Overview of the New Bioactive Heterocycles as Targeting Topoisomerase Inhibitors Useful Against Colon Cancer


Cite item

Full Text

Abstract

Colorectal cancer (CRC) is the third most common cancer globally, with high mortality. Metastatic CRC is incurable in most cases, and multiple drug therapy can increase patients' life expectancy by 2 to 3 years. Efforts are being made to understand the relationship between topoisomerase enzymes and colorectal cancer. Some studies have shown that higher expression of these enzymes is correlated to a poor prognosis for this type of cancer. One of the primary drugs used in the treatment of CRC is Irinotecan, which can be used in monotherapy or, more commonly, in therapeutic schemes such as FOLFIRI (Fluorouracil, Leucovorin, and Irinotecan) and CAPIRI (Capecitabine and Irinotecan). Like Camptothecin, Irinotecan and other compounds have a mechanism of action based on the formation of a ternary complex with topoisomerase I and DNA providing damage to it, therefore leading to cell death. Thus, this review focused on the principal works published in the last ten years that demonstrate a correlation between the inhibition of different isoforms of topoisomerase and in vitro cytotoxic activity against CRC by natural products, semisynthetic and synthetic compounds of pyridine, quinoline, acridine, imidazoles, indoles, and metal complexes. The results revealed that natural compounds, semisynthetic and synthetic derivatives showed potential in vitro cytotoxicity against several colon cancer cell lines, and this activity was often accompanied by the ability to inhibit both isoforms of topoisomerase (I and II), highlighting that these enzymes can be promising targets for the development of new chemotherapy against CRC. Pyridine analogs were considered the most promising for this study, while the evaluation of the real potential of natural products was limited by the lack of information in their work. Moreover, the complexes, although promising, presented as the main limitation the lack of selectivity.

About the authors

Mirelly Santos

Postgraduate Program in Pharmaceutical Sciences,, State University of Paraíba

Email: info@benthamscience.net

Misael de Azevedo Teotônio Cavalcanti

Postgraduate Program in Pharmaceutical Sciences, State University of Paraíba

Email: info@benthamscience.net

Yvnni Maria de Medeiros e Silva

Postgraduate Program in Pharmaceutical Sciences,, State University of Paraíba

Email: info@benthamscience.net

Igor dos Santos Nascimento

Department of Pharmacy, State University of Paraíba

Author for correspondence.
Email: info@benthamscience.net

Ricardo de Moura

Department of Pharmacy, State University of Paraíba

Author for correspondence.
Email: info@benthamscience.net

References

  1. Nfonsam, V.; Wusterbarth, E.; Gong, A.; Vij, P. Early-onset colorectal cancer. Surg. Oncol. Clin. N. Am., 2022, 31(2), 143-155. doi: 10.1016/j.soc.2021.11.001 PMID: 35351270
  2. Wang, Y.; Yan, X.; Qu, X.; Mao, J.; Wang, J.; Yang, M.; Tao, M. Topoisomerase IIβ binding protein 1 serves as a novel prognostic biomarker for stage II-III colorectal cancer patients. Pathol. Res. Pract., 2023, 241, 154287. doi: 10.1016/j.prp.2022.154287 PMID: 36586311
  3. Li, J.; Ma, X.; Chakravarti, D.; Shalapour, S.; DePinho, R.A. Genetic and biological hallmarks of colorectal cancer. Genes Dev., 2021, 35, 787-820. PMID: 34074695
  4. Dekker, E.; Tanis, P.J.; Vleugels, J.L.A.; Kasi, P.M.; Wallace, M.B. Colorectal cancer. Lancet, 2019, 394(10207), 1467-1480. doi: 10.1016/S0140-6736(19)32319-0 PMID: 31631858
  5. Mahmoud, N.N. Colorectal cancer. Surg. Oncol. Clin. N. Am., 2022, 31(2), 127-141. doi: 10.1016/j.soc.2021.12.001 PMID: 35351269
  6. Cao, D.D.; Xu, H.L.; Xu, X.M.; Ge, W. The impact of primary tumor location on efficacy of cetuximab in metastatic colorectal cancer patients with different Kras status: A systematic review and meta-analysis. Oncotarget, 2017, 8(32), 53631-53641. doi: 10.18632/oncotarget.19022 PMID: 28881837
  7. Kumar, S.; Noel, M.S.; Khorana, A.A. Advances in adjuvant therapy of colon cancer. Semin. Colon Rectal Surg., 2016, 27(4), 204-212. doi: 10.1053/j.scrs.2016.04.019
  8. Biller, L.H.; Schrag, D. Diagnosis and treatment of metastatic colorectal cancer. JAMA, 2021, 325(7), 669-685. doi: 10.1001/jama.2021.0106 PMID: 33591350
  9. Wu, C. Systemic therapy for colon cancer. Surg. Oncol. Clin. N. Am., 2018, 27(2), 235-242. doi: 10.1016/j.soc.2017.11.001 PMID: 29496087
  10. Choi, H.Y.; Chang, J.E. Targeted therapy for cancers: From ongoing clinical trials to FDA-approved drugs. Int. J. Mol. Sci., 2023, 24(17), 13618. doi: 10.3390/ijms241713618 PMID: 37686423
  11. Vodenkova, S.; Buchler, T.; Cervena, K.; Veskrnova, V.; Vodicka, P.; Vymetalkova, V. 5-fluorouracil and other fluoropyrimidines in colorectal cancer: Past, present and future. Pharmacol. Ther., 2020, 206, 107447. doi: 10.1016/j.pharmthera.2019.107447 PMID: 31756363
  12. de Almeida, S.M.V.; Ribeiro, A.G.; de Lima Silva, G.C. Ferreira, Alves, J.E.; Beltrão, E.I.C.; de Oliveira, J.F.; de Carvalho, L.B.; Alves de Lima, M.C. DNA binding and Topoisomerase inhibition: How can these mechanisms be explored to design more specific anticancer agents? Biomed. Pharmacother., 2017, 96, 1538-1556. doi: 10.1016/j.biopha.2017.11.054 PMID: 29174576
  13. Baglini, E.; Salerno, S.; Barresi, E.; Robello, M.; Da Settimo, F.; Taliani, S.; Marini, A.M. Multiple Topoisomerase I (TopoI), Topoisomerase II (TopoII) and Tyrosyl-DNA Phosphodiesterase (TDP) inhibitors in the development of anticancer drugs. Eur. J. Pharm. Sci., 2021, 156, 105594. doi: 10.1016/j.ejps.2020.105594 PMID: 33059042
  14. Gomes, J.N.S.; Santos, M.B. de Medeiros e Silva, Y.M.S.; Albino, S.L.; de Moura, R.O. Topoisomerase enzyme inhibitors as potential drugs against cancer: What makes them selective or dual? – a review. Curr. Pharm. Des., 2022, 28(34), 2800-2824. doi: 10.2174/1381612828666220728095619 PMID: 35909281
  15. Hevener, K.; Verstak, T.A.; Lutat, K.E.; Riggsbee, D.L.; Mooney, J.W. Recent developments in topoisomerase-targeted cancer chemotherapy. Acta Pharm. Sin. B, 2018, 8(6), 844-861. doi: 10.1016/j.apsb.2018.07.008 PMID: 30505655
  16. Jang, J.Y.; Kim, D.; Kim, N.D. Recent developments in combination chemotherapy for colorectal and breast cancers with topoisomerase inhibitors. Int. J. Mol. Sci., 2023, 24(9), 8457. doi: 10.3390/ijms24098457 PMID: 37176164
  17. Delgado, J.L.; Hsieh, C.M.; Chan, N.L.; Hiasa, H. Topoisomerases as anticancer targets. Biochem. J., 2018, 475(2), 373-398. doi: 10.1042/BCJ20160583 PMID: 29363591
  18. Soren, B.C.; Dasari, J.B.; Ottaviani, A.; Iacovelli, F.; Fiorani, P.; Topoisomerase, I.B. Topoisomerase IB: A relaxing enzyme for stressed DNA. Cancer Drug Resist., 2020, 3(1), 18-25. PMID: 35582040
  19. Capranico, G.; Marinello, J.; Chillemi, G. Type I DNA Topoisomerases. J. Med. Chem., 2017, 60(6), 2169-2192. doi: 10.1021/acs.jmedchem.6b00966 PMID: 28072526
  20. Ceramella, J.; Mariconda, A.; Iacopetta, D.; Saturnino, C.; Barbarossa, A.; Caruso, A.; Rosano, C.; Sinicropi, M.S.; Longo, P. From coins to cancer therapy: Gold, silver and copper complexes targeting human topoisomerases. Bioorg. Med. Chem. Lett., 2020, 30(3), 126905. doi: 10.1016/j.bmcl.2019.126905 PMID: 31874823
  21. Bollimpelli, V.S.; Dholaniya, P.S.; Kondapi, A.K. Topoisomerase IIβ and its role in different biological contexts. Arch. Biochem. Biophys., 2017, 633, 78-84. doi: 10.1016/j.abb.2017.06.021 PMID: 28669856
  22. Azzoni, C.; Bottarelli, L.; Cecchini, S.; Ziccarelli, A.; Campanini, N.; Bordi, C.; Sarli, L.; Silini, E.M. Role of topoisomerase I and thymidylate synthase expression in sporadic colorectal cancer: Associations with clinicopathological and molecular features. Pathol. Res. Pract., 2014, 210(2), 111-117. doi: 10.1016/j.prp.2013.11.004 PMID: 24332575
  23. Heestand, G.M.; Schwaederle, M.; Gatalica, Z.; Arguello, D.; Kurzrock, R. Topoisomerase expression and amplification in solid tumours: Analysis of 24,262 patients. Eur. J. Cancer, 2017, 83, 80-87. doi: 10.1016/j.ejca.2017.06.019 PMID: 28728050
  24. Silvestris, N.; Simone, G.; Partipilo, G.; Scarpi, E.; Lorusso, V.; Brunetti, A.; Maiello, E.; Paradiso, A.; Mangia, A. CES2, ABCG2, TS and Topo-I primary and synchronous metastasis expression and clinical outcome in metastatic colorectal cancer patients treated with first-line FOLFIRI regimen. Int. J. Mol. Sci., 2014, 15(9), 15767-15777. doi: 10.3390/ijms150915767 PMID: 25198900
  25. Bar, J.K.; Lis-Nawara, A.; Grelewski, P.; Noga, L.; Grzebieniak, Z. Jeleń, M. The Association Between HSP90/topoisomerase I immunophenotype and the clinical features of colorectal cancers in respect to kras gene status. Anticancer Res., 2017, 37(9), 4953-4960. PMID: 28870917
  26. Negri, F.V.; Azzoni, C.; Bottarelli, L.; Campanini, N.; Mandolesi, A.; Wotherspoon, A.; Cunningham, D.; Scartozzi, M.; Cascinu, S.; Tinelli, C.; Silini, E.M.; Ardizzoni, A. Thymidylate synthase, topoisomerase-1 and microsatellite instability: Relationship with outcome in mucinous colorectal cancer treated with fluorouracil. Anticancer Res., 2013, 33(10), 4611-4617. PMID: 24123038
  27. Dang, Y.; Liu, F.; Zhao, Y. P-Gp and TOPO II expression and their clinical significance in colon cancer. Ann. Clin. Lab. Sci., 2020, 50(5), 584-590. PMID: 33067204
  28. Swedan, H.K.; Kassab, A.E.; Gedawy, E.M.; Elmeligie, S.E.; Topoisomerase, I.I. Topoisomerase II inhibitors design: Early studies and new perspectives. Bioorg. Chem., 2023, 136, 106548. doi: 10.1016/j.bioorg.2023.106548 PMID: 37094479
  29. Deng, X.; Luo, T.; Zhang, X.; Li, Y.; Xie, L.; Jiang, W.; Liu, L.; Wang, Z. Design, synthesis and biological evaluation of 3-arylisoquinoline derivatives as topoisomerase I and II dual inhibitors for the therapy of liver cancer. Eur. J. Med. Chem., 2022, 237, 114376. doi: 10.1016/j.ejmech.2022.114376 PMID: 35462164
  30. Buzun, K.; Bielawska, A.; Bielawski, K.; Gornowicz, A. DNA topoisomerases as molecular targets for anticancer drugs. J. Enzyme Inhib. Med. Chem., 2020, 35(1), 1781-1799. doi: 10.1080/14756366.2020.1821676 PMID: 32975138
  31. Pogorelčnik, B.; Perdih, A.; Solmajer, T. Recent advances in the development of catalytic inhibitors of human DNA topoisomerase IIα as novel anticancer agents. Curr. Med. Chem., 2013, 20(5), 694-709. doi: 10.2174/092986713804999402 PMID: 23210851
  32. Nitiss, J.L. Targeting DNA topoisomerase II in cancer chemotherapy. Nat. Rev. Cancer, 2009, 9(5), 338-350. doi: 10.1038/nrc2607 PMID: 19377506
  33. Poddevin, B.; Riou, J.F.; Lavelle, F.; Pommier, Y. Dual topoisomerase I and II inhibition by intoplicine (RP-60475), a new antitumor agent in early clinical trials. Mol. Pharmacol., 1993, 44(4), 767-774. PMID: 8232227
  34. Bailly, C. Irinotecan: 25 years of cancer treatment. Pharmacol. Res., 2019, 148, 104398. doi: 10.1016/j.phrs.2019.104398 PMID: 31415916
  35. Alemany, C. Etirinotecan pegol: Development of a novel conjugated topoisomerase i inhibitor topical collection on evolving therapies. Curr. Oncol. Rep., 2014, 16, 1-6. doi: 10.1007/s11912-013-0367-8
  36. Sy, S.K.; Sweeney, T.D.; Ji, C.; Hoch, U.; Eldon, M.A. Etirinotecan pegol administration is associated with lower incidences of neutropenia compared to irinotecan administration. Cancer Chemother. Pharmacol., 2017, 79(1), 57-67. doi: 10.1007/s00280-016-3192-6 PMID: 27904955
  37. Lenz, H.J.; Philip, P.; Saunders, M.; Kolevska, T.; Mukherjee, K.; Samuel, L.; Bondarde, S.; Dobbs, T.; Tagliaferri, M.; Hoch, U.; Hannah, A.L.; Berkowitz, M. Randomized study of etirinotecan pegol versus irinotecan as second-line treatment for metastatic colorectal cancer. Cancer Chemother. Pharmacol., 2017, 80(6), 1161-1169. doi: 10.1007/s00280-017-3438-y PMID: 29043412
  38. Haque, A.; Brazeau, D.; Amin, A.R. Perspectives on natural compounds in chemoprevention and treatment of cancer: An update with new promising compounds. Eur. J. Cancer, 2021, 149, 165-183. doi: 10.1016/j.ejca.2021.03.009 PMID: 33865202
  39. Liang, X.; Wu, Q.; Luan, S.; Yin, Z.; He, C.; Yin, L.; Zou, Y.; Yuan, Z.; Li, L.; Song, X.; He, M.; Lv, C.; Zhang, W. A comprehensive review of topoisomerase inhibitors as anticancer agents in the past decade. Eur. J. Med. Chem., 2019, 171, 129-168. doi: 10.1016/j.ejmech.2019.03.034 PMID: 30917303
  40. Shiomi, K.; Kuriyama, I.; Yoshida, H.; Mizushina, Y. Inhibitory effects of myricetin on mammalian DNA polymerase, topoisomerase and human cancer cell proliferation. Food Chem., 2013, 139(1-4), 910-918. doi: 10.1016/j.foodchem.2013.01.009 PMID: 23561189
  41. Mizushina, Y.; Kuriyama, I.; Nakahara, T.; Kawashima, Y.; Yoshida, H. Inhibitory effects of α-mangostin on mammalian DNA polymerase, topoisomerase, and human cancer cell proliferation. Food Chem. Toxicol., 2013, 59, 793-800. doi: 10.1016/j.fct.2013.06.027 PMID: 23811100
  42. León-Gonzalez, A.J.; Acero, N.; Muñoz-Mingarro, D.; López-Lázaro, M.; Martín-Cordero, C. Cytotoxic activity of hirsutanone, a diarylheptanoid isolated from Alnus glutinosa leaves. Phytomedicine, 2014, 21(6), 866-870. doi: 10.1016/j.phymed.2014.01.008 PMID: 24581747
  43. Tsai, K.; Liu, Y.H.; Chen, T.W.; Yang, S.M.; Wong, H.Y.; Cherng, J.; Chou, K.S.; Cherng, J.M. Cuminaldehyde from cinnamomum verum induces cell death through targeting topoisomerase 1 and 2 in Human Colorectal Adenocarcinoma COLO 205 Cells. Nutrients, 2016, 8(6), 318. doi: 10.3390/nu8060318 PMID: 27231935
  44. Chen, G.L.; Tian, Y.Q.; Wu, J.L.; Li, N.; Guo, M.Q. Antiproliferative activities of Amaryllidaceae alkaloids from Lycoris radiata targeting DNA topoisomerase I. Sci. Rep., 2016, 6(1), 38284. doi: 10.1038/srep38284 PMID: 27922057
  45. Otake, K.; Yamada, K.; Miura, K.; Sasazawa, Y.; Miyazaki, S.; Niwa, Y.; Ogura, A.; Takao, K.; Simizu, S. Identification of topoisomerases as molecular targets of cytosporolide C and its analog. Bioorg. Med. Chem., 2019, 27(15), 3334-3338. doi: 10.1016/j.bmc.2019.06.014 PMID: 31204230
  46. Zhang, H.L.; Zhang, Y.; Yan, X.L.; Xiao, L.G.; Hu, D.X.; Yu, Q.; An, L.K. Secondary metabolites from Isodon ternifolius (D. Don) Kudo and their anticancer activity as DNA topoisomerase IB and Tyrosyl-DNA phosphodiesterase 1 inhibitors. Bioorg. Med. Chem., 2020, 28(11), 115527. doi: 10.1016/j.bmc.2020.115527 PMID: 32345458
  47. Zhu, S.; Wang, Y.; Wen, Z.; Duan, Y.; Huang, Y. Discovery of a DNA topoisomerase I inhibitor huanglongmycin N and its congeners from Streptomyces sp. CB09001. J. Org. Chem., 2021, 86(23), 16675-16683. doi: 10.1021/acs.joc.1c01939 PMID: 34709824
  48. Wang, M.; Liang, L.; Wang, R.; Jia, S.; Xu, C.; Wang, Y.; Luo, M.; Lin, Q.; Yang, M.; Zhou, H.; Liu, D.; Qing, C. Narciclasine, a novel topoisomerase I inhibitor, exhibited potent anti-cancer activity against cancer cells. Nat. Prod. Bioprospect., 2023, 13(1), 27. doi: 10.1007/s13659-023-00392-1 PMID: 37640882
  49. Majhi, S.; Das, D. Chemical derivatization of natural products: Semisynthesis and pharmacological aspects- A decade update. Tetrahedron, 2021, 78, 131801. doi: 10.1016/j.tet.2020.131801
  50. Nadysev, G.Y.; Tikhomirov, A.S.; Lin, M.H.; Yang, Y.T.; Dezhenkova, L.G.; Chen, H.Y.; Kaluzhny, D.N.; Schols, D.; Shtil, A.A.; Shchekotikhin, A.E.; Chueh, P.J. Aminomethylation of heliomycin: preparation and anticancer characterization of the first series of semi-synthetic derivatives. Eur. J. Med. Chem., 2018, 143, 1553-1562. doi: 10.1016/j.ejmech.2017.10.055 PMID: 29137865
  51. Liu, W.; Li, Q.; Hu, J.; Wang, H.; Xu, F.; Bian, Q. Application of natural products derivatization method in the design of targeted anticancer agents from 2000 to 2018. Bioorg. Med. Chem., 2019, 27(23), 115150. doi: 10.1016/j.bmc.2019.115150 PMID: 31635893
  52. Davison, E.K.; Brimble, M.A. Natural product derived privileged scaffolds in drug discovery. Curr. Opin. Chem. Biol., 2019, 52, 1-8. doi: 10.1016/j.cbpa.2018.12.007 PMID: 30682725
  53. Kamal, A.; Suresh, P.; Ramaiah, M.J.; Srinivasa, R. T.; Kapavarapu, R.K.; Rao, B.N.; Imthiajali, S.; Lakshminarayan Reddy, T.; Pushpavalli, S.N.C.V.L.; Shankaraiah, N.; Pal-Bhadra, M. 4β-4-(1-(Aryl)ureido)benzamidepodophyllotoxins as DNA topoisomerase I and IIα inhibitors and apoptosis inducing agents. Bioorg. Med. Chem., 2013, 21(17), 5198-5208. doi: 10.1016/j.bmc.2013.06.033 PMID: 23849207
  54. Fukuda, T.; Nanjo, Y.; Fujimoto, M.; Yoshida, K.; Natsui, Y.; Ishibashi, F.; Okazaki, F.; To, H.; Iwao, M. Lamellarin-inspired potent topoisomerase I inhibitors with the unprecedented ben zog1benzopyrano4,3-bindol-6(13H)-one scaffold. Bioorg. Med. Chem., 2019, 27(2), 265-277. doi: 10.1016/j.bmc.2018.11.037 PMID: 30553626
  55. Zheng, L.; Gao, T.; Ge, Z.; Ma, Z.; Xu, J.; Ding, W.; Shen, L. Design, synthesis and structure-activity relationship studies of glycosylated derivatives of marine natural product lamellarin D. Eur. J. Med. Chem., 2021, 214, 113226. doi: 10.1016/j.ejmech.2021.113226 PMID: 33582387
  56. Huang, Y.; Chen, S.; Wu, S.; Dong, G.; Sheng, C. Evodiamine-inspired dual inhibitors of histone deacetylase 1 (HDAC1) and topoisomerase 2 (TOP2) with potent antitumor activity. Acta Pharm. Sin. B, 2020, 10(7), 1294-1308. doi: 10.1016/j.apsb.2019.11.011 PMID: 32874829
  57. Deng, J.; Long, L.; Peng, X.; Jiang, W.; Peng, Y.; Zhang, X.; Zhao, Y.; Tian, Y.; Wang, Z.; Zhuo, L.N. (14)-substituted evodiamine derivatives as dual topoisomerase 1/tubulin-Inhibiting anti-gastrointestinal tumor agents. Eur. J. Med. Chem., 2023, 255, 115366. doi: 10.1016/j.ejmech.2023.115366 PMID: 37099835
  58. Wu, D.; Shi, W.; Zhao, J.; Wei, Z.; Chen, Z.; Zhao, D.; Lan, S.; Tai, J.; Zhong, B.; Yu, H. Assessment of the chemotherapeutic potential of a new camptothecin derivative, ZBH-1205. Arch. Biochem. Biophys., 2016, 604, 74-85. doi: 10.1016/j.abb.2016.06.007 PMID: 27302903
  59. Zhou, M.; Liu, M.; He, X.; Yu, H.; Wu, D.; Yao, Y.; Fan, S.; Zhang, P.; Shi, W.; Zhong, B. Synthesis and biological evaluation of novel 10-substituted-7-ethyl-10-hydroxycamptothecin (SN-38) prodrugs. Molecules, 2014, 19(12), 19718-19731. doi: 10.3390/molecules191219718 PMID: 25438082
  60. Wu, D.; Zhao, D.W.; Li, Y.Q.; Shi, W.G.; Yin, Q.L.; Tu, Z.K.; Yu, Y.Y.; Zhong, B.H.; Yu, H.; Bao, W.G. Antitumor potential of a novel camptothecin derivative, ZBH-ZM-06. Oncol. Rep., 2018, 39(2), 871-879. PMID: 29251321
  61. Li, M.; Wang, L.; Wei, Y.; Wang, W.; Liu, Z.; Zuo, A.; Liu, W.; Tian, J.; Wang, H. Anti-colorectal cancer effects of a novel camptothecin derivative PCC0208037 in vitro and in vivo. Pharmaceuticals, 2022, 16(1), 53. doi: 10.3390/ph16010053 PMID: 36678550
  62. Khalil, N.A.; Ahmed, E.M.; Zaher, A.F.; Alhamaky, S.M.; Osama, N.; El-Zoghbi, M.S. New benzothienopyran and benzothienopyranopyrimidine derivatives as topoisomerase I inhibitors: Design, synthesis, anticancer screening, apoptosis induction and molecular modeling studies. Bioorg. Chem., 2023, 137, 106638. doi: 10.1016/j.bioorg.2023.106638 PMID: 37257374
  63. Ling, Y.; Hao, Z.Y.; Liang, D.; Zhang, C.L.; Liu, Y.F.; Wang, Y. The expanding role of pyridine and dihydropyridine scaffolds in drug design. Drug Des. Devel. Ther., 2021, 15, 4289-4338. doi: 10.2147/DDDT.S329547 PMID: 34675489
  64. Prachayasittikul, S.; Pingaew, R.; Worachartcheewan, A.; Sinthupoom, N.; Prachayasittikul, V.; Ruchirawat, S.; Prachayasittikul, V. Roles of pyridine and pyrimidine derivatives as privileged scaffolds in anticancer agents. Mini Rev. Med. Chem., 2017, 17(10), 869-901. PMID: 27670581
  65. El-Gohary, N.S.; Hawas, S.S.; Gabr, M.T.; Shaaban, M.I.; El-Ashmawy, M.B. New series of fused pyrazolopyridines: Synthesis, molecular modeling, antimicrobial, antiquorum-sensing and antitumor activities. Bioorg. Chem., 2019, 92, 103109. doi: 10.1016/j.bioorg.2019.103109 PMID: 31521987
  66. Hawas, S.S.; El-Gohary, N.S.; Gabr, M.T.; Shaaban, M.I.; El-Ashmawy, M.B. Synthesis, molecular docking, antimicrobial, antiquorum-sensing and antiproliferative activities of new series of pyrazolo3,4- bpyridine analogs. Synth. Commun., 2019, 49(19), 2466-2487. doi: 10.1080/00397911.2019.1618873
  67. Jun, K.Y.; Kwon, H.; Park, S.E.; Lee, E.; Karki, R.; Thapa, P.; Lee, J.H.; Lee, E.S.; Kwon, Y. Discovery of dihydroxylated 2,4-diphenyl-6-thiophen-2-yl-pyridine as a non-intercalative DNA-binding topoisomerase II-specific catalytic inhibitor. Eur. J. Med. Chem., 2014, 80, 428-438. doi: 10.1016/j.ejmech.2014.04.066 PMID: 24796883
  68. Kadayat, T.M.; Park, C.; Jun, K.Y.; Thapa Magar, T.B.; Bist, G.; Yoo, H.Y.; Kwon, Y.; Lee, E.S. Hydroxylated 2,4-diphenyl indenopyridine derivatives as a selective non-intercalative topoisomerase IIα catalytic inhibitor. Eur. J. Med. Chem., 2015, 90, 302-314. doi: 10.1016/j.ejmech.2014.11.046 PMID: 25437617
  69. Kadayat, T.M.; Song, C.; Shin, S.; Magar, T.B.T.; Bist, G.; Shrestha, A.; Thapa, P.; Na, Y.; Kwon, Y.; Lee, E.S. Synthesis, topoisomerase I and II inhibitory activity, cytotoxicity, and structure–activity relationship study of 2-phenyl- or hydroxylated 2-phenyl-4-aryl-5H-indeno1,2-bpyridines. Bioorg. Med. Chem., 2015, 23(13), 3499-3512. doi: 10.1016/j.bmc.2015.04.031 PMID: 26022080
  70. Kadayat, T.M.; Song, C.; Kwon, Y.; Lee, E.S. Modified 2,4-diaryl-5H-indeno1,2-bpyridines with hydroxyl and chlorine moiety: Synthesis, anticancer activity, and structure–activity relationship study. Bioorg. Chem., 2015, 62, 30-40. doi: 10.1016/j.bioorg.2015.07.002 PMID: 26218799
  71. Kwon, H.B.; Park, C.; Jeon, K.H.; Lee, E.; Park, S.E.; Jun, K.Y.; Kadayat, T.M.; Thapa, P.; Karki, R.; Na, Y.; Park, M.S.; Rho, S.B.; Lee, E.S.; Kwon, Y. A series of novel terpyridine-skeleton molecule derivants inhibit tumor growth and metastasis by targeting topoisomerases. J. Med. Chem., 2015, 58(3), 1100-1122. doi: 10.1021/jm501023q PMID: 25603122
  72. Karki, R.; Park, C.; Jun, K.Y.; Jee, J.G.; Lee, J.H.; Thapa, P.; Kadayat, T.M.; Kwon, Y.; Lee, E.S. Synthesis, antitumor activity, and structure–activity relationship study of trihydroxylated 2,4,6-triphenyl pyridines as potent and selective topoisomerase II inhibitors. Eur. J. Med. Chem., 2014, 84, 555-565. doi: 10.1016/j.ejmech.2014.07.058 PMID: 25062006
  73. Karki, R.; Park, C.; Jun, K.Y.; Kadayat, T.M.; Lee, E.S.; Kwon, Y. Synthesis and biological activity of 2,4-di-p-phenolyl-6-2-furanyl-pyridine as a potent topoisomerase II poison. Eur. J. Med. Chem., 2015, 90, 360-378. doi: 10.1016/j.ejmech.2014.11.045 PMID: 25437622
  74. Karki, R.; Song, C.; Kadayat, T.M.; Magar, T.B.T.; Bist, G.; Shrestha, A.; Na, Y.; Kwon, Y.; Lee, E.S. Topoisomerase I and II inhibitory activity, cytotoxicity, and structure–activity relationship study of dihydroxylated 2,6-diphenyl-4-aryl pyridines. Bioorg. Med. Chem., 2015, 23(13), 3638-3654. doi: 10.1016/j.bmc.2015.04.002 PMID: 25936262
  75. Karki, R.; Jun, K.Y.; Kadayat, T.M.; Shin, S.; Thapa Magar, T.B.; Bist, G.; Shrestha, A.; Na, Y.; Kwon, Y.; Lee, E.S. A new series of 2-phenol-4-aryl-6-chlorophenyl pyridine derivatives as dual topoisomerase I/II inhibitors: Synthesis, biological evaluation and 3D-QSAR study. Eur. J. Med. Chem., 2016, 113, 228-245. doi: 10.1016/j.ejmech.2016.02.050 PMID: 26945111
  76. Thapa, P.; Jun, K.Y.; Kadayat, T.M.; Park, C.; Zheng, Z.; Thapa Magar, T.B.; Bist, G.; Shrestha, A.; Na, Y.; Kwon, Y.; Lee, E.S. Design and synthesis of conformationally constrained hydroxylated 4-phenyl-2-aryl chromenopyridines as novel and selective topoisomerase II-targeted antiproliferative agents. Bioorg. Med. Chem., 2015, 23(19), 6454-6466. doi: 10.1016/j.bmc.2015.08.018 PMID: 26361737
  77. Thapa, P.; Kadayat, T.M.; Park, S.; Shin, S.; Thapa, M.T.B.; Bist, G.; Shrestha, A.; Na, Y.; Kwon, Y.; Lee, E.S. Synthesis and biological evaluation of 2-phenol-4-chlorophenyl-6-aryl pyridines as topoisomerase II inhibitors and cytotoxic agents. Bioorg. Chem., 2016, 66, 145-159. doi: 10.1016/j.bioorg.2016.04.007 PMID: 27174797
  78. Park, S.; Thapa Magar, T.B.; Kadayat, T.M.; Lee, H.J.; Bist, G.; Shrestha, A.; Lee, E.S.; Kwon, Y. Rational design, synthesis, and evaluation of novel 2,4-Chloro- and Hydroxy-Substituted diphenyl Benzofuro3,2-bPyridines: Non-intercalative catalytic topoisomerase I and II dual inhibitor. Eur. J. Med. Chem., 2017, 127, 318-333. doi: 10.1016/j.ejmech.2017.01.003 PMID: 28068603
  79. Park, S.; Kadayat, T.M.; Jun, K.Y.; Thapa Magar, T.B.; Bist, G.; Shrestha, A.; Lee, E.S.; Kwon, Y. Novel 2-aryl-4-(4′-hydroxyphenyl)-5H-indeno1,2-bpyridines as potent DNA non-intercalative topoisomerase catalytic inhibitors. Eur. J. Med. Chem., 2017, 125, 14-28. doi: 10.1016/j.ejmech.2016.09.019 PMID: 27643560
  80. Magar, T.B.T.; Seo, S.H.; Kadayat, T.M.; Jo, H.; Shrestha, A.; Bist, G.; Katila, P.; Kwon, Y.; Lee, E.S. Synthesis and SAR study of new hydroxy and chloro-substituted 2,4-diphenyl 5H-chromeno4,3-bpyridines as selective topoisomerase IIα-targeting anticancer agents. Bioorg. Med. Chem., 2018, 26(8), 1909-1919. doi: 10.1016/j.bmc.2018.02.035 PMID: 29510948
  81. Bist, G.; Park, S.; Song, C.; Thapa Magar, T.B.; Shrestha, A.; Kwon, Y.; Lee, E.S. Dihydroxylated 2,6-diphenyl-4-chlorophenylpyridines: Topoisomerase I and IIα dual inhibitors with DNA non-intercalative catalytic activity. Eur. J. Med. Chem., 2017, 133, 69-84. doi: 10.1016/j.ejmech.2017.03.048 PMID: 28384547
  82. Shrestha, A.; Park, S.; Shin, S.; Man Kadayat, T.; Bist, G.; Katila, P.; Kwon, Y.; Lee, E.S. Design, synthesis, biological evaluation, structure-activity relationship study, and mode of action of 2-phenol-4,6-dichlorophenyl-pyridines. Bioorg. Chem., 2018, 79, 1-18. doi: 10.1016/j.bioorg.2018.03.033 PMID: 29715635
  83. Matada, B.S.; Pattanashettar, R.; Yernale, N.G. A comprehensive review on the biological interest of quinoline and its derivatives. Bioorg. Med. Chem., 2021, 32, 115973. doi: 10.1016/j.bmc.2020.115973 PMID: 33444846
  84. Musiol, R. An overview of quinoline as a privileged scaffold in cancer drug discovery. Expert Opin. Drug Discov., 2017, 12(6), 583-597. doi: 10.1080/17460441.2017.1319357 PMID: 28399679
  85. Kunwar, S.; Hwang, S.Y.; Katila, P.; Park, S.; Jeon, K.H.; Kim, D.; Kadayat, T.M.; Kwon, Y.; Lee, E.S. Discovery of a 2,4-diphenyl-5,6-dihydrobenzo(h)quinolin-8-amine derivative as a novel DNA intercalating topoisomerase IIα poison. Eur. J. Med. Chem., 2021, 226, 113860. doi: 10.1016/j.ejmech.2021.113860 PMID: 34597897
  86. Mekheimer, R.A.; Allam, S.M.R.; Al-Sheikh, M.A.; Moustafa, M.S.; Al-Mousawi, S.M.; Mostafa, Y.A.; Youssif, B.G.M.; Gomaa, H.A.M.; Hayallah, A.M.; Abdelaziz, M.; Sadek, K.U. Discovery of new pyrimido5,4-cquinolines as potential antiproliferative agents with multitarget actions: Rapid synthesis, docking, and ADME studies. Bioorg. Chem., 2022, 121, 105693. doi: 10.1016/j.bioorg.2022.105693 PMID: 35219045
  87. Zhao, Q.; Xu, X.; Xie, Z.; Liu, X.; You, Q.; Guo, Q.; Zhong, Y.; Li, Z. Design, synthesis and biological evaluation of 3-substituted indenoisoquinoline derivatives as topoisomerase I inhibitors. Bioorg. Med. Chem. Lett., 2016, 26(3), 1068-1072. doi: 10.1016/j.bmcl.2015.12.014 PMID: 26725027
  88. Elanany, M.A.; Osman, E.E.A.; Gedawy, E.M.; Abou-Seri, S.M. Design and synthesis of novel cytotoxic fluoroquinolone analogs through topoisomerase inhibition, cell cycle arrest, and apoptosis. Sci. Rep., 2023, 13(1), 4144. doi: 10.1038/s41598-023-30885-5 PMID: 36914702
  89. El-Sheref, E.M.; Tawfeek, H.N.; Hassan, A.A.; Bräse, S.; Elbastawesy, M.A.I.; Gomaa, H.A.M.; Mostafa, Y.A.; Youssif, B.G.M. Synthesis of novel amidines via one-pot three component reactions: Selective topoisomerase I inhibitors with antiproliferative properties. Front Chem., 2022, 10, 1039176. doi: 10.3389/fchem.2022.1039176 PMID: 36465858
  90. Almeida, S.M.V.; Lafayette, E.A.; Silva, W.L.; Lima Serafim, V.; Menezes, T.M.; Neves, J.L.; Ruiz, A.L.T.G.; Carvalho, J.E.; Moura, R.O.; Beltrão, E.I.C.; Carvalho Júnior, L.B.; Lima, M.C.A. New spiro-acridines: DNA interaction, antiproliferative activity and inhibition of human DNA topoisomerases. Int. J. Biol. Macromol., 2016, 92, 467-475. doi: 10.1016/j.ijbiomac.2016.07.057 PMID: 27435006
  91. Gouveia, R.G.; Ribeiro, A.G.; Segundo, M..S.P.; de Oliveira, J.F.; de Lima, M.C.A.; de Lima Souza, T.R.C.; de Almeida, S.M.V.; de Moura, R.O. Synthesis, DNA and protein interactions and human topoisomerase inhibition of novel Spiroacridine derivatives. Bioorg. Med. Chem., 2018, 26(22), 5911-5921. doi: 10.1016/j.bmc.2018.10.038 PMID: 30420325
  92. Duarte, S.S.; Silva, D.K.F.; Lisboa, T.M.H.; Gouveia, R.G.; de Andrade, C.C.N.; de Sousa, V.M.; Ferreira, R.C.; de Moura, R.O.; Gomes, J.N.S.; da Silva, P.M.; de Lourdes Assunção Araújo de Azeve, F.; Keesen, T.S.L.; Gonçalves, J.C.R.; Batista, L.M.; Sobral, M.V. Apoptotic and antioxidant effects in HCT-116 colorectal carcinoma cells by a spiro-acridine compound, AMTAC-06. Pharmacol. Rep., 2022, 74(3), 545-554. doi: 10.1007/s43440-022-00357-0 PMID: 35297003
  93. Zhang, W.; Zhang, B.; Zhang, W.; Yang, T.; Wang, N.; Gao, C.; Tan, C.; Liu, H.; Jiang, Y. Synthesis and antiproliferative activity of 9-benzylamino-6-chloro-2-methoxy-acridine derivatives as potent DNA-binding ligands and topoisomerase II inhibitors. Eur. J. Med. Chem., 2016, 116, 59-70. doi: 10.1016/j.ejmech.2016.03.066 PMID: 27060757
  94. Ammar, L.; Lin, H.Y.; Shih, S.P.; Tsai, T.N.; Syu, Y.T.; Abdel-Halim, M.; Hwang, T.L.; Abadi, A.H. Novel 9-benzylaminoacridine derivatives as dual inhibitors of phosphodiesterase 5 and topoisomerase II for the treatment of colon cancer. Molecules, 2023, 28(2), 840. doi: 10.3390/molecules28020840 PMID: 36677898
  95. Yuan, Z.; Chen, S.; Chen, C.; Chen, J.; Chen, C.; Dai, Q.; Gao, C.; Jiang, Y. Design, synthesis and biological evaluation of 4-amidobenzimidazole acridine derivatives as dual PARP and Topo inhibitors for cancer therapy. Eur. J. Med. Chem., 2017, 138, 1135-1146. doi: 10.1016/j.ejmech.2017.07.050 PMID: 28763648
  96. Dai, Q.; Chen, J.; Gao, C.; Sun, Q.; Yuan, Z.; Jiang, Y. Design, synthesis and biological evaluation of novel phthalazinone acridine derivatives as dual PARP and Topo inhibitors for potential anticancer agents. Chin. Chem. Lett., 2020, 31(2), 404-408. doi: 10.1016/j.cclet.2019.06.019
  97. Barros, F.W.A.; Silva, T.G.; da Rocha Pitta, M.G.; Bezerra, D.P.; Costa-Lotufo, L.V.; de Moraes, M.O.; Pessoa, C.; de Moura, M.A.F.B.; de Abreu, F.C.; de Lima, M.C.A.; Galdino, S.L.; da Rocha Pitta, I.; Goulart, M.O.F. Synthesis and cytotoxic activity of new acridine-thiazolidine derivatives. Bioorg. Med. Chem., 2012, 20(11), 3533-3539. doi: 10.1016/j.bmc.2012.04.007 PMID: 22546208
  98. Barros, F.W.A.; Bezerra, D.P.; Ferreira, P.M.P.; Cavalcanti, B.C.; Silva, T.G.; Pitta, M.G.R.; de Lima, M. Inhibition of DNA Topoisomerase I activity and induction of apoptosis by thiazacridine derivatives. Toxicol. Appl. Pharmacol., 2013, 268, 37-46. doi: 10.1016/j.taap.2013.01.010 PMID: 23347980
  99. Perin, N.; Nhili, R. Cindrić, M.; Bertoša, B.; Vušak, D.; Martin-Kleiner, I.; Laine, W.; Karminski-Zamola, G.; Kralj, M.; David-Cordonnier, M.H.; Hranjec, M. Amino substituted benzimidazo1,2- aquinolines: Antiproliferative potency, 3D QSAR study and DNA binding properties. Eur. J. Med. Chem., 2016, 122, 530-545. doi: 10.1016/j.ejmech.2016.07.007 PMID: 27448912
  100. Cindrić, M.; Jambon, S.; Harej, A.; Depauw, S.; David-Cordonnier, M.H.; Kraljević, Pavelić, S.; Karminski-Zamola, G.; Hranjec, M. Novel amidino substituted benzimidazole and benzothiazole benzobthieno-2-carboxamides exert strong antiproliferative and DNA binding properties. Eur. J. Med. Chem., 2017, 136, 468-479. doi: 10.1016/j.ejmech.2017.05.014 PMID: 28525845
  101. Kamal, A.; Narasimha Rao, M.P.; Swapna, P.; Srinivasulu, V.; Bagul, C.; Shaik, A.B.; Mullagiri, K.; Kovvuri, J.; Reddy, V.S.; Vidyasagar, K.; Nagesh, N. Synthesis of β-carboline–benzimidazole conjugates using lanthanum nitrate as a catalyst and their biological evaluation. Org. Biomol. Chem., 2014, 12(15), 2370-2387. doi: 10.1039/C3OB42236D PMID: 24604306
  102. Noha, R.M.; Abdelhameid, M.K.; Ismail, M.M.; Mohammed, M.R.; Salwa, E. Design, synthesis and screening of benzimidazole containing compounds with methoxylated aryl radicals as cytotoxic molecules on (HCT-116) colon cancer cells. Eur. J. Med. Chem., 2021, 209, 112870. doi: 10.1016/j.ejmech.2020.112870 PMID: 33158579
  103. Pandey, S.; Tripathi, P.; Parashar, P.; Maurya, V.; Malik, M.Z.; Singh, R.; Yadav, P.; Tandon, V. Synthesis and biological evaluation of novel 1 H-benzodimidazole derivatives as potential anticancer agents targeting human topoisomerase I. ACS Omega, 2022, 7(3), 2861-2880. doi: 10.1021/acsomega.1c05743 PMID: 35097282
  104. Singla, P.; Luxami, V.; Singh, R.; Tandon, V.; Paul, K. Novel pyrazolo3,4-dpyrimidine with 4-(1H-benzimidazol-2-yl)-phenylamine as broad spectrum anticancer agents: Synthesis, cell based assay, topoisomerase inhibition, DNA intercalation and bovine serum albumin studies. Eur. J. Med. Chem., 2017, 126, 24-35. doi: 10.1016/j.ejmech.2016.09.093 PMID: 27744184
  105. Subba Rao, A.V.; Vishnu Vardhan, M.V.P.S.; Subba Reddy, N.V.; Srinivasa Reddy, T.; Shaik, S.P.; Bagul, C.; Kamal, A. Synthesis and biological evaluation of imidazopyridinyl-1,3,4-oxadiazole conjugates as apoptosis inducers and topoisomerase IIα inhibitors. Bioorg. Chem., 2016, 69, 7-19. doi: 10.1016/j.bioorg.2016.09.002 PMID: 27656775
  106. Singh, I.; Luxami, V.; Paul, K. Synthesis of naphthalimide-phenanthro9,10-dimidazole derivatives: In vitro evaluation, binding interaction with DNA and topoisomerase inhibition. Bioorg. Chem., 2020, 96, 103631. doi: 10.1016/j.bioorg.2020.103631 PMID: 32036164
  107. Soni, J.P.; Nikitha Reddy, G.; Rahman, Z.; Sharma, A.; Spandana, A.; Phanindranath, R.; Dandekar, M.P.; Nagesh, N.; Shankaraiah, N. Synthesis and cytotoxicity evaluation of DNA-interactive β-carboline indolyl-3-glyoxamide derivatives: Topo-II inhibition and in silico modelling studies. Bioorg. Chem., 2023, 131, 106313. doi: 10.1016/j.bioorg.2022.106313 PMID: 36516521
  108. Lakshmi M, K.; Thatikonda, S.; Sigalapalli, D.K.; Sagar, A.; Kiranmai, G.; Kalle, A.M.; Alvala, M.; Godugu, C.; Nagesh, N.; Nagendra B, B. Design and synthesis of β-carboline linked aryl sulfonyl piperazine derivatives: DNA topoisomerase II inhibition with DNA binding and apoptosis inducing ability. Bioorg. Chem., 2020, 101, 103983. doi: 10.1016/j.bioorg.2020.103983 PMID: 32683136
  109. Chaniyara, R.; Tala, S.; Chen, C.W.; Zang, X.; Kakadiya, R.; Lin, L.F.; Chen, C.H.; Chien, S.I.; Chou, T.C.; Tsai, T.H.; Lee, T.C.; Shah, A.; Su, T.L. Novel antitumor indolizino6,7-bindoles with multiple modes of action: DNA cross-linking and topoisomerase I and II inhibition. J. Med. Chem., 2013, 56(4), 1544-1563. doi: 10.1021/jm301788a PMID: 23360284
  110. Chang, S.M.; Christian, W.; Wu, M.H.; Chen, T.L.; Lin, Y.W.; Suen, C.S.; Pidugu, H.B.; Detroja, D.; Shah, A.; Hwang, M.J.; Su, T.L.; Lee, T.C. Novel indolizino8,7-bindole hybrids as anti-small cell lung cancer agents: Regioselective modulation of topoisomerase II inhibitory and DNA crosslinking activities. Eur. J. Med. Chem., 2017, 127, 235-249. doi: 10.1016/j.ejmech.2016.12.046 PMID: 28064078
  111. Tokala, R.; Sana, S.; Lakshmi, U.J.; Sankarana, P.; Sigalapalli, D.K.; Gadewal, N.; Kode, J.; Shankaraiah, N. Design and synthesis of thiadiazolo-carboxamide bridged β-carboline-indole hybrids: DNA intercalative topo-IIα inhibition with promising antiproliferative activity. Bioorg. Chem., 2020, 105, 104357. doi: 10.1016/j.bioorg.2020.104357 PMID: 33091673
  112. Kaur, M.; Mehta, V.; Abdullah Wani, A.; Arora, S.; Bharatam, P.V.; Sharon, A.; Singh, S.; Kumar, R. Synthesis of 1,4-dihydropyrazolo4,3-bindoles via intramolecular C(sp2)-N bond formation involving nitrene insertion, DFT study and their anticancer assessment. Bioorg. Chem., 2021, 114, 105114. doi: 10.1016/j.bioorg.2021.105114 PMID: 34243073
  113. de Oliveira, J.F.; Lima, T.S.; Vendramini-Costa, D.B.; de Lacerda Pedrosa, S.C.B.; Lafayette, E.A.; da Silva, R.M.F.; de Almeida, S.M.V.; de Moura, R.O.; Ruiz, A.L.T.G.; de Carvalho, J.E.; de Lima, M.C.A. Thiosemicarbazones and 4-thiazolidinones indole-based derivatives: Synthesis, evaluation of antiproliferative activity, cell death mechanisms and topoisomerase inhibition assay. Eur. J. Med. Chem., 2017, 136, 305-314. doi: 10.1016/j.ejmech.2017.05.023 PMID: 28505535
  114. Kadagathur, M.; Devi, G.P.; Grewal, P.; Sigalapalli, D.K.; Makhal, P.N.; Banerjee, U.C.; Bathini, N.B.; Tangellamudi, N.D. Novel diindoloazepinone derivatives as DNA minor groove binding agents with selective topoisomerase I inhibition: Design, synthesis, biological evaluation and docking studies. Bioorg. Chem., 2020, 99, 103629. doi: 10.1016/j.bioorg.2020.103629 PMID: 32272367
  115. Kadagathur, M.; Sujat Shaikh, A.; Panda, B.; George, J.; Phanindranath, R.; Kumar Sigalapalli, D.; Bhale, N.A.; Godugu, C.; Nagesh, N.; Shankaraiah, N.; Tangellamudi, N.D. Synthesis of indolo/pyrroloazepinone-oxindoles as potential cytotoxic, DNA-intercalating and Topo I inhibitors. Bioorg. Chem., 2022, 122, 105706. doi: 10.1016/j.bioorg.2022.105706 PMID: 35240414
  116. Shchekotikhin, A.E.; Glazunova, V.A.; Dezhenkova, L.G.; Luzikov, Y.N.; Buyanov, V.N.; Treshalina, H.M.; Lesnaya, N.A.; Romanenko, V.I.; Kaluzhny, D.N.; Balzarini, J.; Agama, K.; Pommier, Y.; Shtil, A.A.; Preobrazhenskaya, M.N. Synthesis and evaluation of new antitumor 3-aminomethyl-4,11-dihydroxynaphtho2,3-findole-5,10-diones. Eur. J. Med. Chem., 2014, 86, 797-805. doi: 10.1016/j.ejmech.2014.09.021 PMID: 25244612
  117. Trudu, F.; Amato, F. Vaňhara, P.; Pivetta, T.; Peña-Méndez, E.M.; Havel, J. Coordination compounds in cancer: Past, present and perspectives. J. Appl. Biomed., 2015, 13(2), 79-103. doi: 10.1016/j.jab.2015.03.003
  118. Yu, G.; Jiang, M.; Huang, F.; Chen, X. Supramolecular coordination complexes as diagnostic and therapeutic agents. Curr. Opin. Chem. Biol., 2021, 61, 19-31. doi: 10.1016/j.cbpa.2020.08.007 PMID: 33147551
  119. Grazul, M.; Budzisz, E. Biological activity of metal ions complexes of chromones, coumarins and flavones. Coord. Chem. Rev., 2009, 253(21-22), 2588-2598. doi: 10.1016/j.ccr.2009.06.015
  120. Dolfen, D.; Schottler, K.; Valiahdi, S.M.; Jakupec, M.A.; Keppler, B.K.; Tiekink, E.R.T.; Mohr, F. Synthesis, structures and in vitro cytotoxicity of some platinum(II) complexes containing thiocarbamate esters. J. Inorg. Biochem., 2008, 102(12), 2067-2071. doi: 10.1016/j.jinorgbio.2008.07.002 PMID: 18707761
  121. Yeo, C.I.; Ooi, K.K.; Akim, A.M.; Ang, K.P.; Fairuz, Z.A.; Halim, S.N.B.A.; Ng, S.W.; Seng, H.L.; Tiekink, E.R.T. The influence of R substituents in triphenylphosphinegold(I) carbonimidothioates, Ph3PAuSC(OR)=NPh (R=Me, Et and iPr), upon in vitro cytotoxicity against the HT-29 colon cancer cell line and upon apoptotic pathways. J. Inorg. Biochem., 2013, 127, 24-38. doi: 10.1016/j.jinorgbio.2013.05.011 PMID: 23850666
  122. Tabassum, S.; Zaki, M.; Afzal, M.; Arjmand, F. Synthesis and characterization of Cu(II)-based anticancer chemotherapeutic agent targeting topoisomerase Iα In vitro DNA binding, pBR322 cleavage, molecular docking studies and cytotoxicity against human cancer cell lines. Eur. J. Med. Chem., 2014, 74, 509-523. doi: 10.1016/j.ejmech.2013.12.046 PMID: 24508781
  123. Tabassum, S.; Afzal, M.; Arjmand, F. New modulated design, docking and synthesis of carbohydrate-conjugate heterobimetallic CuII–SnIV complex as potential topoisomerase II inhibitor: In vitro DNA binding, cleavage and cytotoxicity against human cancer cell lines. Eur. J. Med. Chem., 2014, 74, 694-702. doi: 10.1016/j.ejmech.2013.09.036 PMID: 24268597
  124. Sandhaus, S.; Taylor, R.; Edwards, T.; Huddleston, A.; Wooten, Y.; Venkatraman, R.; Weber, R.T.; González-Sarrías, A.; Martin, P.M.; Cagle, P.; Tse-Dinh, Y.C.; Beebe, S.J.; Seeram, N.; Holder, A.A. A novel copper(II) complex identified as a potent drug against colorectal and breast cancer cells and as a poison inhibitor for human topoisomerase IIα. Inorg. Chem. Commun., 2016, 64, 45-49. doi: 10.1016/j.inoche.2015.12.013 PMID: 26752972
  125. Vikneswaran, R.; Eltayeb, N.E.; Ramesh, S.; Yahya, R. New alicyclic thiosemicarbazone chelated zinc(II) antitumor complexes: Interactions with DNA/protein, nuclease activity and inhibition of topoisomerase-I. Polyhedron, 2016, 105, 89-95. doi: 10.1016/j.poly.2015.12.012
  126. Heng, M.P.; Sim, K.S.; Tan, K.W. Nickel and zinc complexes of testosterone N4-substituted thiosemicarbazone: Selective cytotoxicity towards human colorectal carcinoma cell line HCT 116 and their cell death mechanisms. J. Inorg. Biochem., 2020, 208, 111097. doi: 10.1016/j.jinorgbio.2020.111097 PMID: 32438269
  127. Sahyon, H.A.; El-Bindary, A.A.; Shoair, A.F.; Abdellatif, A.A. Synthesis and characterization of ruthenium(III) complex containing 2-aminomethyl benzimidazole, and its anticancer activity of in vitro and in vivo models. J. Mol. Liq., 2018, 255, 122-134. doi: 10.1016/j.molliq.2018.01.140
  128. Hackl, C.M.; Legina, M.S.; Pichler, V.; Schmidlehner, M.; Roller, A.; Dömötör, O.; Enyedy, E.A.; Jakupec, M.A.; Kandioller, W.; Keppler, B.K. Thiomaltol‐based organometallic complexes with 1‐methylimidazole as leaving group: Synthesis, stability, and biological behavior. Chemistry, 2016, 22(48), 17269-17281. doi: 10.1002/chem.201603206 PMID: 27759173

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers