Lupiwighteone as an Antitumor Agent Reverses Multidrug Resistance in K562/ADR Cells by Regulating Cellular Prion Protein-Oct4 Axis
- Authors: Hu K.1, Zhang J.2, Zhang Y.1, Wu X.1, Jin X.1, Mao S.1, Ding P.1, Wu S.1, Ren J.1
-
Affiliations:
- School of Pharmacy, Changzhou University
- School of Pharmacy,, Changzhou University,
- Issue: Vol 24, No 20 (2024)
- Pages: 1514-1524
- Section: Oncology
- URL: https://rjsocmed.com/1871-5206/article/view/644084
- DOI: https://doi.org/10.2174/0118715206316284240807100226
- ID: 644084
Cite item
Full Text
Abstract
Introduction:One of the many reasons for cancer treatment failure and recurrence is acquired Multidrug Resistance (MDR). Overcoming cancer drug resistance has been the focus of researchers' studies. Cellular prion protein (PrPC) is a glycophosphatidylinositol-anchored cell-surface glycoprotein that has been implicated in tumor behavior, including proliferation, apoptosis, invasion, metastasis, and chemoresistance.
Methods:Lupiwighteone (Lup), a natural isoflavone found in the root of Glycyrrhiza glabra, has anticancer activity against prostate cancer cells, neuroblastoma cells, and human breast cancer cells. However, its pharmacological effects and mechanisms in drug-resistant cancer cells have not been reported. In this study, we used an adriamycin- resistant leukemia K562 cell model, and for the first time, we investigated the reversal effect of Lup on its MDR and the potential mechanism.
Results:The results indicated that Lup could induce apoptosis through the mitochondrial pathway while upregulating the expression of related apoptotic proteins, such as Bax, Cyto C, Caspase-3, and PARP1. Autophagy is commonly recognized as a protective mechanism that mediates MDR during treatment. We found that Lup induced cellular autophagy while upregulating the expression of related autophagy proteins such as Beclin 1 and LC3 II.
Conclusion:In addition, when Lup was combined with adriamycin, Lup decreased the IC50 of K562/ADR cells; moreover, Lup can downregulate the expression of drug-resistant proteins, suggesting that Lup can reverse drug resistance. Further studies have shown that Lup can downregulate the expression of PrPC-PI3K-Akt axis proteins and PrPC-Oct4 axis proteins. This study demonstrated that Lup has the potential to inhibit the proliferation of K562/ADR cells by targeting PrPC, and further study of the signaling pathway associated with PrPC may provide the experimental basis for the treatment of drug-resistant leukemia.
About the authors
Kun Hu
School of Pharmacy, Changzhou University
Email: info@benthamscience.net
Jinling Zhang
School of Pharmacy,, Changzhou University,
Email: info@benthamscience.net
Yanan Zhang
School of Pharmacy, Changzhou University
Email: info@benthamscience.net
Xinyuan Wu
School of Pharmacy, Changzhou University
Email: info@benthamscience.net
Xueyi Jin
School of Pharmacy, Changzhou University
Email: info@benthamscience.net
Shuxia Mao
School of Pharmacy, Changzhou University
Email: info@benthamscience.net
Pengcheng Ding
School of Pharmacy, Changzhou University
Email: info@benthamscience.net
Shaojun Wu
School of Pharmacy, Changzhou University
Email: info@benthamscience.net
Jie Ren
School of Pharmacy, Changzhou University
Author for correspondence.
Email: info@benthamscience.net
References
- Surguchov, A.; Bernal, L.; Surguchev, A.A. Phytochemicals as regulators of genes involved in synucleinopathies. Biomolecules, 2021, 11(5), 624. doi: 10.3390/biom11050624 PMID: 33922207
- Bartel, D.P. MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell., 2004, 116(2), 281-297. doi: 10.1016/s0092-8674(04)00045-5 PMID: 14744438
- Kumari, A.; Ahuja, S.; Bajaj, S.; Zaheer, S.; Chaitanya, V.; Agarwal, Y.; Gupta, R.; Ranga, S. Cytomorphological findings in drug defaulters of Tuberculous lymphadenitis. Cytojournal, 2023, 20, 31. doi: 10.25259/Cytojournal_16_2023 PMID: 37810436
- Narayanan, S.; Cai, C.Y.; Assaraf, Y.G.; Guo, H.Q.; Cui, Q.; Wei, L.; Huang, J.J.; Ashby, C.R., Jr; Chen, Z.S. Targeting the ubiquitin-proteasome pathway to overcome anti-cancer drug resistance. Drug Resist. Updat., 2020, 48, 100663. doi: 10.1016/j.drup.2019.100663 PMID: 31785545
- Cao, Y.X.; Wen, F.; Luo, Z.Y.; Long, X.X.; Luo, C.; Liao, P.; Li, J.J. Downregulation of microRNA let‐7f mediated the Adriamycin resistance in leukemia cell line. J. Cell. Biochem., 2020, 121(10), 4022-4033. doi: 10.1002/jcb.29541 PMID: 31793054
- Jayappa, K.D.; Tran, B.; Gordon, V.L.; Morris, C.; Saha, S.; Farrington, C.C.; OConnor, C.M.; Zawacki, K.P.; Isaac, K.M.; Kester, M.; Bender, T.P.; Williams, M.E.; Portell, C.A.; Weber, M.J.; Narla, G. PP2A modulation overcomes multidrug resistance in chronic lymphocytic leukemia via mPTP-dependent apoptosis. J. Clin. Invest., 2023, 133(13), e155938. doi: 10.1172/JCI155938 PMID: 37166997
- Li, J.M.; Li, X.; Chan, L.W.C.; Hu, R.; Zheng, T.; Li, H.; Yang, S. Lipotoxicity-polarised macrophage-derived exosomes regulate mitochondrial fitness through Miro1-mediated mitophagy inhibition and contribute to type 2 diabetes development in mice. Diabetologia, 2023, 66(12), 2368-2386. doi: 10.1007/s00125-023-05992-7 PMID: 37615690
- Luo, G.; Zhou, Z.; Huang, C.; Zhang, P.; Sun, N.; Chen, W.; Deng, C.; Li, X.; Wu, P.; Tang, J.; Qing, L. Itaconic acid induces angiogenesis and suppresses apoptosis via Nrf2/autophagy to prolong the survival of multi-territory perforator flaps. Heliyon, 2023, 9(7), e17909. doi: 10.1016/j.heliyon.2023.e17909 PMID: 37456049
- Messina, M. A brief historical overview of the past two decades of soy and isoflavone research. J. Nutr., 2010, 140(7), 1350S-1354S. doi: 10.3945/jn.109.118315 PMID: 20484551
- Xie, B.; Zhao, L.; Zhang, Z.; Zhou, C.; Tian, Y.; Kang, Y.; Chen, J.; Wei, H.; Li, L. CADM1 impairs the effect of miR-1246 on promoting cell cycle progression in chemo-resistant leukemia cells. BMC Cancer, 2023, 23(1), 955. doi: 10.1186/s12885-023-11458-1 PMID: 37814227
- Ghelli Luserna di Rorà, A.; Jandoubi, M.; Martinelli, G.; Simonetti, G. Targeting proliferation signals and the cell cycle machinery in acute leukemias: Novel molecules on the horizon. Molecules, 2023, 28(3), 1224. doi: 10.3390/molecules28031224 PMID: 36770891
- Malumbres, M. Cyclin-dependent kinases. Genome Biol., 2014, 15(6), 122. doi: 10.1186/gb4184 PMID: 25180339
- Narasimha, A.M.; Kaulich, M.; Shapiro, G.S.; Choi, Y.J.; Sicinski, P.; Dowdy, S.F. Cyclin D activates the Rb tumor suppressor by mono-phosphorylation. eLife, 2014, 3, e02872. doi: 10.7554/eLife.02872 PMID: 24876129
- Cha, S.; Sin, M.J.; Kim, M.J.; Kim, H.J.; Kim, Y.S.; Choi, E.K.; Kim, M.Y. Involvement of cellular prion protein in invasion and metastasis of lung cancer by inducing treg cell development. Biomolecules, 2021, 11(2), 285. doi: 10.3390/biom11020285 PMID: 33671884
- Han, H.; Bearss, D.J.; Browne, L.W.; Calaluce, R.; Nagle, R.B.; Von Hoff, D.D. Identification of differentially expressed genes in pancreatic cancer cells using cDNA microarray. Cancer Res., 2002, 62(10), 2890-2896. PMID: 12019169
- Go, G.; Lee, S.H. The cellular prion protein: A promising therapeutic target for cancer. Int. J. Mol. Sci., 2020, 21(23), 9208. doi: 10.3390/ijms21239208 PMID: 33276687
- Domingues, P.H.; Nanduri, L.S.Y.; Seget, K.; Venkateswaran, S.V.; Agorku, D.; Viganó, C.; von Schubert, C.; Nigg, E.A.; Swanton, C.; Sotillo, R.; Bosio, A.; Storchová, Z.; Hardt, O. Cellular prion protein PrPC and Ecto-5′-Nucleotidase are markers of the cellular stress response to aneuploidy. Cancer Res., 2017, 77(11), 2914-2926. doi: 10.1158/0008-5472.CAN-16-3052 PMID: 28377454
- Lee, J.H.; Yun, C.W.; Han, Y.S.; Kim, S.; Jeong, D.; Kwon, H.Y.; Kim, H.; Baek, M.J.; Lee, S.H. Melatonin and 5‐fluorouracil co‐suppress colon cancer stem cells by regulating cellular prion protein‐Oct4 axis. J. Pineal Res., 2018, 65(4), e12519. doi: 10.1111/jpi.12519 PMID: 30091203
- Vassallo, N.; Herms, J.; Behrens, C.; Krebs, B.; Saeki, K.; Onodera, T.; Windl, O.; Kretzschmar, H.A. Activation of phosphatidylinositol 3-kinase by cellular prion protein and its role in cell survival. Biochem. Biophys. Res. Commun., 2005, 332(1), 75-82. doi: 10.1016/j.bbrc.2005.04.099 PMID: 15896301
- Weise, J.; Sandau, R.; Schwarting, S.; Crome, O.; Wrede, A.; Schulz-Schaeffer, W.; Zerr, I.; Bähr, M. Deletion of cellular prion protein results in reduced Akt activation, enhanced postischemic caspase-3 activation, and exacerbation of ischemic brain injury. Stroke, 2006, 37(5), 1296-1300. doi: 10.1161/01.STR.0000217262.03192.d4 PMID: 16574930
- Puig, B.; Yang, D.; Brenna, S.; Altmeppen, H.C.; Magnus, T. Show me your friends and I tell you who you are: The many facets of prion protein in stroke. Cells, 2020, 9(7), 1609. doi: 10.3390/cells9071609 PMID: 32630841
- Savova, M.S.; Mihaylova, L.V.; Tews, D.; Wabitsch, M.; Georgiev, M.I. Targeting PI3K/AKT signaling pathway in obesity. Biomed. Pharmacother., 2023, 159, 114244. doi: 10.1016/j.biopha.2023.114244 PMID: 36638594
- Yuan, Y.; Long, H.; Zhou, Z.; Fu, Y.; Jiang, B. PI3KAKT-Targeting breast cancer treatments: Natural products and synthetic compounds. Biomolecules, 2023, 13(1), 93. doi: 10.3390/biom13010093 PMID: 36671478
- Yue, J.; López, J.M. Understanding MAPK Signaling Pathways in Apoptosis. Int. J. Mol. Sci., 2020, 21(7), 2346. doi: 10.3390/ijms21072346 PMID: 32231094
- Yang, M.H.; Baek, S.H.; Hwang, S.T.; Um, J.Y.; Ahn, K.S. Corilagin exhibits differential anticancer effects through the modulation of STAT3/5 and MAPKs in human gastric cancer cells. Phytother. Res., 2022, 36(6), 2449-2462. doi: 10.1002/ptr.7419 PMID: 35234310
- Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell., 2011, 144(5), 646-674. doi: 10.1016/j.cell.2011.02.013 PMID: 21376230
- Elmore, S. Apoptosis: A review of programmed cell death. Toxicol. Pathol., 2007, 35(4), 495-516. doi: 10.1080/01926230701320337 PMID: 17562483
- Kim, C.; Kim, B. Anti-cancer natural products and their bioactive compounds inducing ER stress-mediated apoptosis: A review. Nutrients, 2018, 10(8), 1021. doi: 10.3390/nu10081021 PMID: 30081573
- Gambardella, J.; Fiordelisi, A.; Santulli, G.; Ciccarelli, M.; Cerasuolo, F.A.; Sala, M.; Sommella, E.; Campiglia, P.; Illario, M.; Iaccarino, G.; Sorriento, D. Exploiting GRK2 inhibition as a therapeutic option in experimental cancer treatment: Role of p53-induced mitochondrial apoptosis. Cancers (Basel), 2020, 12(12), 3530. doi: 10.3390/cancers12123530 PMID: 33256128
- Buschhaus, J.M.; Humphries, B.; Luker, K.E.; Luker, G.D. A caspase-3 reporter for fluorescence lifetime imaging of single-cell apoptosis. Cells, 2018, 7(6), 57-67. doi: 10.3390/cells7060057 PMID: 30720785
- Nichani, K.; Li, J.; Suzuki, M.; Houston, J.P. Evaluation of caspase‐3 activity during apoptosis with fluorescence lifetime‐based cytometry measurements and phasor analyses. Cytometry A, 2020, 97(12), 1265-1275. doi: 10.1002/cyto.a.24207 PMID: 32790129
- Das, S.; Shukla, N.; Singh, S.S.; Kushwaha, S.; Shrivastava, R. Mechanism of interaction between autophagy and apoptosis in cancer. Apoptosis, 2021, 26(9-10), 512-533. doi: 10.1007/s10495-021-01687-9 PMID: 34510317
- Das, T.; Anand, U.; Pandey, S.K.; Ashby, C.R., Jr; Assaraf, Y.G.; Chen, Z.S.; Dey, A. Therapeutic strategies to overcome taxane resistance in cancer. Drug Resist. Updat., 2021, 55, 100754. doi: 10.1016/j.drup.2021.100754 PMID: 33691261
- Robey, R.W.; Pluchino, K.M.; Hall, M.D.; Fojo, A.T.; Bates, S.E.; Gottesman, M.M. Revisiting the role of ABC transporters in multidrug-resistant cancer. Nat. Rev. Cancer, 2018, 18(7), 452-464. doi: 10.1038/s41568-018-0005-8 PMID: 29643473
- Go, G.; Yun, C.W.; Yoon, Y.M.; Lim, J.H.; Lee, J.H.; Lee, S.H. Role of PrP C in cancer stem cell characteristics and drug resistance in colon cancer cells. Anticancer Res., 2020, 40(10), 5611-5620. doi: 10.21873/anticanres.14574 PMID: 32988885
- Du, J.; Pan, Y.; Shi, Y.; Guo, C.; Jin, X.; Sun, L.; Liu, N.; Qiao, T.; Fan, D. Overexpression and significance of prion protein in gastric cancer and multidrug‐resistant gastric carcinoma cell line SGC7901/ADR. Int. J. Cancer, 2005, 113(2), 213-220. doi: 10.1002/ijc.20570 PMID: 15386405
- Oliveira, B.R.; Figueiredo, M.A.; Trindade, G.S.; Marins, L.F. OCT4 mutations in human erythroleukemic cells: Implications for multiple drug resistance (MDR) phenotype. Mol. Cell. Biochem., 2015, 400(1-2), 41-50. doi: 10.1007/s11010-014-2260-7 PMID: 25355160
- Zhang, Z.; Chen, W.; Zhang, S.; Bai, J.; Liu, B.; Yung, K.K.L.; Ko, J.K.S. Isoliquiritigenin inhibits pancreatic cancer progression through blockade of p38 MAPK-regulated autophagy. Phytomedicine, 2022, 106, 154406. doi: 10.1016/j.phymed.2022.154406 PMID: 36029643
- Hamid, A.; Rajab, N.F.; Charmagne, Y.; Awang, N.; Jufri, N.F.; Rasli, N.R. Cellular and DNA toxicity study of triphenyltin ethyl phenyl dithiocarbamate and triphenyltin butyl phenyl dithiocarbamate on K562, leukemia cell line. Anticancer. Agents Med. Chem., 2024, 24(1), 58-65. doi: 10.2174/0118715206266851231025054446 PMID: 37921147
- Thol, F.; Döhner, H.; Ganser, A. How I treat refractory and relapsed acute myeloid leukemia. Blood, 2024, 143(1), 11-20. doi: 10.1182/blood.2023022481 PMID: 37944143
- Huang, Y.; Wan, C.L.; Dai, H.; Xue, S. Targeted therapy and immunotherapy for T cell acute lymphoblastic leukemia/lymphoma. Ann. Hematol., 2023, 102(8), 2001-2013. doi: 10.1007/s00277-023-05286-3 PMID: 37227492
- Sauerer, T.; Velázquez, G.F.; Schmid, C. Relapse of acute myeloid leukemia after allogeneic stem cell transplantation: Immune escape mechanisms and current implications for therapy. Mol. Cancer, 2023, 22(1), 180. doi: 10.1186/s12943-023-01889-6 PMID: 37951964
- Su, X.; Li, Y.; Wang, P.; Wang, X.; Liu, Q. Protoporphyrin IX-mediated sonodynamic action induces apoptosis of K562 cells. Ultrasonics, 2014, 54(1), 275-284. doi: 10.1016/j.ultras.2013.07.015 PMID: 23978616
- Sekeres, M.A.; Montesinos, P.; Novak, J.; Wang, J.; Jeyakumar, D.; Tomlinson, B.; Mayer, J.; Jou, E.; Robak, T.; Taussig, D.C.; Dombret, H.; Merchant, A.; Shaik, N.; OBrien, T.; Roh, W.; Liu, X.; Ma, W.; DiRienzo, C.G.; Chan, G.; Cortes, J.E. Glasdegib plus intensive or non-intensive chemotherapy for untreated acute myeloid leukemia: Results from the randomized, phase 3 BRIGHT AML 1019 trial. Leukemia, 2023, 37(10), 2017-2026. doi: 10.1038/s41375-023-02001-z PMID: 37604981
- Bolaman, A.Z.; Eroğlu Küçükdiler, A.H.; Yavaşoğlu, İ. Disseminated scabies during induction chemotherapy for acute promyelocytic leukemia. Turkiye Parazitol. Derg., 2023, 47(2), 127-128. doi: 10.4274/tpd.galenos.2023.27136 PMID: 37249118
- Zheng, C.; Zhu, Z.; Weng, S.; Zhang, Q.; Fu, Y.; Cai, X.; Liu, Z.; Shi, Y. NOD2 silencing promotes cell apoptosis and inhibits drug resistance in chronic lymphocytic leukemia by inhibiting the NF‐κB signaling pathway. J. Biochem. Mol. Toxicol., 2023, 37(12), e23510. doi: 10.1002/jbt.23510 PMID: 37700718
- Li, Z.; Ma, R.; Tang, H.; Guo, J.; Shah, Z.; Zhang, J.; Liu, N.; Cao, S.; Marcucci, G.; Artis, D.; Caligiuri, M.A.; Yu, J. Therapeutic application of human type 2 innate lymphoid cells via induction of granzyme B-mediated tumor cell death. Cell, 2024, 187(3), 624-641.e23. doi: 10.1016/j.cell.2023.12.015 PMID: 38211590
- Rausch, J.; Dzama, M.M.; Dolgikh, N.; Stiller, H.L.; Bohl, S.R.; Lahrmann, C.; Kunz, K.; Kessler, L.; Echchannaoui, H.; Chen, C.W.; Kindler, T.; Döhner, K.; Burrows, F.; Theobald, M.; Sasca, D.; Kühn, M.W.M. Menin inhibitor ziftomenib (KO-539) synergizes with drugs targeting chromatin regulation or apoptosis and sensitizes acute myeloid leukemia with MLL rearrangement or NPM1 mutation to venetoclax. Haematologica, 2023, 108(10), 2837-2843. doi: 10.3324/haematol.2022.282160 PMID: 37102614
- Long, H.; Huang, Q.; Yu, Y.; Zhang, Z.; Yao, Z.; Chen, H.; Feng, J. Dehydrocostus lactone inhibits in vitro gastrinoma cancer cell growth through apoptosis induction, sub-G1 cell cycle arrest, DNA damage and loss of mitochondrial membrane potential. Arch. Med. Sci., 2019, 15(3), 765-773. doi: 10.5114/aoms.2018.73128 PMID: 31110544
- Gu, Y.Y.; Chen, M.H.; May, B.H.; Liao, X.Z.; Liu, J.H.; Tao, L.T.; Man-yuen Sze, D.; Zhang, A.L.; Mo, S.L. Matrine induces apoptosis in multiple colorectal cancer cell lines in vitro and inhibits tumour growth with minimum side effects in vivo via Bcl-2 and caspase-3. Phytomedicine, 2018, 51, 214-225. doi: 10.1016/j.phymed.2018.10.004 PMID: 30466620
- Wang, M.; Sun, X.; Jiang, Y.; Tan, Z. NET-1 promotes invasion, adhesion and growth of hepatocellular carcinoma by regulating the expression of BAX, caspase 3, caspase 8 and BCL2. Cell. Mol. Biol., 2018, 64(12), 37-41. doi: 10.14715/cmb/2018.64.12.8 PMID: 30301500
- da Silva Sergio, L.P.; Côrtes Thomé, A.M.; da Silva Neto Trajano, L.A.; Mencalha, A.L.; de Souza da Fonseca, A.; de Paoli, F. Photobiomodulation prevents DNA fragmentation of alveolar epithelial cells and alters the mRNA levels of caspase 3 and Bcl-2 genes in acute lung injury. Photochem. Photobiol. Sci., 2018, 17(7), 975-983. doi: 10.1039/c8pp00109j PMID: 29922788
- Yousaf, S.; Ahmad, M.; Wu, S.; Zia, M.A.; Ahmed, I.; Iqbal, H.M.N.; Liu, Q.; Rehman, S. Cellular prion protein role in cancer biology: Is it a potential therapeutic target? Biomedicines, 2022, 10(11), 2833. doi: 10.3390/biomedicines10112833 PMID: 36359353
- Limone, A.; Maggisano, V.; Sarnataro, D.; Bulotta, S. Emerging roles of the cellular prion protein (PrPC) and 37/67 kDa laminin receptor (RPSA) interaction in cancer biology. Cell. Mol. Life Sci., 2023, 80(8), 207. doi: 10.1007/s00018-023-04844-2 PMID: 37452879
- Cheng, Q.; Zheng, H.; Li, M.; Wang, H.; Guo, X.; Zheng, Z.; Chen, C.; Liu, J.; Zhan, T.; Li, Z.; Wu, H.; Han, J.; Liu, L.; Tang, T.; Chen, Q.; Du, L. LGR4 cooperates with PrPC to endow the stemness of colorectal cancer stem cells contributing to tumorigenesis and liver metastasis. Cancer Lett., 2022, 540, 215725. doi: 10.1016/j.canlet.2022.215725 PMID: 35561877
- Wang, H.; Li, X.; Xia, B.; Zhang, Q.; He, J.; Yang, L. Amelioration of chronic prostatitis by fractions of Mongolian medicine Hosta plantaginea flowers via inhibition of NF-κB, MAPKs, JAK-STAT, and PI3K-Akt signaling pathways in rats. J. Ethnopharmacol., 2023, 307, 116245. doi: 10.1016/j.jep.2023.116245 PMID: 36746294
- Lim, J.H.; Go, G.; Lee, S.H. PrPC regulates the cancer stem cell properties via interaction with c-Met in colorectal cancer cells. Anticancer Res., 2021, 41(7), 3459-3470. doi: 10.21873/anticanres.15133 PMID: 34230141
- Wang, Y.J.; Herlyn, M. The emerging roles of Oct4 in tumor-initiating cells. Am. J. Physiol. Cell Physiol., 2015, 309(11), C709-C718. doi: 10.1152/ajpcell.00212.2015 PMID: 26447206
- Yang, C.C.; Sung, P.H.; Chen, K.H.; Chai, H.T.; Chiang, J.Y.; Ko, S.F.; Lee, F.Y.; Yip, H.K. Valsartan- and melatonin-supported adipose-derived mesenchymal stem cells preserve renal function in chronic kidney disease rat through upregulation of prion protein participated in promoting PI3K-Akt-mTOR signaling and cell proliferation. Biomed. Pharmacother., 2022, 146, 112551. doi: 10.1016/j.biopha.2021.112551 PMID: 34923336
- Tazzari, P.L.; Cappellini, A.; Ricci, F.; Evangelisti, C.; Papa, V.; Grafone, T.; Martinelli, G.; Conte, R.; Cocco, L.; McCubrey, J.A.; Martelli, A.M. Multidrug resistance-associated protein 1 expression is under the control of the phosphoinositide 3 kinase/Akt signal transduction network in human acute myelogenous leukemia blasts. Leukemia, 2007, 21(3), 427-438. doi: 10.1038/sj.leu.2404523 PMID: 17215852
- Li, Y.J.; Lei, Y.H.; Yao, N.; Wang, C.R.; Hu, N.; Ye, W.C.; Zhang, D.M.; Chen, Z.S. Autophagy and multidrug resistance in cancer. Chin. J. Cancer, 2017, 36(1), 52. doi: 10.1186/s40880-017-0219-2 PMID: 28646911
- Zeng, T.; Xu, M.; Zhang, W.; Gu, X.; Zhao, F.; Liu, X.; Zhang, X. Autophagy inhibition and microRNA 199a 5p upregulation in paclitaxel resistant A549/T lung cancer cells. Oncol. Rep., 2021, 46(1), 149. doi: 10.3892/or.2021.8100 PMID: 34080652
- Zhang, X.; Chen, X.; Guo, Y.; Jia, H.R.; Jiang, Y.W.; Wu, F.G. Endosome/lysosome-detained supramolecular nanogels as an efflux retarder and autophagy inhibitor for repeated photodynamic therapy of multidrug-resistant cancer. Nanoscale Horiz., 2020, 5(3), 481-487. doi: 10.1039/C9NH00643E PMID: 32118218
- Maiuri, M.C.; Zalckvar, E.; Kimchi, A.; Kroemer, G. Self-eating and self-killing: Crosstalk between autophagy and apoptosis. Nat. Rev. Mol. Cell Biol., 2007, 8(9), 741-752. doi: 10.1038/nrm2239 PMID: 17717517
- Zhao, Q.; Peng, C.; Zheng, C.; He, X.H.; Huang, W.; Han, B. Recent advances in characterizing natural products that regulate autophagy. Anticancer. Agents Med. Chem., 2020, 19(18), 2177-2196. doi: 10.2174/1871520619666191015104458 PMID: 31749434
- Ryter, S.W.; Mizumura, K.; Choi, A.M.K. The impact of autophagy on cell death modalities. Int. J. Cell Biol., 2014, 2014, 1-12. doi: 10.1155/2014/502676 PMID: 24639873
- Jing, K.; Lim, K. Why is autophagy important in human diseases? Exp. Mol. Med., 2012, 44(2), 69-72. doi: 10.3858/emm.2012.44.2.028 PMID: 22257881
- Gump, J.M.; Thorburn, A. Autophagy and apoptosis: What is the connection? Trends Cell Biol., 2011, 21(7), 387-392. doi: 10.1016/j.tcb.2011.03.007 PMID: 21561772
- Su, M.; Mei, Y.; Sinha, S. Role of the crosstalk between autophagy and apoptosis in cancer. J. Oncol., 2013, 2013, 1-14. doi: 10.1155/2013/102735 PMID: 23840208
- Mariño, G.; Niso-Santano, M.; Baehrecke, E.H.; Kroemer, G. Self-consumption: The interplay of autophagy and apoptosis. Nat. Rev. Mol. Cell Biol., 2014, 15(2), 81-94. doi: 10.1038/nrm3735 PMID: 24401948
Supplementary files
