Arsenic Trioxide Suppresses Angiogenesis in Non-small Cell Lung Cancer via the Nrf2-IL-33 Signaling Pathway


Cite item

Full Text

Abstract

Background:Non-Small Cell Lung Cancer (NSCLC) ranks as a leading cause of cancer-related mortality, necessitating the urgent search for cost-effective and efficient anti-NSCLC drugs. Our preliminary research has demonstrated that arsenic trioxide (ATO) significantly inhibits NSCLC angiogenesis, exerting anti-tumor effects. In conjunction with existing literature reports, the Nrf2-IL-33 pathway is emerging as a novel mechanism in NSCLC angiogenesis.

Objective:This study aimed to elucidate whether ATO can inhibit NSCLC angiogenesis through the Nrf2-IL-33 pathway.

Methods:Immunohistochemistry was employed to assess the expression of Nrf2, IL-33, and CD31 in tumor tissues from patients with NSCLC. DETA-NONOate was used as a nitric oxide (NO) donor to mimic high levels of NO in the tumor microenvironment. Western blot, quantitative real-time PCR, and enzyme-linked immunosorbent assay were utilized to evaluate the expression of Nrf2 and IL-33 in the NCI-H1299 cell line. Subcutaneous xenograft models were established in nude mice by implanting NCI-H1299 cells to assess the anti-tumor efficacy of ATO.

Results:High expression levels of Nrf2 and IL-33 were observed in tumor samples from patients with NSCLC, and Nrf2 expression positively correlated with microvascular density in NSCLC. In vitro, NO (released from 1mM DETA-NONOate) promoted activation of the Nrf2-IL-33 signaling pathway in NCI-H1299 cells, which was reversed by ATO. Additionally, both Nrf2 deficiency and ATO treatment significantly attenuated NOinduced IL-33 expression. In vivo, both ATO and the Nrf2 inhibitor ML385 demonstrated significant inhibitory effects on angiogenesis tumor growth.

Conclusion:Nrf2-IL-33 signaling is usually activated in NSCLC and positively correlates with tumor angiogenesis. ATO effectively disrupts the activation of the Nrf2-IL-33 pathway in NSCLC and thus inhibits angiogenesis, suggesting its potential as an anti-angiogenic agent for use in the treatment of NSCLC.

About the authors

Mingdong Wang

Department of Thoracic Surgery, Changzheng Hospital, Naval Medical University

Email: info@benthamscience.net

Jizhong Yin

Department of Respiratory and Critical Care Medicine, Changzheng Hospital, Naval Medical University

Email: info@benthamscience.net

Qianyu Han

Department of Thoracic Surgery, Changzheng Hospital, Naval Medical University

Email: info@benthamscience.net

Bing Li

Department of Respiratory and Critical Care Medicine, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University

Author for correspondence.
Email: info@benthamscience.net

Xue-Wei Zhao

Department of Thoracic Surgery, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University

Author for correspondence.
Email: info@benthamscience.net

Lei Xue

Department of Thoracic Surgery, Changzheng Hospital, Naval Medical University

Author for correspondence.
Email: info@benthamscience.net

References

  1. Xia, C.; Dong, X.; Li, H.; Cao, M.; Sun, D.; He, S.; Yang, F.; Yan, X.; Zhang, S.; Li, N.; Chen, W. Cancer statistics in China and United States, 2022: profiles, trends, and determinants. Chin. Med. J., 2022, 135(5), 584-590. doi: 10.1097/cm9.0000000000002108 PMID: 35143424
  2. Asamura, H.; Nishimura, K.K.; Giroux, D.J.; Chansky, K.; Hoering, A.; Rusch, V.; Rami-Porta, R. IASLC Lung Cancer Staging Project: The new database to inform revisions in the ninth edition of the tnm classification of lung cancer. J. Thorac. Oncol., 2023, 18(5), 564-575. doi: 10.1016/j.jtho.2023.01.088 PMID: 36773775
  3. Egbujor, M.C.; Tucci, P.; Buttari, B.; Nwobodo, D.C.; Marini, P.; Saso, L. Phenothiazines: Nrf2 activation and antioxidant effects. J. Biochem. Mol. Toxicol., 2024, 38(3), e23661. doi: 10.1002/jbt.23661 PMID: 38369721
  4. He, F.; Antonucci, L.; Karin, M. NRF2 as a regulator of cell metabolism and inflammation in cancer. Carcinogenesis, 2020, 41(4), 405-416. doi: 10.1093/carcin/bgaa039 PMID: 32347301
  5. Solis, L.M.; Behrens, C.; Dong, W.; Suraokar, M.; Ozburn, N.C.; Moran, C.A.; Corvalan, A.H.; Biswal, S.; Swisher, S.G.; Bekele, B.N.; Minna, J.D.; Stewart, D.J.; Wistuba, I.I. Nrf2 and Keap1 abnormalities in non-small cell lung carcinoma and association with clinicopathologic features. Clin. Cancer Res., 2010, 16(14), 3743-3753. doi: 10.1158/1078-0432.Ccr-09-3352 PMID: 20534738
  6. Fan, Z.; Wirth, A-K.; Chen, D.; Wruck, C.J.; Rauh, M.; Buchfelder, M.; Savaskan, N. Nrf2-Keap1 pathway promotes cell proliferation and diminishes ferroptosis. Oncogenesis, 2017, 6(8), e371. doi: 10.1038/oncsis.2017.65 PMID: 28805788
  7. Dios-Barbeito, S.; González, R.; Cadenas, M.; García, L.F.; Victor, V.M.; Padillo, F.J.; Muntané, J. Impact of nitric oxide in liver cancer microenvironment. Nitric Oxide, 2022, 128, 1-11. doi: 10.1016/j.niox.2022.07.006 PMID: 35940533
  8. Zhou, H.; Li, J.; Chen, Z.; Chen, Y.; Ye, S. Nitric oxide in occurrence, progress and therapy of lung Cancer: A systemic review and meta-analysis. BMC Cancer, 2021, 21(1), 678. doi: 10.1186/s12885-021-08430-2 PMID: 34103000
  9. Luanpitpong, S.; Chanvorachote, P. Nitric oxide and aggressive behavior of lung cancer cells. Anticancer Res., 2015, 35(9), 4585-4592. PMID: 26254346
  10. Taniguchi, S.; Elhance, A.; Van Duzer, A.; Kumar, S.; Leitenberger, J.J.; Oshimori, N. Tumor-initiating cells establish an IL-33-TGF-β niche signaling loop to promote cancer progression. Science, 2020, 369(6501), eaay1813. doi: 10.1126/science.aay1813 PMID: 32675345
  11. Choi, Y.S.; Choi, H.J.; Min, J.K.; Pyun, B.J.; Maeng, Y.S.; Park, H.; Kim, J.; Kim, Y.M.; Kwon, Y.G. Interleukin-33 induces angiogenesis and vascular permeability through ST2/TRAF6-mediated endothelial nitric oxide production. Blood, 2009, 114(14), 3117-3126. doi: 10.1182/blood-2009-02-203372 PMID: 19661270
  12. Lo-Coco, F.; Avvisati, G.; Vignetti, M.; Thiede, C.; Orlando, S.M.; Iacobelli, S.; Ferrara, F.; Fazi, P.; Cicconi, L.; Di Bona, E.; Specchia, G.; Sica, S.; Divona, M.; Levis, A.; Fiedler, W.; Cerqui, E.; Breccia, M.; Fioritoni, G.; Salih, H.R.; Cazzola, M.; Melillo, L.; Carella, A.M.; Brandts, C.H.; Morra, E.; von Lilienfeld-Toal, M.; Hertenstein, B.; Wattad, M.; Lübbert, M.; Hänel, M.; Schmitz, N.; Link, H.; Kropp, M.G.; Rambaldi, A.; La Nasa, G.; Luppi, M.; Ciceri, F.; Finizio, O.; Venditti, A.; Fabbiano, F.; Döhner, K.; Sauer, M.; Ganser, A.; Amadori, S.; Mandelli, F.; Döhner, H.; Ehninger, G.; Schlenk, R.F.; Platzbecker, U. Retinoic acid and arsenic trioxide for acute promyelocytic leukemia. N. Engl. J. Med., 2013, 369(2), 111-121. doi: 10.1056/NEJMoa1300874 PMID: 23841729
  13. Lin, C.C.; Hsu, C.; Hsu, C.H.; Hsu, W.L.; Cheng, A.L.; Yang, C.H. Arsenic trioxide in patients with hepatocellular carcinoma: A phase II trial. Invest. New Drugs, 2007, 25(1), 77-84. doi: 10.1007/s10637-006-9004-9 PMID: 16937079
  14. Zhao, H.; Sun, G.; Kong, D.; Zhang, Y.; Shi, W.; Zhao, M.; Hong, L.; Qiao, Z. A phase II study of arsenic trioxide in patients with relapsed or refractory malignant lymphoma. Med. Oncol., 2015, 32(3), 79. doi: 10.1007/s12032-015-0526-x PMID: 25698531
  15. Mao, J.; Shi, X.; Hua, L.; Yang, M.; Shen, Y.; Ruan, Z.; Li, B.; Xi, X. Arsenic inhibits proliferation and induces autophagy of tumor cells in pleural effusion of patients with non-small cell lung cancer expressing egfr with or without mutations via PI3K/AKT/mTOR Pathway. Biomedicines, 2023, 11(6), 1721. doi: 10.3390/biomedicines11061721 PMID: 37371816
  16. Xie, S.L.; Yang, M.H.; Chen, K.; Huang, H.; Zhao, X.W.; Zang, Y.S.; Li, B. Efficacy of arsenic trioxide in the treatment of malignant pleural effusion caused by pleural metastasis of lung cancer. Cell Biochem. Biophys., 2015, 71(3), 1325-1333. doi: 10.1007/s12013-014-0352-3 PMID: 25413961
  17. Yang, M.H.; Chang, K.J.; Zheng, J.C.; Huang, H.; Sun, G.Y.; Zhao, X.W.; Li, B.; Xiu, Q.Y. Anti-angiogenic effect of arsenic trioxide in lung cancer via inhibition of endothelial cell migration, proliferation and tube formation. Oncol. Lett., 2017, 14(3), 3103-3109. doi: 10.3892/ol.2017.6518 PMID: 28928847
  18. Yang, M.H.; Zang, Y.S.; Huang, H.; Chen, K.; Li, B.; Sun, G.Y.; Zhao, X.W. Arsenic trioxide exerts anti-lung cancer activity by inhibiting angiogenesis. Curr. Cancer Drug Targets, 2014, 14(6), 557-566. doi: 10.2174/1568009614666140725090000 PMID: 25088040
  19. Dong, S.; Li, Z.; Kong, J.; Wu, S.; Gao, J.; Sun, W. Arsenic trioxide inhibits angiogenesis of hepatocellular carcinoma after insufficient radiofrequency ablation via blocking paracrine angiopoietin-1 and angiopoietin-2. Int. J. Hyperthermia, 2022, 39(1), 888-896. doi: 10.1080/02656736.2022.2093995 PMID: 35848416
  20. Yang, D.; Lv, Z.; Zhang, H.; Liu, B.; Jiang, H.; Tan, X.; Lu, J.; Baiyun, R.; Zhang, Z. Activation of the Nrf2 signaling pathway involving klf9 plays a critical role in allicin resisting against arsenic trioxide-induced hepatotoxicity in rats. Biol. Trace Elem. Res., 2017, 176(1), 192-200. doi: 10.1007/s12011-016-0821-1 PMID: 27561292
  21. Bai, J.; Yao, X.; Jiang, L.; Qiu, T.; Liu, S.; Qi, B.; Zheng, Y.; Kong, Y.; Yang, G.; Chen, M.; Liu, X.; Sun, X. Taurine protects against As2O3-induced autophagy in pancreas of rat offsprings through Nrf2/Trx pathway. Biochimie, 2016, 123, 1-6. doi: 10.1016/j.biochi.2016.01.002 PMID: 26775255
  22. Jögi, A.; Vaapil, M.; Johansson, M.; Påhlman, S. Cancer cell differentiation heterogeneity and aggressive behavior in solid tumors. Ups. J. Med. Sci., 2012, 117(2), 217-224. doi: 10.3109/03009734.2012.659294 PMID: 22376239
  23. Bonavida, B.; Garban, H. Nitric oxide-mediated sensitization of resistant tumor cells to apoptosis by chemo-immunotherapeutics. Redox Biol., 2015, 6, 486-494. doi: 10.1016/j.redox.2015.08.013 PMID: 26432660
  24. Pervin, S.; Singh, R.; Chaudhuri, G. Nitric oxide-induced cytostasis and cell cycle arrest of a human breast cancer cell line (MDA-MB-231): Potential role of cyclin D1. Proc. Natl. Acad. Sci., 2001, 98(6), 3583-3588. doi: 10.1073/pnas.041603998 PMID: 11248121
  25. Chang, K.J.; Yang, M.H.; Zheng, J.C.; Li, B.; Nie, W. Arsenic trioxide inhibits cancer stem-like cells via down-regulation of Gli1 in lung cancer. Am. J. Transl. Res., 2016, 8(2), 1133-1143. PMID: 27158399
  26. Chang, K.J.; Yin, J.Z.; Huang, H.; Li, B.; Yang, M.H. Arsenic trioxide inhibits the growth of cancer stem cells derived from small cell lung cancer by downregulating stem cell maintenance factors and inducing apoptosis via the Hedgehog signaling blockade. Transl. Lung Cancer Res., 2020, 9(4), 1379-1396. doi: 10.21037/tlcr-20-467 PMID: 32953511
  27. Yang, M.H.; Wang, Y-S.; Shi, X-Q.; Zhao, X. W; Li, B Arsenic trioxide restrains lung cancer growth and metastasis by blocking the calcineurin-nfat pathway by upregulating DSCR1. Curr. Cancer Drug Targets, 2022, 22(10), 854-864. doi: 10.2174/1568009622666220629154619 PMID: 35770414
  28. Yin, J.Z.; Shi, X.Q.; Wang, M.D.; Du, H.; Zhao, X.W.; Li, B.; Yang, M.H. Arsenic trioxide elicits anti-tumor activity by inhibiting polarization of M2-like tumor-associated macrophages via Notch signaling pathway in lung adenocarcinoma. Int. Immunopharmacol., 2023, 117, 109899. doi: 10.1016/j.intimp.2023.109899 PMID: 36827926
  29. Yang, M.H.; Chang, K.J.; Li, B.; Chen, W.S. Arsenic trioxide suppresses tumor growth through antiangiogenesis via notch signaling blockade in small-cell lung cancer. BioMed Res. Int., 2019, 2019, 4647252. doi: 10.1155/2019/4647252 PMID: 31093499
  30. de Thé, H.; Chen, Z. Acute promyelocytic leukaemia: Novel insights into the mechanisms of cure. Nat. Rev. Cancer, 2010, 10(11), 775-783. doi: 10.1038/nrc2943 PMID: 20966922
  31. Wang, X.; Jiang, F.; Mu, J.; Ye, X.; Si, L.; Ning, S.; Li, Z.; Li, Y. Arsenic trioxide attenuates the invasion potential of human liver cancer cells through the demethylation-activated microRNA-491. Toxicol. Lett., 2014, 227(2), 75-83. doi: 10.1016/j.toxlet.2014.03.016 PMID: 24680928
  32. Tian, Z.; Tan, Y.; Lin, X.; Su, M.; Pan, L.; Lin, L.; Ou, G.; Chen, Y. Arsenic trioxide sensitizes pancreatic cancer cells to gemcitabine through downregulation of the TIMP1/PI3K/AKT/mTOR axis. Transl. Res., 2023, 255, 66-76. doi: 10.1016/j.trsl.2022.11.007 PMID: 36400307
  33. Mirzaei, A.; Rashedi, S.; Akbari, M.R.; Khatami, F.; Aghamir, S.M.K. Combined anticancer effects of simvastatin and arsenic trioxide on prostate cancer cell lines via downregulation of the VEGF and OPN isoforms genes. J. Cell. Mol. Med., 2022, 26(9), 2728-2740. doi: 10.1111/jcmm.17286 PMID: 35366048
  34. Zhang, J.; Ma, Y.; Zhang, Y.; Niu, S.; Chu, M.; Zhang, Z. Angiogenesis is inhibited by arsenic trioxide through downregulation of the CircHIPK3/miR-149-5p/FOXO1/VEGF functional module in rheumatoid arthritis. Front. Pharmacol., 2021, 12, 751667. doi: 10.3389/fphar.2021.751667 PMID: 34776969
  35. Lew, Y.S.; Brown, S.L.; Griffin, R.J.; Song, C.W.; Kim, J.H. Arsenic trioxide causes selective necrosis in solid murine tumors by vascular shutdown. Cancer Res., 1999, 59(24), 6033-6037. PMID: 10626785
  36. Wu, S.; Lu, H.; Bai, Y. Nrf2 in cancers: A double‐edged sword. Cancer Med., 2019, 8(5), 2252-2267. doi: 10.1002/cam4.2101 PMID: 30929309
  37. Sánchez-Ortega, M.; Carrera, A.C.; Garrido, A. Role of NRF2 in lung cancer. Cells, 2021, 10(8), 1879. doi: 10.3390/cells10081879 PMID: 34440648
  38. Sha, W.; Zhao, B.; Wei, H.; Yang, Y.; Yin, H.; Gao, J.; Zhao, W.; Kong, W.; Ge, G.; Lei, T. Astragalus polysaccharide ameliorates vascular endothelial dysfunction by stimulating macrophage M2 polarization via potentiating Nrf2/HO-1 signaling pathway. Phytomedicine, 2023, 112, 154667. doi: 10.1016/j.phymed.2023.154667 PMID: 36842218
  39. Zhang, X.; Xu, H. Azithromycin inhibits glioblastoma angiogenesis in mice via inducing mitochondrial dysfunction and oxidative stress. Cancer Chemother. Pharmacol., 2023, 92(4), 291-302. doi: 10.1007/s00280-023-04567-y PMID: 37486388
  40. Li, L.; Pan, H.; Wang, H.; Li, X.; Bu, X.; Wang, Q.; Gao, Y.; Wen, G.; Zhou, Y.; Cong, Z.; Yang, Y.; Tang, C.; Liu, Z. Interplay between VEGF and Nrf2 regulates angiogenesis due to intracranial venous hypertension. Sci. Rep., 2016, 6, 37338. doi: 10.1038/srep37338 PMID: 27869147
  41. Chatterjee, A.; Azevedo-Martins, J.M.; Stachler, M.D. Interleukin-33 as a potential therapeutic target in gastric cancer patients: current insights. OncoTargets Ther., 2023, 16, 675-687. doi: 10.2147/ott.S389120 PMID: 37583706
  42. Zhou, X.; Feng, Y.; Liu, S.; Li, C.; Teng, Y.; Li, X.; Lu, J. IL-33 promotes the growth of non-small cell lung cancer cells through regulating mir-128-3p/cdip1 signalling pathway. Cancer Manag. Res., 2021, 13, 2379-2388. doi: 10.2147/cmar.S276297 PMID: 33737835
  43. Yang, M.; Feng, Y.; Yue, C.; Xu, B.; Chen, L.; Jiang, J.; Lu, B.; Zhu, Y. Lower expression level of IL-33 is associated with poor prognosis of pulmonary adenocarcinoma. PLoS One, 2018, 13(3), e0193428. doi: 10.1371/journal.pone.0193428 PMID: 29499051

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers