Arsenic Trioxide Suppresses Angiogenesis in Non-small Cell Lung Cancer via the Nrf2-IL-33 Signaling Pathway
- Authors: Wang M.1, Yin J.2, Han Q.1, Li B.3, Zhao X.4, Xue L.1
-
Affiliations:
- Department of Thoracic Surgery, Changzheng Hospital, Naval Medical University
- Department of Respiratory and Critical Care Medicine, Changzheng Hospital, Naval Medical University
- Department of Respiratory and Critical Care Medicine, Shanghai Fourth Peoples Hospital, School of Medicine, Tongji University
- Department of Thoracic Surgery, Shanghai Fourth Peoples Hospital, School of Medicine, Tongji University
- Issue: Vol 24, No 15 (2024)
- Pages: 1142-1150
- Section: Oncology
- URL: https://rjsocmed.com/1871-5206/article/view/643876
- DOI: https://doi.org/10.2174/0118715206288348240420174853
- ID: 643876
Cite item
Full Text
Abstract
Background:Non-Small Cell Lung Cancer (NSCLC) ranks as a leading cause of cancer-related mortality, necessitating the urgent search for cost-effective and efficient anti-NSCLC drugs. Our preliminary research has demonstrated that arsenic trioxide (ATO) significantly inhibits NSCLC angiogenesis, exerting anti-tumor effects. In conjunction with existing literature reports, the Nrf2-IL-33 pathway is emerging as a novel mechanism in NSCLC angiogenesis.
Objective:This study aimed to elucidate whether ATO can inhibit NSCLC angiogenesis through the Nrf2-IL-33 pathway.
Methods:Immunohistochemistry was employed to assess the expression of Nrf2, IL-33, and CD31 in tumor tissues from patients with NSCLC. DETA-NONOate was used as a nitric oxide (NO) donor to mimic high levels of NO in the tumor microenvironment. Western blot, quantitative real-time PCR, and enzyme-linked immunosorbent assay were utilized to evaluate the expression of Nrf2 and IL-33 in the NCI-H1299 cell line. Subcutaneous xenograft models were established in nude mice by implanting NCI-H1299 cells to assess the anti-tumor efficacy of ATO.
Results:High expression levels of Nrf2 and IL-33 were observed in tumor samples from patients with NSCLC, and Nrf2 expression positively correlated with microvascular density in NSCLC. In vitro, NO (released from 1mM DETA-NONOate) promoted activation of the Nrf2-IL-33 signaling pathway in NCI-H1299 cells, which was reversed by ATO. Additionally, both Nrf2 deficiency and ATO treatment significantly attenuated NOinduced IL-33 expression. In vivo, both ATO and the Nrf2 inhibitor ML385 demonstrated significant inhibitory effects on angiogenesis tumor growth.
Conclusion:Nrf2-IL-33 signaling is usually activated in NSCLC and positively correlates with tumor angiogenesis. ATO effectively disrupts the activation of the Nrf2-IL-33 pathway in NSCLC and thus inhibits angiogenesis, suggesting its potential as an anti-angiogenic agent for use in the treatment of NSCLC.
Keywords
About the authors
Mingdong Wang
Department of Thoracic Surgery, Changzheng Hospital, Naval Medical University
Email: info@benthamscience.net
Jizhong Yin
Department of Respiratory and Critical Care Medicine, Changzheng Hospital, Naval Medical University
Email: info@benthamscience.net
Qianyu Han
Department of Thoracic Surgery, Changzheng Hospital, Naval Medical University
Email: info@benthamscience.net
Bing Li
Department of Respiratory and Critical Care Medicine, Shanghai Fourth Peoples Hospital, School of Medicine, Tongji University
Author for correspondence.
Email: info@benthamscience.net
Xue-Wei Zhao
Department of Thoracic Surgery, Shanghai Fourth Peoples Hospital, School of Medicine, Tongji University
Author for correspondence.
Email: info@benthamscience.net
Lei Xue
Department of Thoracic Surgery, Changzheng Hospital, Naval Medical University
Author for correspondence.
Email: info@benthamscience.net
References
- Xia, C.; Dong, X.; Li, H.; Cao, M.; Sun, D.; He, S.; Yang, F.; Yan, X.; Zhang, S.; Li, N.; Chen, W. Cancer statistics in China and United States, 2022: profiles, trends, and determinants. Chin. Med. J., 2022, 135(5), 584-590. doi: 10.1097/cm9.0000000000002108 PMID: 35143424
- Asamura, H.; Nishimura, K.K.; Giroux, D.J.; Chansky, K.; Hoering, A.; Rusch, V.; Rami-Porta, R. IASLC Lung Cancer Staging Project: The new database to inform revisions in the ninth edition of the tnm classification of lung cancer. J. Thorac. Oncol., 2023, 18(5), 564-575. doi: 10.1016/j.jtho.2023.01.088 PMID: 36773775
- Egbujor, M.C.; Tucci, P.; Buttari, B.; Nwobodo, D.C.; Marini, P.; Saso, L. Phenothiazines: Nrf2 activation and antioxidant effects. J. Biochem. Mol. Toxicol., 2024, 38(3), e23661. doi: 10.1002/jbt.23661 PMID: 38369721
- He, F.; Antonucci, L.; Karin, M. NRF2 as a regulator of cell metabolism and inflammation in cancer. Carcinogenesis, 2020, 41(4), 405-416. doi: 10.1093/carcin/bgaa039 PMID: 32347301
- Solis, L.M.; Behrens, C.; Dong, W.; Suraokar, M.; Ozburn, N.C.; Moran, C.A.; Corvalan, A.H.; Biswal, S.; Swisher, S.G.; Bekele, B.N.; Minna, J.D.; Stewart, D.J.; Wistuba, I.I. Nrf2 and Keap1 abnormalities in non-small cell lung carcinoma and association with clinicopathologic features. Clin. Cancer Res., 2010, 16(14), 3743-3753. doi: 10.1158/1078-0432.Ccr-09-3352 PMID: 20534738
- Fan, Z.; Wirth, A-K.; Chen, D.; Wruck, C.J.; Rauh, M.; Buchfelder, M.; Savaskan, N. Nrf2-Keap1 pathway promotes cell proliferation and diminishes ferroptosis. Oncogenesis, 2017, 6(8), e371. doi: 10.1038/oncsis.2017.65 PMID: 28805788
- Dios-Barbeito, S.; González, R.; Cadenas, M.; García, L.F.; Victor, V.M.; Padillo, F.J.; Muntané, J. Impact of nitric oxide in liver cancer microenvironment. Nitric Oxide, 2022, 128, 1-11. doi: 10.1016/j.niox.2022.07.006 PMID: 35940533
- Zhou, H.; Li, J.; Chen, Z.; Chen, Y.; Ye, S. Nitric oxide in occurrence, progress and therapy of lung Cancer: A systemic review and meta-analysis. BMC Cancer, 2021, 21(1), 678. doi: 10.1186/s12885-021-08430-2 PMID: 34103000
- Luanpitpong, S.; Chanvorachote, P. Nitric oxide and aggressive behavior of lung cancer cells. Anticancer Res., 2015, 35(9), 4585-4592. PMID: 26254346
- Taniguchi, S.; Elhance, A.; Van Duzer, A.; Kumar, S.; Leitenberger, J.J.; Oshimori, N. Tumor-initiating cells establish an IL-33-TGF-β niche signaling loop to promote cancer progression. Science, 2020, 369(6501), eaay1813. doi: 10.1126/science.aay1813 PMID: 32675345
- Choi, Y.S.; Choi, H.J.; Min, J.K.; Pyun, B.J.; Maeng, Y.S.; Park, H.; Kim, J.; Kim, Y.M.; Kwon, Y.G. Interleukin-33 induces angiogenesis and vascular permeability through ST2/TRAF6-mediated endothelial nitric oxide production. Blood, 2009, 114(14), 3117-3126. doi: 10.1182/blood-2009-02-203372 PMID: 19661270
- Lo-Coco, F.; Avvisati, G.; Vignetti, M.; Thiede, C.; Orlando, S.M.; Iacobelli, S.; Ferrara, F.; Fazi, P.; Cicconi, L.; Di Bona, E.; Specchia, G.; Sica, S.; Divona, M.; Levis, A.; Fiedler, W.; Cerqui, E.; Breccia, M.; Fioritoni, G.; Salih, H.R.; Cazzola, M.; Melillo, L.; Carella, A.M.; Brandts, C.H.; Morra, E.; von Lilienfeld-Toal, M.; Hertenstein, B.; Wattad, M.; Lübbert, M.; Hänel, M.; Schmitz, N.; Link, H.; Kropp, M.G.; Rambaldi, A.; La Nasa, G.; Luppi, M.; Ciceri, F.; Finizio, O.; Venditti, A.; Fabbiano, F.; Döhner, K.; Sauer, M.; Ganser, A.; Amadori, S.; Mandelli, F.; Döhner, H.; Ehninger, G.; Schlenk, R.F.; Platzbecker, U. Retinoic acid and arsenic trioxide for acute promyelocytic leukemia. N. Engl. J. Med., 2013, 369(2), 111-121. doi: 10.1056/NEJMoa1300874 PMID: 23841729
- Lin, C.C.; Hsu, C.; Hsu, C.H.; Hsu, W.L.; Cheng, A.L.; Yang, C.H. Arsenic trioxide in patients with hepatocellular carcinoma: A phase II trial. Invest. New Drugs, 2007, 25(1), 77-84. doi: 10.1007/s10637-006-9004-9 PMID: 16937079
- Zhao, H.; Sun, G.; Kong, D.; Zhang, Y.; Shi, W.; Zhao, M.; Hong, L.; Qiao, Z. A phase II study of arsenic trioxide in patients with relapsed or refractory malignant lymphoma. Med. Oncol., 2015, 32(3), 79. doi: 10.1007/s12032-015-0526-x PMID: 25698531
- Mao, J.; Shi, X.; Hua, L.; Yang, M.; Shen, Y.; Ruan, Z.; Li, B.; Xi, X. Arsenic inhibits proliferation and induces autophagy of tumor cells in pleural effusion of patients with non-small cell lung cancer expressing egfr with or without mutations via PI3K/AKT/mTOR Pathway. Biomedicines, 2023, 11(6), 1721. doi: 10.3390/biomedicines11061721 PMID: 37371816
- Xie, S.L.; Yang, M.H.; Chen, K.; Huang, H.; Zhao, X.W.; Zang, Y.S.; Li, B. Efficacy of arsenic trioxide in the treatment of malignant pleural effusion caused by pleural metastasis of lung cancer. Cell Biochem. Biophys., 2015, 71(3), 1325-1333. doi: 10.1007/s12013-014-0352-3 PMID: 25413961
- Yang, M.H.; Chang, K.J.; Zheng, J.C.; Huang, H.; Sun, G.Y.; Zhao, X.W.; Li, B.; Xiu, Q.Y. Anti-angiogenic effect of arsenic trioxide in lung cancer via inhibition of endothelial cell migration, proliferation and tube formation. Oncol. Lett., 2017, 14(3), 3103-3109. doi: 10.3892/ol.2017.6518 PMID: 28928847
- Yang, M.H.; Zang, Y.S.; Huang, H.; Chen, K.; Li, B.; Sun, G.Y.; Zhao, X.W. Arsenic trioxide exerts anti-lung cancer activity by inhibiting angiogenesis. Curr. Cancer Drug Targets, 2014, 14(6), 557-566. doi: 10.2174/1568009614666140725090000 PMID: 25088040
- Dong, S.; Li, Z.; Kong, J.; Wu, S.; Gao, J.; Sun, W. Arsenic trioxide inhibits angiogenesis of hepatocellular carcinoma after insufficient radiofrequency ablation via blocking paracrine angiopoietin-1 and angiopoietin-2. Int. J. Hyperthermia, 2022, 39(1), 888-896. doi: 10.1080/02656736.2022.2093995 PMID: 35848416
- Yang, D.; Lv, Z.; Zhang, H.; Liu, B.; Jiang, H.; Tan, X.; Lu, J.; Baiyun, R.; Zhang, Z. Activation of the Nrf2 signaling pathway involving klf9 plays a critical role in allicin resisting against arsenic trioxide-induced hepatotoxicity in rats. Biol. Trace Elem. Res., 2017, 176(1), 192-200. doi: 10.1007/s12011-016-0821-1 PMID: 27561292
- Bai, J.; Yao, X.; Jiang, L.; Qiu, T.; Liu, S.; Qi, B.; Zheng, Y.; Kong, Y.; Yang, G.; Chen, M.; Liu, X.; Sun, X. Taurine protects against As2O3-induced autophagy in pancreas of rat offsprings through Nrf2/Trx pathway. Biochimie, 2016, 123, 1-6. doi: 10.1016/j.biochi.2016.01.002 PMID: 26775255
- Jögi, A.; Vaapil, M.; Johansson, M.; Påhlman, S. Cancer cell differentiation heterogeneity and aggressive behavior in solid tumors. Ups. J. Med. Sci., 2012, 117(2), 217-224. doi: 10.3109/03009734.2012.659294 PMID: 22376239
- Bonavida, B.; Garban, H. Nitric oxide-mediated sensitization of resistant tumor cells to apoptosis by chemo-immunotherapeutics. Redox Biol., 2015, 6, 486-494. doi: 10.1016/j.redox.2015.08.013 PMID: 26432660
- Pervin, S.; Singh, R.; Chaudhuri, G. Nitric oxide-induced cytostasis and cell cycle arrest of a human breast cancer cell line (MDA-MB-231): Potential role of cyclin D1. Proc. Natl. Acad. Sci., 2001, 98(6), 3583-3588. doi: 10.1073/pnas.041603998 PMID: 11248121
- Chang, K.J.; Yang, M.H.; Zheng, J.C.; Li, B.; Nie, W. Arsenic trioxide inhibits cancer stem-like cells via down-regulation of Gli1 in lung cancer. Am. J. Transl. Res., 2016, 8(2), 1133-1143. PMID: 27158399
- Chang, K.J.; Yin, J.Z.; Huang, H.; Li, B.; Yang, M.H. Arsenic trioxide inhibits the growth of cancer stem cells derived from small cell lung cancer by downregulating stem cell maintenance factors and inducing apoptosis via the Hedgehog signaling blockade. Transl. Lung Cancer Res., 2020, 9(4), 1379-1396. doi: 10.21037/tlcr-20-467 PMID: 32953511
- Yang, M.H.; Wang, Y-S.; Shi, X-Q.; Zhao, X. W; Li, B Arsenic trioxide restrains lung cancer growth and metastasis by blocking the calcineurin-nfat pathway by upregulating DSCR1. Curr. Cancer Drug Targets, 2022, 22(10), 854-864. doi: 10.2174/1568009622666220629154619 PMID: 35770414
- Yin, J.Z.; Shi, X.Q.; Wang, M.D.; Du, H.; Zhao, X.W.; Li, B.; Yang, M.H. Arsenic trioxide elicits anti-tumor activity by inhibiting polarization of M2-like tumor-associated macrophages via Notch signaling pathway in lung adenocarcinoma. Int. Immunopharmacol., 2023, 117, 109899. doi: 10.1016/j.intimp.2023.109899 PMID: 36827926
- Yang, M.H.; Chang, K.J.; Li, B.; Chen, W.S. Arsenic trioxide suppresses tumor growth through antiangiogenesis via notch signaling blockade in small-cell lung cancer. BioMed Res. Int., 2019, 2019, 4647252. doi: 10.1155/2019/4647252 PMID: 31093499
- de Thé, H.; Chen, Z. Acute promyelocytic leukaemia: Novel insights into the mechanisms of cure. Nat. Rev. Cancer, 2010, 10(11), 775-783. doi: 10.1038/nrc2943 PMID: 20966922
- Wang, X.; Jiang, F.; Mu, J.; Ye, X.; Si, L.; Ning, S.; Li, Z.; Li, Y. Arsenic trioxide attenuates the invasion potential of human liver cancer cells through the demethylation-activated microRNA-491. Toxicol. Lett., 2014, 227(2), 75-83. doi: 10.1016/j.toxlet.2014.03.016 PMID: 24680928
- Tian, Z.; Tan, Y.; Lin, X.; Su, M.; Pan, L.; Lin, L.; Ou, G.; Chen, Y. Arsenic trioxide sensitizes pancreatic cancer cells to gemcitabine through downregulation of the TIMP1/PI3K/AKT/mTOR axis. Transl. Res., 2023, 255, 66-76. doi: 10.1016/j.trsl.2022.11.007 PMID: 36400307
- Mirzaei, A.; Rashedi, S.; Akbari, M.R.; Khatami, F.; Aghamir, S.M.K. Combined anticancer effects of simvastatin and arsenic trioxide on prostate cancer cell lines via downregulation of the VEGF and OPN isoforms genes. J. Cell. Mol. Med., 2022, 26(9), 2728-2740. doi: 10.1111/jcmm.17286 PMID: 35366048
- Zhang, J.; Ma, Y.; Zhang, Y.; Niu, S.; Chu, M.; Zhang, Z. Angiogenesis is inhibited by arsenic trioxide through downregulation of the CircHIPK3/miR-149-5p/FOXO1/VEGF functional module in rheumatoid arthritis. Front. Pharmacol., 2021, 12, 751667. doi: 10.3389/fphar.2021.751667 PMID: 34776969
- Lew, Y.S.; Brown, S.L.; Griffin, R.J.; Song, C.W.; Kim, J.H. Arsenic trioxide causes selective necrosis in solid murine tumors by vascular shutdown. Cancer Res., 1999, 59(24), 6033-6037. PMID: 10626785
- Wu, S.; Lu, H.; Bai, Y. Nrf2 in cancers: A double‐edged sword. Cancer Med., 2019, 8(5), 2252-2267. doi: 10.1002/cam4.2101 PMID: 30929309
- Sánchez-Ortega, M.; Carrera, A.C.; Garrido, A. Role of NRF2 in lung cancer. Cells, 2021, 10(8), 1879. doi: 10.3390/cells10081879 PMID: 34440648
- Sha, W.; Zhao, B.; Wei, H.; Yang, Y.; Yin, H.; Gao, J.; Zhao, W.; Kong, W.; Ge, G.; Lei, T. Astragalus polysaccharide ameliorates vascular endothelial dysfunction by stimulating macrophage M2 polarization via potentiating Nrf2/HO-1 signaling pathway. Phytomedicine, 2023, 112, 154667. doi: 10.1016/j.phymed.2023.154667 PMID: 36842218
- Zhang, X.; Xu, H. Azithromycin inhibits glioblastoma angiogenesis in mice via inducing mitochondrial dysfunction and oxidative stress. Cancer Chemother. Pharmacol., 2023, 92(4), 291-302. doi: 10.1007/s00280-023-04567-y PMID: 37486388
- Li, L.; Pan, H.; Wang, H.; Li, X.; Bu, X.; Wang, Q.; Gao, Y.; Wen, G.; Zhou, Y.; Cong, Z.; Yang, Y.; Tang, C.; Liu, Z. Interplay between VEGF and Nrf2 regulates angiogenesis due to intracranial venous hypertension. Sci. Rep., 2016, 6, 37338. doi: 10.1038/srep37338 PMID: 27869147
- Chatterjee, A.; Azevedo-Martins, J.M.; Stachler, M.D. Interleukin-33 as a potential therapeutic target in gastric cancer patients: current insights. OncoTargets Ther., 2023, 16, 675-687. doi: 10.2147/ott.S389120 PMID: 37583706
- Zhou, X.; Feng, Y.; Liu, S.; Li, C.; Teng, Y.; Li, X.; Lu, J. IL-33 promotes the growth of non-small cell lung cancer cells through regulating mir-128-3p/cdip1 signalling pathway. Cancer Manag. Res., 2021, 13, 2379-2388. doi: 10.2147/cmar.S276297 PMID: 33737835
- Yang, M.; Feng, Y.; Yue, C.; Xu, B.; Chen, L.; Jiang, J.; Lu, B.; Zhu, Y. Lower expression level of IL-33 is associated with poor prognosis of pulmonary adenocarcinoma. PLoS One, 2018, 13(3), e0193428. doi: 10.1371/journal.pone.0193428 PMID: 29499051
Supplementary files
