi.nlm.nih. gov/compound/60838#section=Drug-Warnings
  80. Irinotecan. 2022. Available from: https://go.drugbank.com/drugs/DB00762
  81. Patil, A.S.; Gadad, A.P. Development and evaluation of high oxaliplatin loaded CS-g-PNIPAAm co-polymeric nanoparticles for thermo and pH responsive delivery. Indian J. Pharm. Edu. Res., 2018, 52(1), 62-70. doi: 10.5530/ijper.52.1.7
  82. Oxaliplatin. 2022. Available from: https://pubchem.ncbi.nlm.nih. gov/compound/9887053#section=Toxicological-Information
  83. Oxaliplatin. 2022. Available from: https://go.drugbank.com/drugs/DB00526
  84. Branca, J.J.V.; Carrino, D.; Gulisano, M.; Ghelardini, C.; Di Cesare Mannelli, L.; Pacini, A. Oxaliplatin-induced neuropathy: Genetic and epigenetic profile to better understand how to ameliorate this side effect. Front. Mol. Biosci., 2021, 8, 643824. doi: 10.3389/fmolb.2021.643824 PMID: 34026827
  85. Drott, J.; Fomichov, V.; Starkhammar, H.; Börjeson, S.; Kjellgren, K.; Berterö, C. Oxaliplatin-induced neurotoxic side effects and their impact on daily activities. Cancer Nurs., 2019, 42(6), E40-E48. doi: 10.1097/NCC.0000000000000674 PMID: 31658096
  86. Cruz-Nova, P.; Ancira-Cortez, A.; Ferro-Flores, G.; Ocampo-García, B.; Gibbens-Bandala, B. Controlled-release nanosystems with a dual function of targeted therapy and radiotherapy in colorectal cancer. Pharmaceutics, 2022, 14(5), 1095. doi: 10.3390/pharmaceutics14051095 PMID: 35631681
  87. Gulart, B.D.; Marcondes Sari, M.H.; Ferreira, L.M. The association of cetuximabe in colorrectal cancer therapy: A literature reviewDiscip. Sci. Ciênc. Saúde, 2021, 22(1), 333-352. doi: 10.37777/dscs.v22n1-026
  88. Cetuximab. 2022. Available from: https://go.drugbank.com/drugs/DB00002
  89. Bevacizumab. 2022. Available from: https://go.drugbank.com/drugs/DB00112
  90. Panitumumab. 2022. Available from: https://go.drugbank.com/drugs/DB01269
  91. Ramucirumab. 2022. Available from: https://go.drugbank.com/drugs/DB05578
  92. Khaledi, S.; Jafari, S.; Hamidi, S.; Molavi, O.; Davaran, S. Preparation and characterization of PLGA-PEG-PLGA polymeric nanoparticles for co-delivery of 5-Fluorouracil and Chrysin. J. Biomater. Sci. Polym. Ed., 2020, 31(9), 1107-1126. doi: 10.1080/09205063.2020.1743946 PMID: 32249693
  93. Hudita, A.; Radu, I.C.; Galateanu, B.; Ginghina, O.; Herman, H.; Balta, C.; Rosu, M.; Zaharia, C.; Costache, M.; Tanasa, E.; Velonia, K.; Tsatsakis, A.; Hermenean, A. Bioinspired silk fibroin nano-delivery systems protect against 5-FU induced gastrointestinal mucositis in a mouse model and display antitumor effects on HT-29 colorectal cancer cells in vitro. Nanotoxicology, 2021, 15(7), 1-22. doi: 10.1080/17435390.2021.1943032 PMID: 34213984
  94. Mansoori, B.; Mohammadi, A.; Abedi-Gaballu, F.; Abbaspour, S.; Ghasabi, M.; Yekta, R.; Shirjang, S.; Dehghan, G.; Hamblin, M.R.; Baradaran, B. Hyaluronic acid-decorated liposomal nanoparticles for targeted delivery of 5-fluorouracil into HT-29 colorectal cancer cells. J. Cell. Physiol., 2020, 235(10), 6817-6830. doi: 10.1002/jcp.29576 PMID: 31989649
  95. Jahangiri, S.; Khoei, S.; Khoee, S.; Safa, M.; Shirvalilou, S.; Pirhajati Mahabadi, V. Potential anti-tumor activity of 13.56 MHz alternating magnetic hyperthermia and chemotherapy on the induction of apoptosis in human colon cancer cell lines HT29 and HCT116 by up-regulation of Bax, cleaved caspase 3&9, and cleaved PARP proteins. Cancer Nanotechnol., 2021, 12(1), 34. doi: 10.1186/s12645-021-00108-5 PMID: 33456622
  96. Bilardo, R.; Traldi, F.; Vdovchenko, A.; Resmini, M. Influence of surface chemistry and morphology of nanoparticles on protein corona formation. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2022, 14(4), e1788. doi: 10.1002/wnan.1788 PMID: 35257495
  97. Freitas, S.C.; Sanderson, D.; Caspani, S.; Magalhães, R.; Cortés-Llanos, B.; Granja, A.; Reis, S.; Belo, J.H.; Azevedo, J.; Gómez-Gaviro, M.V.; Sousa, C.T. New frontiers in colorectal cancer treatment combining nanotechnology with photo- and radiotherapy. Cancers, 2023, 15(2), 383. doi: 10.3390/cancers15020383 PMID: 36672333
  98. Gogoi, P.; Kaur, G.; Singh, N.K. Nanotechnology for colorectal cancer detection and treatment. World J. Gastroenterol., 2022, 28(46), 6497-6511. doi: 10.3748/wjg.v28.i46.6497 PMID: 36569271
  99. Kim, S.; Buddolla, V.; Lee, K. Recent insights into nanotechnology development for detection and treatment of colorectal cancer. Int. J. Nanomedicine, 2016, 11, 2491-2504. doi: 10.2147/IJN.S108715 PMID: 27330292
  100. Matos, A.I.; Carreira, B.; Peres, C.; Moura, L.I.F.; Conniot, J.; Fourniols, T.; Scomparin, A.; Martínez-Barriocanal, Á.; Arango, D.; Conde, J.P.; Préat, V.; Satchi-Fainaro, R.; Florindo, H.F. Nanotechnology is an important strategy for combinational innovative chemo-immunotherapies against colorectal cancer. J. Control. Release, 2019, 307, 108-138. doi: 10.1016/j.jconrel.2019.06.017 PMID: 31226355
  101. Sahu, T.; Ratre, Y.K.; Chauhan, S.; Bhaskar, L.V.K.S.; Nair, M.P.; Verma, H.K. Nanotechnology based drug delivery system: Current strategies and emerging therapeutic potential for medical science. J. Drug Deliv. Sci. Technol., 2021, 63(April), 102487. doi: 10.1016/j.jddst.2021.102487
  102. Anjum, S.; Ishaque, S.; Fatima, H.; Farooq, W.; Hano, C.; Abbasi, B.H.; Anjum, I. Emerging applications of nanotechnology in healthcare systems: Grand challenges and perspectives. Pharmaceuticals, 2021, 14(8), 707. doi: 10.3390/ph14080707 PMID: 34451803

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers