Overexpression of NOP58 Facilitates Proliferation, Migration, Invasion, and Stemness of Non-small Cell Lung Cancer by Stabilizing hsa_circ_0001550
- Authors: Jiang Y.1, Cai Y.2, Bao Y.1, Kong X.1, Jin H.3
-
Affiliations:
- Department of Radiotherapy, Xiaoshan District Hospital Affiliated to Wenzhou Medical University
- Department of Respiratory Medicine, Xiaoshan District Hospital Affiliated to Wenzhou Medical University
- Department of General Surgery, Xiaoshan District Hospital Affiliated to Wenzhou Medical University
- Issue: Vol 24, No 16 (2024)
- Pages: 1197-1206
- Section: Oncology
- URL: https://rjsocmed.com/1871-5206/article/view/643905
- DOI: https://doi.org/10.2174/0118715206293943240615105417
- ID: 643905
Cite item
Full Text
Abstract
Background:NOP58 ribonucleoprotein (NOP58) is associated with the recurrence of lung adenocarcinoma.
Aims:Few investigations concentrate on the role of NOP58 in non-small cell lung cancer (NSCLC), which is the focus of our current study.
Methods:Following transfection, the proliferation, migration, and invasion of NSCLC cells were assessed by 5- ethynyl-2-deoxyuridine (EdU), wound healing, and transwell assays. The percentage of CD9+ cells was evaluated by flow cytometry assay. Based on target genes and binding sites predicted through bioinformatics analysis, a dual-luciferase reporter assay was performed to verify the targeting relationship between hsa_circ_0001550 and NOP58. The effect of NOP58 overexpression on hsa_circ_0001550 stability was gauged using Actinomycin D. The hsa_circ_0001550 and NOP58 expression levels, as well as protein expressions of CD44, CD133, OCT4, and SOX2 in NSCLC cells were determined by quantitative real-time PCR and Western blot, respectively.
Results:Hsa_circ_0001550 was remarkably up-regulated in NSCLC cell lines A549 and PC9, silencing of which weakened cell abilities to proliferate, migrate and invade, decreased CD9+ cell ratio, and diminished protein expressions of CD44, CD133, OCT4, and SOX2. NOP58 could bind to hsa_circ_0001550 and stabilize its expression, and NOP58 overexpression partially abrogated hsa_circ_0001550 knockdown-inhibited NSCLC cell proliferation, migration, invasion and stemness.
Conclusion:Overexpression of NOP58 facilitates proliferation, migration, invasion, and stemness of NSCLC cells by stabilizing hsa_circ_0001550, hinting that NOP58 is a novel molecular target for NSCLC therapy.
About the authors
Yiqian Jiang
Department of Radiotherapy, Xiaoshan District Hospital Affiliated to Wenzhou Medical University
Email: info@benthamscience.net
Ying Cai
Department of Respiratory Medicine, Xiaoshan District Hospital Affiliated to Wenzhou Medical University
Email: info@benthamscience.net
Yanhong Bao
Department of Radiotherapy, Xiaoshan District Hospital Affiliated to Wenzhou Medical University
Email: info@benthamscience.net
Xiangyang Kong
Department of Radiotherapy, Xiaoshan District Hospital Affiliated to Wenzhou Medical University
Email: info@benthamscience.net
Haigang Jin
Department of General Surgery, Xiaoshan District Hospital Affiliated to Wenzhou Medical University
Author for correspondence.
Email: info@benthamscience.net
References
- Bade, B.C.; Dela Cruz, C.S. Lung Cancer 2020. Clin. Chest Med., 2020, 41(1), 1-24. doi: 10.1016/j.ccm.2019.10.001 PMID: 32008623
- Sung, H.; Ferlay, J.; Siegel, R.L. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249. doi: 10.3322/caac.21660 PMID: 33538338
- Thai, A.A.; Solomon, B.J.; Sequist, L.V.; Gainor, J.F.; Heist, R.S. Lung cancer. Lancet, 2021, 398(10299), 535-554. doi: 10.1016/S0140-6736(21)00312-3 PMID: 34273294
- Herbst, R.S.; Morgensztern, D.; Boshoff, C. The biology and management of non-small cell lung cancer. Nature, 2018, 553(7689), 446-454. doi: 10.1038/nature25183 PMID: 29364287
- Hamilton, G.; Rath, B. Pharmacogenetics of platinum-based chemotherapy in non-small cell lung cancer: predictive validity of polymorphisms of ERCC1. Expert Opin. Drug Metab. Toxicol., 2018, 14(1), 17-24. doi: 10.1080/17425255.2018.1416095 PMID: 29226731
- Dudnik, E.; Moskovitz, M.; Rottenberg, Y. Pembrolizumab as a monotherapy or in combination with platinum-based chemotherapy in advanced non-small cell lung cancer with PD-L1 tumor proportion score (TPS) ≥50%: real-world data. OncoImmunology, 2021, 10(1), 1865653. doi: 10.1080/2162402X.2020.1865653 PMID: 33552685
- Wang, J.; Huang, R.; Huang, Y.; Chen, Y.; Chen, F. Overexpression of NOP58 as a prognostic marker in hepatocellular carcinoma: A TCGA data-based analysis. Adv. Ther., 2021, 38(6), 3342-3361. doi: 10.1007/s12325-021-01762-2 PMID: 34014550
- Wu, H.; Qin, W.; Lu, S. Long noncoding RNA ZFAS1 promoting small nucleolar RNA-mediated 2′-O-methylation via NOP58 recruitment in colorectal cancer. Mol. Cancer, 2020, 19(1), 95. doi: 10.1186/s12943-020-01201-w PMID: 32443980
- He, J.; Yu, J. Long noncoding RNA FAM83A-AS1 facilitates hepatocellular carcinoma progression by binding with NOP58 to enhance the mRNA stability of FAM83A. Biosci. Rep., 2019, 39(11), BSR20192550. doi: 10.1042/BSR20192550 PMID: 31696213
- Shen, Z.; Liu, S.; Liu, J.; Liu, J.; Yao, C. Weighted gene co-expression network analysis and treatment strategies of tumor recurrence-associated hub genes in lung adenocarcinoma. Front. Genet., 2021, 12, 756235. doi: 10.3389/fgene.2021.756235 PMID: 34868230
- Zeng, Y.; Du, W.W.; Wu, Y. A circular RNA binds to and activates akt phosphorylation and nuclear localization reducing apoptosis and enhancing cardiac repair. Theranostics, 2017, 7(16), 3842-3855. doi: 10.7150/thno.19764 PMID: 29109781
- Kristensen, L.S.; Andersen, M.S.; Stagsted, L.V.W.; Ebbesen, K.K.; Hansen, T.B.; Kjems, J. The biogenesis, biology and characterization of circular RNAs. Nat. Rev. Genet., 2019, 20(11), 675-691. doi: 10.1038/s41576-019-0158-7 PMID: 31395983
- Li, H.; Xu, J.D.; Fang, X.H. Circular RNA circRNA_000203 aggravates cardiac hypertrophy via suppressing miR-26b-5p and miR-140-3p binding to Gata4. Cardiovasc. Res., 2020, 116(7), 1323-1334. doi: 10.1093/cvr/cvz215 PMID: 31397837
- Chen, Y.G.; Kim, M.V.; Chen, X. Sensing self and foreign circular RNAs by intron identity. Mol. Cell, 2017, 67(2), 228-238.e5. doi: 10.1016/j.molcel.2017.05.022 PMID: 28625551
- Liu, C.X.; Li, X.; Nan, F. Structure and degradation of circular RNAs regulate PKR activation in innate immunity. Cell, 2019, 177(4), 865-880.e21. doi: 10.1016/j.cell.2019.03.046 PMID: 31031002
- Goodall, G.J.; Wickramasinghe, V.O. RNA in cancer. Nat. Rev. Cancer, 2021, 21(1), 22-36. doi: 10.1038/s41568-020-00306-0 PMID: 33082563
- Hong, W.; Xue, M.; Jiang, J.; Zhang, Y.; Gao, X. Circular RNA circ-CPA4/let-7 miRNA/PD-L1 axis regulates cell growth, stemness, drug resistance and immune evasion in non-small cell lung cancer (NSCLC). J. Exp. Clin. Cancer Res., 2020, 39(1), 149. doi: 10.1186/s13046-020-01648-1 PMID: 32746878
- Fan, Y.; Wang, Q.; Shi, M. Circ_0020123 promotes NSCLC tumorigenesis via up-regulating KIAA1522 expression through miR-940. Cell Cycle, 2022, 21(9), 894-907. doi: 10.1080/15384101.2022.2034093 PMID: 35196193
- Zhou, Y.; Zhang, Q.; Qiu, X.; Tian, T.; Xu, Q.; Liao, B. Hsa_circ_0001550 facilitates colorectal cancer progression through mediating microRNA -4262/nuclear casein kinase and cyclin-dependent kinase substrate 1 cascade. J. Clin. Lab. Anal., 2022, 36(7), e24532. doi: 10.1002/jcla.24532 PMID: 35698305
- Zhao, S.; Wang, B.; Ma, Y.; Kuang, J.; Liang, J.; Yuan, Y. NUCKS1 promotes proliferation, invasion and migration of non-small cell lung cancer by upregulating CDK1 expression. Cancer Manag. Res., 2020, 12, 13311-13323. doi: 10.2147/CMAR.S282181 PMID: 33380837
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods, 2001, 25(4), 402-408. doi: 10.1006/meth.2001.1262 PMID: 11846609
- Kristensen, L.S.; Jakobsen, T.; Hager, H.; Kjems, J. The emerging roles of circRNAs in cancer and oncology. Nat. Rev. Clin. Oncol., 2022, 19(3), 188-206. doi: 10.1038/s41571-021-00585-y PMID: 34912049
- Liu, X.X.; Yang, Y.E.; Liu, X. A two-circular RNA signature as a noninvasive diagnostic biomarker for lung adenocarcinoma. J. Transl. Med., 2019, 17(1), 50. doi: 10.1186/s12967-019-1800-z PMID: 30777071
- Ohshima, K.; Morii, E. Metabolic reprogramming of cancer cells during tumor progression and metastasis. Metabolites, 2021, 11(1), 28. doi: 10.3390/metabo11010028 PMID: 33401771
- Lee, Y.T.; Tan, Y.J.; Oon, C.E. Molecular targeted therapy: Treating cancer with specificity. Eur. J. Pharmacol., 2018, 834, 188-196. doi: 10.1016/j.ejphar.2018.07.034 PMID: 30031797
- Mun, E.J.; Babiker, H.M.; Weinberg, U.; Kirson, E.D.; Von Hoff, D.D. Tumor-treating fields: A fourth modality in cancer treatment. Clin. Cancer Res., 2018, 24(2), 266-275. doi: 10.1158/1078-0432.CCR-17-1117 PMID: 28765323
- Shackleton, M.; Quintana, E.; Fearon, E.R.; Morrison, S.J. Heterogeneity in cancer: Cancer stem cells versus clonal evolution. Cell, 2009, 138(5), 822-829. doi: 10.1016/j.cell.2009.08.017 PMID: 19737509
- Skvortsova, I. Cancer stem cells: What do we know about them? Cells, 2021, 10(6), 1528. doi: 10.3390/cells10061528 PMID: 34204391
- Walcher, L.; Kistenmacher, A.K.; Suo, H. Cancer stem cellsorigins and biomarkers: Perspectives for targeted personalized therapies. Front. Immunol., 2020, 11, 1280. doi: 10.3389/fimmu.2020.01280 PMID: 32849491
- Singh, A. RNA-binding protein kinetics. Nat. Methods, 2021, 18(4), 335. doi: 10.1038/s41592-021-01122-6 PMID: 33828270
- Sommer, G.; Heise, T. Role of the RNA-binding protein La in cancer pathobiology. RNA Biol., 2021, 18(2), 218-236. doi: 10.1080/15476286.2020.1792677 PMID: 32687431
- Liu, J.; Lu, J.; Li, W.; Mao, W.; Lu, Y. Machine learning screens potential drugs targeting a prognostic gene signature associated with proliferation in hepatocellular carcinoma. Front. Genet., 2022, 13, 900380. doi: 10.3389/fgene.2022.900380 PMID: 35836576
Supplementary files
