Overview of the New Bioactive Heterocycles as Targeting Topoisomerase Inhibitors Useful Against Colon Cancer
- Authors: Santos M.1, de Azevedo Teotônio Cavalcanti M.2, de Medeiros e Silva Y.M.1, dos Santos Nascimento I.3, de Moura R.3
-
Affiliations:
- Postgraduate Program in Pharmaceutical Sciences,, State University of Paraíba
- Postgraduate Program in Pharmaceutical Sciences, State University of Paraíba
- Department of Pharmacy, State University of Paraíba
- Issue: Vol 24, No 4 (2024)
- Pages: 236-262
- Section: Oncology
- URL: https://rjsocmed.com/1871-5206/article/view/644146
- DOI: https://doi.org/10.2174/0118715206269722231121173311
- ID: 644146
Cite item
Full Text
Abstract
Colorectal cancer (CRC) is the third most common cancer globally, with high mortality. Metastatic CRC is incurable in most cases, and multiple drug therapy can increase patients' life expectancy by 2 to 3 years. Efforts are being made to understand the relationship between topoisomerase enzymes and colorectal cancer. Some studies have shown that higher expression of these enzymes is correlated to a poor prognosis for this type of cancer. One of the primary drugs used in the treatment of CRC is Irinotecan, which can be used in monotherapy or, more commonly, in therapeutic schemes such as FOLFIRI (Fluorouracil, Leucovorin, and Irinotecan) and CAPIRI (Capecitabine and Irinotecan). Like Camptothecin, Irinotecan and other compounds have a mechanism of action based on the formation of a ternary complex with topoisomerase I and DNA providing damage to it, therefore leading to cell death. Thus, this review focused on the principal works published in the last ten years that demonstrate a correlation between the inhibition of different isoforms of topoisomerase and in vitro cytotoxic activity against CRC by natural products, semisynthetic and synthetic compounds of pyridine, quinoline, acridine, imidazoles, indoles, and metal complexes. The results revealed that natural compounds, semisynthetic and synthetic derivatives showed potential in vitro cytotoxicity against several colon cancer cell lines, and this activity was often accompanied by the ability to inhibit both isoforms of topoisomerase (I and II), highlighting that these enzymes can be promising targets for the development of new chemotherapy against CRC. Pyridine analogs were considered the most promising for this study, while the evaluation of the real potential of natural products was limited by the lack of information in their work. Moreover, the complexes, although promising, presented as the main limitation the lack of selectivity.
About the authors
Mirelly Santos
Postgraduate Program in Pharmaceutical Sciences,, State University of Paraíba
Email: info@benthamscience.net
Misael de Azevedo Teotônio Cavalcanti
Postgraduate Program in Pharmaceutical Sciences, State University of Paraíba
Email: info@benthamscience.net
Yvnni Maria de Medeiros e Silva
Postgraduate Program in Pharmaceutical Sciences,, State University of Paraíba
Email: info@benthamscience.net
Igor dos Santos Nascimento
Department of Pharmacy, State University of Paraíba
Author for correspondence.
Email: info@benthamscience.net
Ricardo de Moura
Department of Pharmacy, State University of Paraíba
Author for correspondence.
Email: info@benthamscience.net
References
- Nfonsam, V.; Wusterbarth, E.; Gong, A.; Vij, P. Early-onset colorectal cancer. Surg. Oncol. Clin. N. Am., 2022, 31(2), 143-155. doi: 10.1016/j.soc.2021.11.001 PMID: 35351270
- Wang, Y.; Yan, X.; Qu, X.; Mao, J.; Wang, J.; Yang, M.; Tao, M. Topoisomerase IIβ binding protein 1 serves as a novel prognostic biomarker for stage II-III colorectal cancer patients. Pathol. Res. Pract., 2023, 241, 154287. doi: 10.1016/j.prp.2022.154287 PMID: 36586311
- Li, J.; Ma, X.; Chakravarti, D.; Shalapour, S.; DePinho, R.A. Genetic and biological hallmarks of colorectal cancer. Genes Dev., 2021, 35, 787-820. PMID: 34074695
- Dekker, E.; Tanis, P.J.; Vleugels, J.L.A.; Kasi, P.M.; Wallace, M.B. Colorectal cancer. Lancet, 2019, 394(10207), 1467-1480. doi: 10.1016/S0140-6736(19)32319-0 PMID: 31631858
- Mahmoud, N.N. Colorectal cancer. Surg. Oncol. Clin. N. Am., 2022, 31(2), 127-141. doi: 10.1016/j.soc.2021.12.001 PMID: 35351269
- Cao, D.D.; Xu, H.L.; Xu, X.M.; Ge, W. The impact of primary tumor location on efficacy of cetuximab in metastatic colorectal cancer patients with different Kras status: A systematic review and meta-analysis. Oncotarget, 2017, 8(32), 53631-53641. doi: 10.18632/oncotarget.19022 PMID: 28881837
- Kumar, S.; Noel, M.S.; Khorana, A.A. Advances in adjuvant therapy of colon cancer. Semin. Colon Rectal Surg., 2016, 27(4), 204-212. doi: 10.1053/j.scrs.2016.04.019
- Biller, L.H.; Schrag, D. Diagnosis and treatment of metastatic colorectal cancer. JAMA, 2021, 325(7), 669-685. doi: 10.1001/jama.2021.0106 PMID: 33591350
- Wu, C. Systemic therapy for colon cancer. Surg. Oncol. Clin. N. Am., 2018, 27(2), 235-242. doi: 10.1016/j.soc.2017.11.001 PMID: 29496087
- Choi, H.Y.; Chang, J.E. Targeted therapy for cancers: From ongoing clinical trials to FDA-approved drugs. Int. J. Mol. Sci., 2023, 24(17), 13618. doi: 10.3390/ijms241713618 PMID: 37686423
- Vodenkova, S.; Buchler, T.; Cervena, K.; Veskrnova, V.; Vodicka, P.; Vymetalkova, V. 5-fluorouracil and other fluoropyrimidines in colorectal cancer: Past, present and future. Pharmacol. Ther., 2020, 206, 107447. doi: 10.1016/j.pharmthera.2019.107447 PMID: 31756363
- de Almeida, S.M.V.; Ribeiro, A.G.; de Lima Silva, G.C. Ferreira, Alves, J.E.; Beltrão, E.I.C.; de Oliveira, J.F.; de Carvalho, L.B.; Alves de Lima, M.C. DNA binding and Topoisomerase inhibition: How can these mechanisms be explored to design more specific anticancer agents? Biomed. Pharmacother., 2017, 96, 1538-1556. doi: 10.1016/j.biopha.2017.11.054 PMID: 29174576
- Baglini, E.; Salerno, S.; Barresi, E.; Robello, M.; Da Settimo, F.; Taliani, S.; Marini, A.M. Multiple Topoisomerase I (TopoI), Topoisomerase II (TopoII) and Tyrosyl-DNA Phosphodiesterase (TDP) inhibitors in the development of anticancer drugs. Eur. J. Pharm. Sci., 2021, 156, 105594. doi: 10.1016/j.ejps.2020.105594 PMID: 33059042
- Gomes, J.N.S.; Santos, M.B. de Medeiros e Silva, Y.M.S.; Albino, S.L.; de Moura, R.O. Topoisomerase enzyme inhibitors as potential drugs against cancer: What makes them selective or dual? a review. Curr. Pharm. Des., 2022, 28(34), 2800-2824. doi: 10.2174/1381612828666220728095619 PMID: 35909281
- Hevener, K.; Verstak, T.A.; Lutat, K.E.; Riggsbee, D.L.; Mooney, J.W. Recent developments in topoisomerase-targeted cancer chemotherapy. Acta Pharm. Sin. B, 2018, 8(6), 844-861. doi: 10.1016/j.apsb.2018.07.008 PMID: 30505655
- Jang, J.Y.; Kim, D.; Kim, N.D. Recent developments in combination chemotherapy for colorectal and breast cancers with topoisomerase inhibitors. Int. J. Mol. Sci., 2023, 24(9), 8457. doi: 10.3390/ijms24098457 PMID: 37176164
- Delgado, J.L.; Hsieh, C.M.; Chan, N.L.; Hiasa, H. Topoisomerases as anticancer targets. Biochem. J., 2018, 475(2), 373-398. doi: 10.1042/BCJ20160583 PMID: 29363591
- Soren, B.C.; Dasari, J.B.; Ottaviani, A.; Iacovelli, F.; Fiorani, P.; Topoisomerase, I.B. Topoisomerase IB: A relaxing enzyme for stressed DNA. Cancer Drug Resist., 2020, 3(1), 18-25. PMID: 35582040
- Capranico, G.; Marinello, J.; Chillemi, G. Type I DNA Topoisomerases. J. Med. Chem., 2017, 60(6), 2169-2192. doi: 10.1021/acs.jmedchem.6b00966 PMID: 28072526
- Ceramella, J.; Mariconda, A.; Iacopetta, D.; Saturnino, C.; Barbarossa, A.; Caruso, A.; Rosano, C.; Sinicropi, M.S.; Longo, P. From coins to cancer therapy: Gold, silver and copper complexes targeting human topoisomerases. Bioorg. Med. Chem. Lett., 2020, 30(3), 126905. doi: 10.1016/j.bmcl.2019.126905 PMID: 31874823
- Bollimpelli, V.S.; Dholaniya, P.S.; Kondapi, A.K. Topoisomerase IIβ and its role in different biological contexts. Arch. Biochem. Biophys., 2017, 633, 78-84. doi: 10.1016/j.abb.2017.06.021 PMID: 28669856
- Azzoni, C.; Bottarelli, L.; Cecchini, S.; Ziccarelli, A.; Campanini, N.; Bordi, C.; Sarli, L.; Silini, E.M. Role of topoisomerase I and thymidylate synthase expression in sporadic colorectal cancer: Associations with clinicopathological and molecular features. Pathol. Res. Pract., 2014, 210(2), 111-117. doi: 10.1016/j.prp.2013.11.004 PMID: 24332575
- Heestand, G.M.; Schwaederle, M.; Gatalica, Z.; Arguello, D.; Kurzrock, R. Topoisomerase expression and amplification in solid tumours: Analysis of 24,262 patients. Eur. J. Cancer, 2017, 83, 80-87. doi: 10.1016/j.ejca.2017.06.019 PMID: 28728050
- Silvestris, N.; Simone, G.; Partipilo, G.; Scarpi, E.; Lorusso, V.; Brunetti, A.; Maiello, E.; Paradiso, A.; Mangia, A. CES2, ABCG2, TS and Topo-I primary and synchronous metastasis expression and clinical outcome in metastatic colorectal cancer patients treated with first-line FOLFIRI regimen. Int. J. Mol. Sci., 2014, 15(9), 15767-15777. doi: 10.3390/ijms150915767 PMID: 25198900
- Bar, J.K.; Lis-Nawara, A.; Grelewski, P.; Noga, L.; Grzebieniak, Z. Jeleń, M. The Association Between HSP90/topoisomerase I immunophenotype and the clinical features of colorectal cancers in respect to kras gene status. Anticancer Res., 2017, 37(9), 4953-4960. PMID: 28870917
- Negri, F.V.; Azzoni, C.; Bottarelli, L.; Campanini, N.; Mandolesi, A.; Wotherspoon, A.; Cunningham, D.; Scartozzi, M.; Cascinu, S.; Tinelli, C.; Silini, E.M.; Ardizzoni, A. Thymidylate synthase, topoisomerase-1 and microsatellite instability: Relationship with outcome in mucinous colorectal cancer treated with fluorouracil. Anticancer Res., 2013, 33(10), 4611-4617. PMID: 24123038
- Dang, Y.; Liu, F.; Zhao, Y. P-Gp and TOPO II expression and their clinical significance in colon cancer. Ann. Clin. Lab. Sci., 2020, 50(5), 584-590. PMID: 33067204
- Swedan, H.K.; Kassab, A.E.; Gedawy, E.M.; Elmeligie, S.E.; Topoisomerase, I.I. Topoisomerase II inhibitors design: Early studies and new perspectives. Bioorg. Chem., 2023, 136, 106548. doi: 10.1016/j.bioorg.2023.106548 PMID: 37094479
- Deng, X.; Luo, T.; Zhang, X.; Li, Y.; Xie, L.; Jiang, W.; Liu, L.; Wang, Z. Design, synthesis and biological evaluation of 3-arylisoquinoline derivatives as topoisomerase I and II dual inhibitors for the therapy of liver cancer. Eur. J. Med. Chem., 2022, 237, 114376. doi: 10.1016/j.ejmech.2022.114376 PMID: 35462164
- Buzun, K.; Bielawska, A.; Bielawski, K.; Gornowicz, A. DNA topoisomerases as molecular targets for anticancer drugs. J. Enzyme Inhib. Med. Chem., 2020, 35(1), 1781-1799. doi: 10.1080/14756366.2020.1821676 PMID: 32975138
- Pogorelčnik, B.; Perdih, A.; Solmajer, T. Recent advances in the development of catalytic inhibitors of human DNA topoisomerase IIα as novel anticancer agents. Curr. Med. Chem., 2013, 20(5), 694-709. doi: 10.2174/092986713804999402 PMID: 23210851
- Nitiss, J.L. Targeting DNA topoisomerase II in cancer chemotherapy. Nat. Rev. Cancer, 2009, 9(5), 338-350. doi: 10.1038/nrc2607 PMID: 19377506
- Poddevin, B.; Riou, J.F.; Lavelle, F.; Pommier, Y. Dual topoisomerase I and II inhibition by intoplicine (RP-60475), a new antitumor agent in early clinical trials. Mol. Pharmacol., 1993, 44(4), 767-774. PMID: 8232227
- Bailly, C. Irinotecan: 25 years of cancer treatment. Pharmacol. Res., 2019, 148, 104398. doi: 10.1016/j.phrs.2019.104398 PMID: 31415916
- Alemany, C. Etirinotecan pegol: Development of a novel conjugated topoisomerase i inhibitor topical collection on evolving therapies. Curr. Oncol. Rep., 2014, 16, 1-6. doi: 10.1007/s11912-013-0367-8
- Sy, S.K.; Sweeney, T.D.; Ji, C.; Hoch, U.; Eldon, M.A. Etirinotecan pegol administration is associated with lower incidences of neutropenia compared to irinotecan administration. Cancer Chemother. Pharmacol., 2017, 79(1), 57-67. doi: 10.1007/s00280-016-3192-6 PMID: 27904955
- Lenz, H.J.; Philip, P.; Saunders, M.; Kolevska, T.; Mukherjee, K.; Samuel, L.; Bondarde, S.; Dobbs, T.; Tagliaferri, M.; Hoch, U.; Hannah, A.L.; Berkowitz, M. Randomized study of etirinotecan pegol versus irinotecan as second-line treatment for metastatic colorectal cancer. Cancer Chemother. Pharmacol., 2017, 80(6), 1161-1169. doi: 10.1007/s00280-017-3438-y PMID: 29043412
- Haque, A.; Brazeau, D.; Amin, A.R. Perspectives on natural compounds in chemoprevention and treatment of cancer: An update with new promising compounds. Eur. J. Cancer, 2021, 149, 165-183. doi: 10.1016/j.ejca.2021.03.009 PMID: 33865202
- Liang, X.; Wu, Q.; Luan, S.; Yin, Z.; He, C.; Yin, L.; Zou, Y.; Yuan, Z.; Li, L.; Song, X.; He, M.; Lv, C.; Zhang, W. A comprehensive review of topoisomerase inhibitors as anticancer agents in the past decade. Eur. J. Med. Chem., 2019, 171, 129-168. doi: 10.1016/j.ejmech.2019.03.034 PMID: 30917303
- Shiomi, K.; Kuriyama, I.; Yoshida, H.; Mizushina, Y. Inhibitory effects of myricetin on mammalian DNA polymerase, topoisomerase and human cancer cell proliferation. Food Chem., 2013, 139(1-4), 910-918. doi: 10.1016/j.foodchem.2013.01.009 PMID: 23561189
- Mizushina, Y.; Kuriyama, I.; Nakahara, T.; Kawashima, Y.; Yoshida, H. Inhibitory effects of α-mangostin on mammalian DNA polymerase, topoisomerase, and human cancer cell proliferation. Food Chem. Toxicol., 2013, 59, 793-800. doi: 10.1016/j.fct.2013.06.027 PMID: 23811100
- León-Gonzalez, A.J.; Acero, N.; Muñoz-Mingarro, D.; López-Lázaro, M.; Martín-Cordero, C. Cytotoxic activity of hirsutanone, a diarylheptanoid isolated from Alnus glutinosa leaves. Phytomedicine, 2014, 21(6), 866-870. doi: 10.1016/j.phymed.2014.01.008 PMID: 24581747
- Tsai, K.; Liu, Y.H.; Chen, T.W.; Yang, S.M.; Wong, H.Y.; Cherng, J.; Chou, K.S.; Cherng, J.M. Cuminaldehyde from cinnamomum verum induces cell death through targeting topoisomerase 1 and 2 in Human Colorectal Adenocarcinoma COLO 205 Cells. Nutrients, 2016, 8(6), 318. doi: 10.3390/nu8060318 PMID: 27231935
- Chen, G.L.; Tian, Y.Q.; Wu, J.L.; Li, N.; Guo, M.Q. Antiproliferative activities of Amaryllidaceae alkaloids from Lycoris radiata targeting DNA topoisomerase I. Sci. Rep., 2016, 6(1), 38284. doi: 10.1038/srep38284 PMID: 27922057
- Otake, K.; Yamada, K.; Miura, K.; Sasazawa, Y.; Miyazaki, S.; Niwa, Y.; Ogura, A.; Takao, K.; Simizu, S. Identification of topoisomerases as molecular targets of cytosporolide C and its analog. Bioorg. Med. Chem., 2019, 27(15), 3334-3338. doi: 10.1016/j.bmc.2019.06.014 PMID: 31204230
- Zhang, H.L.; Zhang, Y.; Yan, X.L.; Xiao, L.G.; Hu, D.X.; Yu, Q.; An, L.K. Secondary metabolites from Isodon ternifolius (D. Don) Kudo and their anticancer activity as DNA topoisomerase IB and Tyrosyl-DNA phosphodiesterase 1 inhibitors. Bioorg. Med. Chem., 2020, 28(11), 115527. doi: 10.1016/j.bmc.2020.115527 PMID: 32345458
- Zhu, S.; Wang, Y.; Wen, Z.; Duan, Y.; Huang, Y. Discovery of a DNA topoisomerase I inhibitor huanglongmycin N and its congeners from Streptomyces sp. CB09001. J. Org. Chem., 2021, 86(23), 16675-16683. doi: 10.1021/acs.joc.1c01939 PMID: 34709824
- Wang, M.; Liang, L.; Wang, R.; Jia, S.; Xu, C.; Wang, Y.; Luo, M.; Lin, Q.; Yang, M.; Zhou, H.; Liu, D.; Qing, C. Narciclasine, a novel topoisomerase I inhibitor, exhibited potent anti-cancer activity against cancer cells. Nat. Prod. Bioprospect., 2023, 13(1), 27. doi: 10.1007/s13659-023-00392-1 PMID: 37640882
- Majhi, S.; Das, D. Chemical derivatization of natural products: Semisynthesis and pharmacological aspects- A decade update. Tetrahedron, 2021, 78, 131801. doi: 10.1016/j.tet.2020.131801
- Nadysev, G.Y.; Tikhomirov, A.S.; Lin, M.H.; Yang, Y.T.; Dezhenkova, L.G.; Chen, H.Y.; Kaluzhny, D.N.; Schols, D.; Shtil, A.A.; Shchekotikhin, A.E.; Chueh, P.J. Aminomethylation of heliomycin: preparation and anticancer characterization of the first series of semi-synthetic derivatives. Eur. J. Med. Chem., 2018, 143, 1553-1562. doi: 10.1016/j.ejmech.2017.10.055 PMID: 29137865
- Liu, W.; Li, Q.; Hu, J.; Wang, H.; Xu, F.; Bian, Q. Application of natural products derivatization method in the design of targeted anticancer agents from 2000 to 2018. Bioorg. Med. Chem., 2019, 27(23), 115150. doi: 10.1016/j.bmc.2019.115150 PMID: 31635893
- Davison, E.K.; Brimble, M.A. Natural product derived privileged scaffolds in drug discovery. Curr. Opin. Chem. Biol., 2019, 52, 1-8. doi: 10.1016/j.cbpa.2018.12.007 PMID: 30682725
- Kamal, A.; Suresh, P.; Ramaiah, M.J.; Srinivasa, R. T.; Kapavarapu, R.K.; Rao, B.N.; Imthiajali, S.; Lakshminarayan Reddy, T.; Pushpavalli, S.N.C.V.L.; Shankaraiah, N.; Pal-Bhadra, M. 4β-4-(1-(Aryl)ureido)benzamidepodophyllotoxins as DNA topoisomerase I and IIα inhibitors and apoptosis inducing agents. Bioorg. Med. Chem., 2013, 21(17), 5198-5208. doi: 10.1016/j.bmc.2013.06.033 PMID: 23849207
- Fukuda, T.; Nanjo, Y.; Fujimoto, M.; Yoshida, K.; Natsui, Y.; Ishibashi, F.; Okazaki, F.; To, H.; Iwao, M. Lamellarin-inspired potent topoisomerase I inhibitors with the unprecedented ben zog1benzopyrano4,3-bindol-6(13H)-one scaffold. Bioorg. Med. Chem., 2019, 27(2), 265-277. doi: 10.1016/j.bmc.2018.11.037 PMID: 30553626
- Zheng, L.; Gao, T.; Ge, Z.; Ma, Z.; Xu, J.; Ding, W.; Shen, L. Design, synthesis and structure-activity relationship studies of glycosylated derivatives of marine natural product lamellarin D. Eur. J. Med. Chem., 2021, 214, 113226. doi: 10.1016/j.ejmech.2021.113226 PMID: 33582387
- Huang, Y.; Chen, S.; Wu, S.; Dong, G.; Sheng, C. Evodiamine-inspired dual inhibitors of histone deacetylase 1 (HDAC1) and topoisomerase 2 (TOP2) with potent antitumor activity. Acta Pharm. Sin. B, 2020, 10(7), 1294-1308. doi: 10.1016/j.apsb.2019.11.011 PMID: 32874829
- Deng, J.; Long, L.; Peng, X.; Jiang, W.; Peng, Y.; Zhang, X.; Zhao, Y.; Tian, Y.; Wang, Z.; Zhuo, L.N. (14)-substituted evodiamine derivatives as dual topoisomerase 1/tubulin-Inhibiting anti-gastrointestinal tumor agents. Eur. J. Med. Chem., 2023, 255, 115366. doi: 10.1016/j.ejmech.2023.115366 PMID: 37099835
- Wu, D.; Shi, W.; Zhao, J.; Wei, Z.; Chen, Z.; Zhao, D.; Lan, S.; Tai, J.; Zhong, B.; Yu, H. Assessment of the chemotherapeutic potential of a new camptothecin derivative, ZBH-1205. Arch. Biochem. Biophys., 2016, 604, 74-85. doi: 10.1016/j.abb.2016.06.007 PMID: 27302903
- Zhou, M.; Liu, M.; He, X.; Yu, H.; Wu, D.; Yao, Y.; Fan, S.; Zhang, P.; Shi, W.; Zhong, B. Synthesis and biological evaluation of novel 10-substituted-7-ethyl-10-hydroxycamptothecin (SN-38) prodrugs. Molecules, 2014, 19(12), 19718-19731. doi: 10.3390/molecules191219718 PMID: 25438082
- Wu, D.; Zhao, D.W.; Li, Y.Q.; Shi, W.G.; Yin, Q.L.; Tu, Z.K.; Yu, Y.Y.; Zhong, B.H.; Yu, H.; Bao, W.G. Antitumor potential of a novel camptothecin derivative, ZBH-ZM-06. Oncol. Rep., 2018, 39(2), 871-879. PMID: 29251321
- Li, M.; Wang, L.; Wei, Y.; Wang, W.; Liu, Z.; Zuo, A.; Liu, W.; Tian, J.; Wang, H. Anti-colorectal cancer effects of a novel camptothecin derivative PCC0208037 in vitro and in vivo. Pharmaceuticals, 2022, 16(1), 53. doi: 10.3390/ph16010053 PMID: 36678550
- Khalil, N.A.; Ahmed, E.M.; Zaher, A.F.; Alhamaky, S.M.; Osama, N.; El-Zoghbi, M.S. New benzothienopyran and benzothienopyranopyrimidine derivatives as topoisomerase I inhibitors: Design, synthesis, anticancer screening, apoptosis induction and molecular modeling studies. Bioorg. Chem., 2023, 137, 106638. doi: 10.1016/j.bioorg.2023.106638 PMID: 37257374
- Ling, Y.; Hao, Z.Y.; Liang, D.; Zhang, C.L.; Liu, Y.F.; Wang, Y. The expanding role of pyridine and dihydropyridine scaffolds in drug design. Drug Des. Devel. Ther., 2021, 15, 4289-4338. doi: 10.2147/DDDT.S329547 PMID: 34675489
- Prachayasittikul, S.; Pingaew, R.; Worachartcheewan, A.; Sinthupoom, N.; Prachayasittikul, V.; Ruchirawat, S.; Prachayasittikul, V. Roles of pyridine and pyrimidine derivatives as privileged scaffolds in anticancer agents. Mini Rev. Med. Chem., 2017, 17(10), 869-901. PMID: 27670581
- El-Gohary, N.S.; Hawas, S.S.; Gabr, M.T.; Shaaban, M.I.; El-Ashmawy, M.B. New series of fused pyrazolopyridines: Synthesis, molecular modeling, antimicrobial, antiquorum-sensing and antitumor activities. Bioorg. Chem., 2019, 92, 103109. doi: 10.1016/j.bioorg.2019.103109 PMID: 31521987
- Hawas, S.S.; El-Gohary, N.S.; Gabr, M.T.; Shaaban, M.I.; El-Ashmawy, M.B. Synthesis, molecular docking, antimicrobial, antiquorum-sensing and antiproliferative activities of new series of pyrazolo3,4- bpyridine analogs. Synth. Commun., 2019, 49(19), 2466-2487. doi: 10.1080/00397911.2019.1618873
- Jun, K.Y.; Kwon, H.; Park, S.E.; Lee, E.; Karki, R.; Thapa, P.; Lee, J.H.; Lee, E.S.; Kwon, Y. Discovery of dihydroxylated 2,4-diphenyl-6-thiophen-2-yl-pyridine as a non-intercalative DNA-binding topoisomerase II-specific catalytic inhibitor. Eur. J. Med. Chem., 2014, 80, 428-438. doi: 10.1016/j.ejmech.2014.04.066 PMID: 24796883
- Kadayat, T.M.; Park, C.; Jun, K.Y.; Thapa Magar, T.B.; Bist, G.; Yoo, H.Y.; Kwon, Y.; Lee, E.S. Hydroxylated 2,4-diphenyl indenopyridine derivatives as a selective non-intercalative topoisomerase IIα catalytic inhibitor. Eur. J. Med. Chem., 2015, 90, 302-314. doi: 10.1016/j.ejmech.2014.11.046 PMID: 25437617
- Kadayat, T.M.; Song, C.; Shin, S.; Magar, T.B.T.; Bist, G.; Shrestha, A.; Thapa, P.; Na, Y.; Kwon, Y.; Lee, E.S. Synthesis, topoisomerase I and II inhibitory activity, cytotoxicity, and structureactivity relationship study of 2-phenyl- or hydroxylated 2-phenyl-4-aryl-5H-indeno1,2-bpyridines. Bioorg. Med. Chem., 2015, 23(13), 3499-3512. doi: 10.1016/j.bmc.2015.04.031 PMID: 26022080
- Kadayat, T.M.; Song, C.; Kwon, Y.; Lee, E.S. Modified 2,4-diaryl-5H-indeno1,2-bpyridines with hydroxyl and chlorine moiety: Synthesis, anticancer activity, and structureactivity relationship study. Bioorg. Chem., 2015, 62, 30-40. doi: 10.1016/j.bioorg.2015.07.002 PMID: 26218799
- Kwon, H.B.; Park, C.; Jeon, K.H.; Lee, E.; Park, S.E.; Jun, K.Y.; Kadayat, T.M.; Thapa, P.; Karki, R.; Na, Y.; Park, M.S.; Rho, S.B.; Lee, E.S.; Kwon, Y. A series of novel terpyridine-skeleton molecule derivants inhibit tumor growth and metastasis by targeting topoisomerases. J. Med. Chem., 2015, 58(3), 1100-1122. doi: 10.1021/jm501023q PMID: 25603122
- Karki, R.; Park, C.; Jun, K.Y.; Jee, J.G.; Lee, J.H.; Thapa, P.; Kadayat, T.M.; Kwon, Y.; Lee, E.S. Synthesis, antitumor activity, and structureactivity relationship study of trihydroxylated 2,4,6-triphenyl pyridines as potent and selective topoisomerase II inhibitors. Eur. J. Med. Chem., 2014, 84, 555-565. doi: 10.1016/j.ejmech.2014.07.058 PMID: 25062006
- Karki, R.; Park, C.; Jun, K.Y.; Kadayat, T.M.; Lee, E.S.; Kwon, Y. Synthesis and biological activity of 2,4-di-p-phenolyl-6-2-furanyl-pyridine as a potent topoisomerase II poison. Eur. J. Med. Chem., 2015, 90, 360-378. doi: 10.1016/j.ejmech.2014.11.045 PMID: 25437622
- Karki, R.; Song, C.; Kadayat, T.M.; Magar, T.B.T.; Bist, G.; Shrestha, A.; Na, Y.; Kwon, Y.; Lee, E.S. Topoisomerase I and II inhibitory activity, cytotoxicity, and structureactivity relationship study of dihydroxylated 2,6-diphenyl-4-aryl pyridines. Bioorg. Med. Chem., 2015, 23(13), 3638-3654. doi: 10.1016/j.bmc.2015.04.002 PMID: 25936262
- Karki, R.; Jun, K.Y.; Kadayat, T.M.; Shin, S.; Thapa Magar, T.B.; Bist, G.; Shrestha, A.; Na, Y.; Kwon, Y.; Lee, E.S. A new series of 2-phenol-4-aryl-6-chlorophenyl pyridine derivatives as dual topoisomerase I/II inhibitors: Synthesis, biological evaluation and 3D-QSAR study. Eur. J. Med. Chem., 2016, 113, 228-245. doi: 10.1016/j.ejmech.2016.02.050 PMID: 26945111
- Thapa, P.; Jun, K.Y.; Kadayat, T.M.; Park, C.; Zheng, Z.; Thapa Magar, T.B.; Bist, G.; Shrestha, A.; Na, Y.; Kwon, Y.; Lee, E.S. Design and synthesis of conformationally constrained hydroxylated 4-phenyl-2-aryl chromenopyridines as novel and selective topoisomerase II-targeted antiproliferative agents. Bioorg. Med. Chem., 2015, 23(19), 6454-6466. doi: 10.1016/j.bmc.2015.08.018 PMID: 26361737
- Thapa, P.; Kadayat, T.M.; Park, S.; Shin, S.; Thapa, M.T.B.; Bist, G.; Shrestha, A.; Na, Y.; Kwon, Y.; Lee, E.S. Synthesis and biological evaluation of 2-phenol-4-chlorophenyl-6-aryl pyridines as topoisomerase II inhibitors and cytotoxic agents. Bioorg. Chem., 2016, 66, 145-159. doi: 10.1016/j.bioorg.2016.04.007 PMID: 27174797
- Park, S.; Thapa Magar, T.B.; Kadayat, T.M.; Lee, H.J.; Bist, G.; Shrestha, A.; Lee, E.S.; Kwon, Y. Rational design, synthesis, and evaluation of novel 2,4-Chloro- and Hydroxy-Substituted diphenyl Benzofuro3,2-bPyridines: Non-intercalative catalytic topoisomerase I and II dual inhibitor. Eur. J. Med. Chem., 2017, 127, 318-333. doi: 10.1016/j.ejmech.2017.01.003 PMID: 28068603
- Park, S.; Kadayat, T.M.; Jun, K.Y.; Thapa Magar, T.B.; Bist, G.; Shrestha, A.; Lee, E.S.; Kwon, Y. Novel 2-aryl-4-(4′-hydroxyphenyl)-5H-indeno1,2-bpyridines as potent DNA non-intercalative topoisomerase catalytic inhibitors. Eur. J. Med. Chem., 2017, 125, 14-28. doi: 10.1016/j.ejmech.2016.09.019 PMID: 27643560
- Magar, T.B.T.; Seo, S.H.; Kadayat, T.M.; Jo, H.; Shrestha, A.; Bist, G.; Katila, P.; Kwon, Y.; Lee, E.S. Synthesis and SAR study of new hydroxy and chloro-substituted 2,4-diphenyl 5H-chromeno4,3-bpyridines as selective topoisomerase IIα-targeting anticancer agents. Bioorg. Med. Chem., 2018, 26(8), 1909-1919. doi: 10.1016/j.bmc.2018.02.035 PMID: 29510948
- Bist, G.; Park, S.; Song, C.; Thapa Magar, T.B.; Shrestha, A.; Kwon, Y.; Lee, E.S. Dihydroxylated 2,6-diphenyl-4-chlorophenylpyridines: Topoisomerase I and IIα dual inhibitors with DNA non-intercalative catalytic activity. Eur. J. Med. Chem., 2017, 133, 69-84. doi: 10.1016/j.ejmech.2017.03.048 PMID: 28384547
- Shrestha, A.; Park, S.; Shin, S.; Man Kadayat, T.; Bist, G.; Katila, P.; Kwon, Y.; Lee, E.S. Design, synthesis, biological evaluation, structure-activity relationship study, and mode of action of 2-phenol-4,6-dichlorophenyl-pyridines. Bioorg. Chem., 2018, 79, 1-18. doi: 10.1016/j.bioorg.2018.03.033 PMID: 29715635
- Matada, B.S.; Pattanashettar, R.; Yernale, N.G. A comprehensive review on the biological interest of quinoline and its derivatives. Bioorg. Med. Chem., 2021, 32, 115973. doi: 10.1016/j.bmc.2020.115973 PMID: 33444846
- Musiol, R. An overview of quinoline as a privileged scaffold in cancer drug discovery. Expert Opin. Drug Discov., 2017, 12(6), 583-597. doi: 10.1080/17460441.2017.1319357 PMID: 28399679
- Kunwar, S.; Hwang, S.Y.; Katila, P.; Park, S.; Jeon, K.H.; Kim, D.; Kadayat, T.M.; Kwon, Y.; Lee, E.S. Discovery of a 2,4-diphenyl-5,6-dihydrobenzo(h)quinolin-8-amine derivative as a novel DNA intercalating topoisomerase IIα poison. Eur. J. Med. Chem., 2021, 226, 113860. doi: 10.1016/j.ejmech.2021.113860 PMID: 34597897
- Mekheimer, R.A.; Allam, S.M.R.; Al-Sheikh, M.A.; Moustafa, M.S.; Al-Mousawi, S.M.; Mostafa, Y.A.; Youssif, B.G.M.; Gomaa, H.A.M.; Hayallah, A.M.; Abdelaziz, M.; Sadek, K.U. Discovery of new pyrimido5,4-cquinolines as potential antiproliferative agents with multitarget actions: Rapid synthesis, docking, and ADME studies. Bioorg. Chem., 2022, 121, 105693. doi: 10.1016/j.bioorg.2022.105693 PMID: 35219045
- Zhao, Q.; Xu, X.; Xie, Z.; Liu, X.; You, Q.; Guo, Q.; Zhong, Y.; Li, Z. Design, synthesis and biological evaluation of 3-substituted indenoisoquinoline derivatives as topoisomerase I inhibitors. Bioorg. Med. Chem. Lett., 2016, 26(3), 1068-1072. doi: 10.1016/j.bmcl.2015.12.014 PMID: 26725027
- Elanany, M.A.; Osman, E.E.A.; Gedawy, E.M.; Abou-Seri, S.M. Design and synthesis of novel cytotoxic fluoroquinolone analogs through topoisomerase inhibition, cell cycle arrest, and apoptosis. Sci. Rep., 2023, 13(1), 4144. doi: 10.1038/s41598-023-30885-5 PMID: 36914702
- El-Sheref, E.M.; Tawfeek, H.N.; Hassan, A.A.; Bräse, S.; Elbastawesy, M.A.I.; Gomaa, H.A.M.; Mostafa, Y.A.; Youssif, B.G.M. Synthesis of novel amidines via one-pot three component reactions: Selective topoisomerase I inhibitors with antiproliferative properties. Front Chem., 2022, 10, 1039176. doi: 10.3389/fchem.2022.1039176 PMID: 36465858
- Almeida, S.M.V.; Lafayette, E.A.; Silva, W.L.; Lima Serafim, V.; Menezes, T.M.; Neves, J.L.; Ruiz, A.L.T.G.; Carvalho, J.E.; Moura, R.O.; Beltrão, E.I.C.; Carvalho Júnior, L.B.; Lima, M.C.A. New spiro-acridines: DNA interaction, antiproliferative activity and inhibition of human DNA topoisomerases. Int. J. Biol. Macromol., 2016, 92, 467-475. doi: 10.1016/j.ijbiomac.2016.07.057 PMID: 27435006
- Gouveia, R.G.; Ribeiro, A.G.; Segundo, M..S.P.; de Oliveira, J.F.; de Lima, M.C.A.; de Lima Souza, T.R.C.; de Almeida, S.M.V.; de Moura, R.O. Synthesis, DNA and protein interactions and human topoisomerase inhibition of novel Spiroacridine derivatives. Bioorg. Med. Chem., 2018, 26(22), 5911-5921. doi: 10.1016/j.bmc.2018.10.038 PMID: 30420325
- Duarte, S.S.; Silva, D.K.F.; Lisboa, T.M.H.; Gouveia, R.G.; de Andrade, C.C.N.; de Sousa, V.M.; Ferreira, R.C.; de Moura, R.O.; Gomes, J.N.S.; da Silva, P.M.; de Lourdes Assunção Araújo de Azeve, F.; Keesen, T.S.L.; Gonçalves, J.C.R.; Batista, L.M.; Sobral, M.V. Apoptotic and antioxidant effects in HCT-116 colorectal carcinoma cells by a spiro-acridine compound, AMTAC-06. Pharmacol. Rep., 2022, 74(3), 545-554. doi: 10.1007/s43440-022-00357-0 PMID: 35297003
- Zhang, W.; Zhang, B.; Zhang, W.; Yang, T.; Wang, N.; Gao, C.; Tan, C.; Liu, H.; Jiang, Y. Synthesis and antiproliferative activity of 9-benzylamino-6-chloro-2-methoxy-acridine derivatives as potent DNA-binding ligands and topoisomerase II inhibitors. Eur. J. Med. Chem., 2016, 116, 59-70. doi: 10.1016/j.ejmech.2016.03.066 PMID: 27060757
- Ammar, L.; Lin, H.Y.; Shih, S.P.; Tsai, T.N.; Syu, Y.T.; Abdel-Halim, M.; Hwang, T.L.; Abadi, A.H. Novel 9-benzylaminoacridine derivatives as dual inhibitors of phosphodiesterase 5 and topoisomerase II for the treatment of colon cancer. Molecules, 2023, 28(2), 840. doi: 10.3390/molecules28020840 PMID: 36677898
- Yuan, Z.; Chen, S.; Chen, C.; Chen, J.; Chen, C.; Dai, Q.; Gao, C.; Jiang, Y. Design, synthesis and biological evaluation of 4-amidobenzimidazole acridine derivatives as dual PARP and Topo inhibitors for cancer therapy. Eur. J. Med. Chem., 2017, 138, 1135-1146. doi: 10.1016/j.ejmech.2017.07.050 PMID: 28763648
- Dai, Q.; Chen, J.; Gao, C.; Sun, Q.; Yuan, Z.; Jiang, Y. Design, synthesis and biological evaluation of novel phthalazinone acridine derivatives as dual PARP and Topo inhibitors for potential anticancer agents. Chin. Chem. Lett., 2020, 31(2), 404-408. doi: 10.1016/j.cclet.2019.06.019
- Barros, F.W.A.; Silva, T.G.; da Rocha Pitta, M.G.; Bezerra, D.P.; Costa-Lotufo, L.V.; de Moraes, M.O.; Pessoa, C.; de Moura, M.A.F.B.; de Abreu, F.C.; de Lima, M.C.A.; Galdino, S.L.; da Rocha Pitta, I.; Goulart, M.O.F. Synthesis and cytotoxic activity of new acridine-thiazolidine derivatives. Bioorg. Med. Chem., 2012, 20(11), 3533-3539. doi: 10.1016/j.bmc.2012.04.007 PMID: 22546208
- Barros, F.W.A.; Bezerra, D.P.; Ferreira, P.M.P.; Cavalcanti, B.C.; Silva, T.G.; Pitta, M.G.R.; de Lima, M. Inhibition of DNA Topoisomerase I activity and induction of apoptosis by thiazacridine derivatives. Toxicol. Appl. Pharmacol., 2013, 268, 37-46. doi: 10.1016/j.taap.2013.01.010 PMID: 23347980
- Perin, N.; Nhili, R. Cindrić, M.; Bertoa, B.; Vuak, D.; Martin-Kleiner, I.; Laine, W.; Karminski-Zamola, G.; Kralj, M.; David-Cordonnier, M.H.; Hranjec, M. Amino substituted benzimidazo1,2- aquinolines: Antiproliferative potency, 3D QSAR study and DNA binding properties. Eur. J. Med. Chem., 2016, 122, 530-545. doi: 10.1016/j.ejmech.2016.07.007 PMID: 27448912
- Cindrić, M.; Jambon, S.; Harej, A.; Depauw, S.; David-Cordonnier, M.H.; Kraljević, Pavelić, S.; Karminski-Zamola, G.; Hranjec, M. Novel amidino substituted benzimidazole and benzothiazole benzobthieno-2-carboxamides exert strong antiproliferative and DNA binding properties. Eur. J. Med. Chem., 2017, 136, 468-479. doi: 10.1016/j.ejmech.2017.05.014 PMID: 28525845
- Kamal, A.; Narasimha Rao, M.P.; Swapna, P.; Srinivasulu, V.; Bagul, C.; Shaik, A.B.; Mullagiri, K.; Kovvuri, J.; Reddy, V.S.; Vidyasagar, K.; Nagesh, N. Synthesis of β-carbolinebenzimidazole conjugates using lanthanum nitrate as a catalyst and their biological evaluation. Org. Biomol. Chem., 2014, 12(15), 2370-2387. doi: 10.1039/C3OB42236D PMID: 24604306
- Noha, R.M.; Abdelhameid, M.K.; Ismail, M.M.; Mohammed, M.R.; Salwa, E. Design, synthesis and screening of benzimidazole containing compounds with methoxylated aryl radicals as cytotoxic molecules on (HCT-116) colon cancer cells. Eur. J. Med. Chem., 2021, 209, 112870. doi: 10.1016/j.ejmech.2020.112870 PMID: 33158579
- Pandey, S.; Tripathi, P.; Parashar, P.; Maurya, V.; Malik, M.Z.; Singh, R.; Yadav, P.; Tandon, V. Synthesis and biological evaluation of novel 1 H-benzodimidazole derivatives as potential anticancer agents targeting human topoisomerase I. ACS Omega, 2022, 7(3), 2861-2880. doi: 10.1021/acsomega.1c05743 PMID: 35097282
- Singla, P.; Luxami, V.; Singh, R.; Tandon, V.; Paul, K. Novel pyrazolo3,4-dpyrimidine with 4-(1H-benzimidazol-2-yl)-phenylamine as broad spectrum anticancer agents: Synthesis, cell based assay, topoisomerase inhibition, DNA intercalation and bovine serum albumin studies. Eur. J. Med. Chem., 2017, 126, 24-35. doi: 10.1016/j.ejmech.2016.09.093 PMID: 27744184
- Subba Rao, A.V.; Vishnu Vardhan, M.V.P.S.; Subba Reddy, N.V.; Srinivasa Reddy, T.; Shaik, S.P.; Bagul, C.; Kamal, A. Synthesis and biological evaluation of imidazopyridinyl-1,3,4-oxadiazole conjugates as apoptosis inducers and topoisomerase IIα inhibitors. Bioorg. Chem., 2016, 69, 7-19. doi: 10.1016/j.bioorg.2016.09.002 PMID: 27656775
- Singh, I.; Luxami, V.; Paul, K. Synthesis of naphthalimide-phenanthro9,10-dimidazole derivatives: In vitro evaluation, binding interaction with DNA and topoisomerase inhibition. Bioorg. Chem., 2020, 96, 103631. doi: 10.1016/j.bioorg.2020.103631 PMID: 32036164
- Soni, J.P.; Nikitha Reddy, G.; Rahman, Z.; Sharma, A.; Spandana, A.; Phanindranath, R.; Dandekar, M.P.; Nagesh, N.; Shankaraiah, N. Synthesis and cytotoxicity evaluation of DNA-interactive β-carboline indolyl-3-glyoxamide derivatives: Topo-II inhibition and in silico modelling studies. Bioorg. Chem., 2023, 131, 106313. doi: 10.1016/j.bioorg.2022.106313 PMID: 36516521
- Lakshmi M, K.; Thatikonda, S.; Sigalapalli, D.K.; Sagar, A.; Kiranmai, G.; Kalle, A.M.; Alvala, M.; Godugu, C.; Nagesh, N.; Nagendra B, B. Design and synthesis of β-carboline linked aryl sulfonyl piperazine derivatives: DNA topoisomerase II inhibition with DNA binding and apoptosis inducing ability. Bioorg. Chem., 2020, 101, 103983. doi: 10.1016/j.bioorg.2020.103983 PMID: 32683136
- Chaniyara, R.; Tala, S.; Chen, C.W.; Zang, X.; Kakadiya, R.; Lin, L.F.; Chen, C.H.; Chien, S.I.; Chou, T.C.; Tsai, T.H.; Lee, T.C.; Shah, A.; Su, T.L. Novel antitumor indolizino6,7-bindoles with multiple modes of action: DNA cross-linking and topoisomerase I and II inhibition. J. Med. Chem., 2013, 56(4), 1544-1563. doi: 10.1021/jm301788a PMID: 23360284
- Chang, S.M.; Christian, W.; Wu, M.H.; Chen, T.L.; Lin, Y.W.; Suen, C.S.; Pidugu, H.B.; Detroja, D.; Shah, A.; Hwang, M.J.; Su, T.L.; Lee, T.C. Novel indolizino8,7-bindole hybrids as anti-small cell lung cancer agents: Regioselective modulation of topoisomerase II inhibitory and DNA crosslinking activities. Eur. J. Med. Chem., 2017, 127, 235-249. doi: 10.1016/j.ejmech.2016.12.046 PMID: 28064078
- Tokala, R.; Sana, S.; Lakshmi, U.J.; Sankarana, P.; Sigalapalli, D.K.; Gadewal, N.; Kode, J.; Shankaraiah, N. Design and synthesis of thiadiazolo-carboxamide bridged β-carboline-indole hybrids: DNA intercalative topo-IIα inhibition with promising antiproliferative activity. Bioorg. Chem., 2020, 105, 104357. doi: 10.1016/j.bioorg.2020.104357 PMID: 33091673
- Kaur, M.; Mehta, V.; Abdullah Wani, A.; Arora, S.; Bharatam, P.V.; Sharon, A.; Singh, S.; Kumar, R. Synthesis of 1,4-dihydropyrazolo4,3-bindoles via intramolecular C(sp2)-N bond formation involving nitrene insertion, DFT study and their anticancer assessment. Bioorg. Chem., 2021, 114, 105114. doi: 10.1016/j.bioorg.2021.105114 PMID: 34243073
- de Oliveira, J.F.; Lima, T.S.; Vendramini-Costa, D.B.; de Lacerda Pedrosa, S.C.B.; Lafayette, E.A.; da Silva, R.M.F.; de Almeida, S.M.V.; de Moura, R.O.; Ruiz, A.L.T.G.; de Carvalho, J.E.; de Lima, M.C.A. Thiosemicarbazones and 4-thiazolidinones indole-based derivatives: Synthesis, evaluation of antiproliferative activity, cell death mechanisms and topoisomerase inhibition assay. Eur. J. Med. Chem., 2017, 136, 305-314. doi: 10.1016/j.ejmech.2017.05.023 PMID: 28505535
- Kadagathur, M.; Devi, G.P.; Grewal, P.; Sigalapalli, D.K.; Makhal, P.N.; Banerjee, U.C.; Bathini, N.B.; Tangellamudi, N.D. Novel diindoloazepinone derivatives as DNA minor groove binding agents with selective topoisomerase I inhibition: Design, synthesis, biological evaluation and docking studies. Bioorg. Chem., 2020, 99, 103629. doi: 10.1016/j.bioorg.2020.103629 PMID: 32272367
- Kadagathur, M.; Sujat Shaikh, A.; Panda, B.; George, J.; Phanindranath, R.; Kumar Sigalapalli, D.; Bhale, N.A.; Godugu, C.; Nagesh, N.; Shankaraiah, N.; Tangellamudi, N.D. Synthesis of indolo/pyrroloazepinone-oxindoles as potential cytotoxic, DNA-intercalating and Topo I inhibitors. Bioorg. Chem., 2022, 122, 105706. doi: 10.1016/j.bioorg.2022.105706 PMID: 35240414
- Shchekotikhin, A.E.; Glazunova, V.A.; Dezhenkova, L.G.; Luzikov, Y.N.; Buyanov, V.N.; Treshalina, H.M.; Lesnaya, N.A.; Romanenko, V.I.; Kaluzhny, D.N.; Balzarini, J.; Agama, K.; Pommier, Y.; Shtil, A.A.; Preobrazhenskaya, M.N. Synthesis and evaluation of new antitumor 3-aminomethyl-4,11-dihydroxynaphtho2,3-findole-5,10-diones. Eur. J. Med. Chem., 2014, 86, 797-805. doi: 10.1016/j.ejmech.2014.09.021 PMID: 25244612
- Trudu, F.; Amato, F. Vaňhara, P.; Pivetta, T.; Peña-Méndez, E.M.; Havel, J. Coordination compounds in cancer: Past, present and perspectives. J. Appl. Biomed., 2015, 13(2), 79-103. doi: 10.1016/j.jab.2015.03.003
- Yu, G.; Jiang, M.; Huang, F.; Chen, X. Supramolecular coordination complexes as diagnostic and therapeutic agents. Curr. Opin. Chem. Biol., 2021, 61, 19-31. doi: 10.1016/j.cbpa.2020.08.007 PMID: 33147551
- Grazul, M.; Budzisz, E. Biological activity of metal ions complexes of chromones, coumarins and flavones. Coord. Chem. Rev., 2009, 253(21-22), 2588-2598. doi: 10.1016/j.ccr.2009.06.015
- Dolfen, D.; Schottler, K.; Valiahdi, S.M.; Jakupec, M.A.; Keppler, B.K.; Tiekink, E.R.T.; Mohr, F. Synthesis, structures and in vitro cytotoxicity of some platinum(II) complexes containing thiocarbamate esters. J. Inorg. Biochem., 2008, 102(12), 2067-2071. doi: 10.1016/j.jinorgbio.2008.07.002 PMID: 18707761
- Yeo, C.I.; Ooi, K.K.; Akim, A.M.; Ang, K.P.; Fairuz, Z.A.; Halim, S.N.B.A.; Ng, S.W.; Seng, H.L.; Tiekink, E.R.T. The influence of R substituents in triphenylphosphinegold(I) carbonimidothioates, Ph3PAuSC(OR)=NPh (R=Me, Et and iPr), upon in vitro cytotoxicity against the HT-29 colon cancer cell line and upon apoptotic pathways. J. Inorg. Biochem., 2013, 127, 24-38. doi: 10.1016/j.jinorgbio.2013.05.011 PMID: 23850666
- Tabassum, S.; Zaki, M.; Afzal, M.; Arjmand, F. Synthesis and characterization of Cu(II)-based anticancer chemotherapeutic agent targeting topoisomerase Iα In vitro DNA binding, pBR322 cleavage, molecular docking studies and cytotoxicity against human cancer cell lines. Eur. J. Med. Chem., 2014, 74, 509-523. doi: 10.1016/j.ejmech.2013.12.046 PMID: 24508781
- Tabassum, S.; Afzal, M.; Arjmand, F. New modulated design, docking and synthesis of carbohydrate-conjugate heterobimetallic CuIISnIV complex as potential topoisomerase II inhibitor: In vitro DNA binding, cleavage and cytotoxicity against human cancer cell lines. Eur. J. Med. Chem., 2014, 74, 694-702. doi: 10.1016/j.ejmech.2013.09.036 PMID: 24268597
- Sandhaus, S.; Taylor, R.; Edwards, T.; Huddleston, A.; Wooten, Y.; Venkatraman, R.; Weber, R.T.; González-Sarrías, A.; Martin, P.M.; Cagle, P.; Tse-Dinh, Y.C.; Beebe, S.J.; Seeram, N.; Holder, A.A. A novel copper(II) complex identified as a potent drug against colorectal and breast cancer cells and as a poison inhibitor for human topoisomerase IIα. Inorg. Chem. Commun., 2016, 64, 45-49. doi: 10.1016/j.inoche.2015.12.013 PMID: 26752972
- Vikneswaran, R.; Eltayeb, N.E.; Ramesh, S.; Yahya, R. New alicyclic thiosemicarbazone chelated zinc(II) antitumor complexes: Interactions with DNA/protein, nuclease activity and inhibition of topoisomerase-I. Polyhedron, 2016, 105, 89-95. doi: 10.1016/j.poly.2015.12.012
- Heng, M.P.; Sim, K.S.; Tan, K.W. Nickel and zinc complexes of testosterone N4-substituted thiosemicarbazone: Selective cytotoxicity towards human colorectal carcinoma cell line HCT 116 and their cell death mechanisms. J. Inorg. Biochem., 2020, 208, 111097. doi: 10.1016/j.jinorgbio.2020.111097 PMID: 32438269
- Sahyon, H.A.; El-Bindary, A.A.; Shoair, A.F.; Abdellatif, A.A. Synthesis and characterization of ruthenium(III) complex containing 2-aminomethyl benzimidazole, and its anticancer activity of in vitro and in vivo models. J. Mol. Liq., 2018, 255, 122-134. doi: 10.1016/j.molliq.2018.01.140
- Hackl, C.M.; Legina, M.S.; Pichler, V.; Schmidlehner, M.; Roller, A.; Dömötör, O.; Enyedy, E.A.; Jakupec, M.A.; Kandioller, W.; Keppler, B.K. Thiomaltol‐based organometallic complexes with 1‐methylimidazole as leaving group: Synthesis, stability, and biological behavior. Chemistry, 2016, 22(48), 17269-17281. doi: 10.1002/chem.201603206 PMID: 27759173
Supplementary files
