Synthesis and Molecular Dynamic Simulation of Novel Cationic and Non-cationic Pyrimidine Derivatives as Potential G-quadruplex-ligands
- Authors: Atapour-Mashhad H.1, Soukhtanloo M.2, Golmohammadzadeh S.3, Chamani J.4, Nejabat M.5, Hadizadeh F.6
-
Affiliations:
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences
- Department of Clinical Biochemistry, Mashhad University of Medical Sciences
- Nanotechnology Research Center, Pharmaceutical Technology Institute,, Mashhad University of Medical Sciences
- Department of Biology, Faculty of Sciences, Mashhad Branch, Islamic Azad University
- Department of Medicinal Chemistry, School of Pharmacy,, Mashhad University of Medical Sciences
- Biotechnology Research Center, Pharmaceutical Technology Institute,, Mashhad University of Medical Sciences
- Issue: Vol 24, No 15 (2024)
- Pages: 1126-1141
- Section: Oncology
- URL: https://rjsocmed.com/1871-5206/article/view/643871
- DOI: https://doi.org/10.2174/0118715206291797240523112439
- ID: 643871
Cite item
Full Text
Abstract
Background:Drug resistance has been a problem in cancer chemotherapy, which often causes shortterm effectiveness. Further, the literature indicates that telomere G-quadruplex could be a promising anti-cancer target.
Objective:We synthesized and characterized two new pyrimidine derivatives as ligands for G-quadruplex DNA.
Methods:The interaction of novel non-cationic and cationic pyrimidine derivatives (3a, b) with G-quadruplex DNA (1k8p and 3qsc) was explored by circular dichroism (CD) and ultraviolet-visible spectroscopy and polyacrylamide gel electrophoresis (PAGE) methods. The antiproliferative activity of desired compounds was evaluated by the MTT assay. Apoptosis induction was assessed by Propidium iodide (P.I.) staining and flow cytometry. Computational molecular modeling (CMM) and molecular dynamics simulation (MD) were studied on the complexes of 1k8p and 3qsc with the compounds. The van der Waals, electrostatic, polar solvation, solventaccessible surface area (SASA), and binding energies were calculated and analyzed.
Results:The experimental results confirmed that both compounds 3a and 3b interacted with 1k8p and 3qsc and exerted cytotoxic and proapoptotic effects on cancer cells. The number of hydrogen bonds and the RMSD values increased in the presence of the ligands, indicating stronger binding and suggesting increased structural dynamics. The electrostatic contribution to binding energy was higher for the cationic pyrimidine 3b, indicating more negative binding energies.
Conclusion:Both experimental and MD results confirmed that 3b was more prone to form a complex with DNA G-quadruplex (1k8p and 3qsc), inhibit cell growth, and induce apoptosis, compared to the non-cationic pyrimidine 3a.
About the authors
Hoda Atapour-Mashhad
Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences
Email: info@benthamscience.net
Mohammad Soukhtanloo
Department of Clinical Biochemistry, Mashhad University of Medical Sciences
Email: info@benthamscience.net
Shiva Golmohammadzadeh
Nanotechnology Research Center, Pharmaceutical Technology Institute,, Mashhad University of Medical Sciences
Email: info@benthamscience.net
Jamshidkhan Chamani
Department of Biology, Faculty of Sciences, Mashhad Branch, Islamic Azad University
Email: info@benthamscience.net
Mojgan Nejabat
Department of Medicinal Chemistry, School of Pharmacy,, Mashhad University of Medical Sciences
Author for correspondence.
Email: info@benthamscience.net
Farzin Hadizadeh
Biotechnology Research Center, Pharmaceutical Technology Institute,, Mashhad University of Medical Sciences
Author for correspondence.
Email: info@benthamscience.net
References
- Hurley, L.H.; Wheelhouse, R.T.; Sun, D.; Kerwin, S.M.; Salazar, M.; Fedoroff, O.Y.; Han, F.X.; Han, H.; Izbicka, E.; Von Hoff, D.D. G-quadruplexes as targets for drug design. Pharmacol. Ther., 2000, 85(3), 141-158. doi: 10.1016/S0163-7258(99)00068-6 PMID: 10739869
- Shay, J.W.; Keith, W.N. Targeting telomerase for cancer therapeutics. Br. J. Cancer, 2008, 98(4), 677-683. doi: 10.1038/sj.bjc.6604209 PMID: 18231105
- Guterres, A.N.; Villanueva, J. Targeting telomerase for cancer therapy. Oncogene, 2020, 39(36), 5811-5824. doi: 10.1038/s41388-020-01405-w PMID: 32733068
- Neidle, S.; Parkinson, G. Telomere maintenance as a target for anticancer drug discovery. Nat. Rev. Drug Discov., 2002, 1(5), 383-393. doi: 10.1038/nrd793 PMID: 12120414
- Kerwin, S. G-Quadruplex DNA as a target for drug design. Curr. Pharm. Des., 2000, 6(4), 441-471. doi: 10.2174/1381612003400849 PMID: 10788591
- Zeng, X.; Hernandez-Sanchez, W.; Xu, M.; Whited, T.L.; Baus, D.; Zhang, J.; Berdis, A.J.; Taylor, D.J. Administration of a nucleoside analog promotes cancer cell death in a telomerase-dependent manner. Cell Rep., 2018, 23(10), 3031-3041. doi: 10.1016/j.celrep.2018.05.020 PMID: 29874588
- Chilton, W.; OBrien, B.; Charchar, F. Telomeres, aging and exercise: Guilty by association? Int. J. Mol. Sci., 2017, 18(12), 2573. doi: 10.3390/ijms18122573 PMID: 29186077
- Kim, N.W.; Piatyszek, M.A.; Prowse, K.R.; Harley, C.B.; West, M.D.; Ho, P.L.C.; Coviello, G.M.; Wright, W.E.; Weinrich, S.L.; Shay, J.W. Specific association of human telomerase activity with immortal cells and cancer. Science, 1994, 266(5193), 2011-2015. doi: 10.1126/science.7605428 PMID: 7605428
- Zahler, A.M.; Williamson, J.R.; Cech, T.R.; Prescott, D.M. Inhibition of telomerase by G-quartet DMA structures. Nature, 1991, 350(6320), 718-720. doi: 10.1038/350718a0 PMID: 2023635
- Hirt, B.V.; Wattis, J.A.D.; Preston, S.P. Modelling the regulation of telomere length: The effects of telomerase and G-quadruplex stabilising drugs. J. Math. Biol., 2014, 68(6), 1521-1552. doi: 10.1007/s00285-013-0678-2 PMID: 23620229
- Paeschke, K.; Simonsson, T.; Postberg, J.; Rhodes, D.; Lipps, H.J. Telomere end-binding proteins control the formation of G-quadruplex DNA structures in vivo. Nat. Struct. Mol. Biol., 2005, 12(10), 847-854. doi: 10.1038/nsmb982 PMID: 16142245
- Moye, A.L.; Porter, K.C.; Cohen, S.B.; Phan, T.; Zyner, K.G.; Sasaki, N.; Lovrecz, G.O.; Beck, J.L.; Bryan, T.M. Telomeric G-quadruplexes are a substrate and site of localization for human telomerase. Nat. Commun., 2015, 6(1), 7643. doi: 10.1038/ncomms8643 PMID: 26158869
- Paudel, B.P.; Moye, A.L.; Abou Assi, H.; El-Khoury, R.; Cohen, S.B.; Holien, J.K.; Birrento, M.L.; Samosorn, S.; Intharapichai, K.; Tomlinson, C.G.; Teulade-Fichou, M.P.; González, C.; Beck, J.L.; Damha, M.J.; van Oijen, A.M.; Bryan, T.M. A mechanism for the extension and unfolding of parallel telomeric G-quadruplexes by human telomerase at single-molecule resolution. eLife, 2020, 9, e56428. doi: 10.7554/eLife.56428 PMID: 32723475
- Bryan, T.M. G-quadruplexes at telomeres: Friend or foe? Molecules, 2020, 25(16), 3686. doi: 10.3390/molecules25163686 PMID: 32823549
- Maiti, S.; Saha, P.; Das, T.; Bessi, I.; Schwalbe, H.; Dash, J. Human telomeric G-quadruplex selective fluoro-isoquinolines induce apoptosis in cancer cells. Bioconjug. Chem., 2018, 29(4), 1141-1154. doi: 10.1021/acs.bioconjchem.7b00781 PMID: 29433312
- Pennarun, G.; Granotier, C.; Gauthier, L.R.; Gomez, D.; Hoffschir, F.; Mandine, E.; Riou, J.F.; Mergny, J.L.; Mailliet, P.; Boussin, F.D. Apoptosis related to telomere instability and cell cycle alterations in human glioma cells treated by new highly selective G-quadruplex ligands. Oncogene, 2005, 24(18), 2917-2928. doi: 10.1038/sj.onc.1208468 PMID: 15735722
- Burge, S.; Parkinson, G.N.; Hazel, P.; Todd, A.K.; Neidle, S. Quadruplex DNA: sequence, topology and structure. Nucleic Acids Res., 2006, 34(19), 5402-5415. doi: 10.1093/nar/gkl655 PMID: 17012276
- Phatak, P.; Cookson, J.C.; Dai, F.; Smith, V.; Gartenhaus, R.B.; Stevens, M F G.; Burger, A.M. Telomere uncapping by the G-quadruplex ligand RHPS4 inhibits clonogenic tumour cell growth in vitro and in vivo consistent with a cancer stem cell targeting mechanism. Br. J. Cancer, 2007, 96(8), 1223-1233. doi: 10.1038/sj.bjc.6603691 PMID: 17406367
- Jenkins, T. Targeting multi-stranded DNA structures. Curr. Med. Chem., 2000, 7(1), 99-115. doi: 10.2174/0929867003375551 PMID: 10637359
- Sun, D.; Hurley, L.H. Targeting telomeres and telomerase. Methods Enzymol., 2001, 340, 573-592. doi: 10.1016/S0076-6879(01)40443-5 PMID: 11494871
- Raymond, E.; Sun, D.; Chen, S.F.; Windle, B.; Von Hoff, D.D. Agents that target telomerase and telomeres. Curr. Opin. Biotechnol., 1996, 7(6), 583-591. doi: 10.1016/S0958-1669(96)80068-1 PMID: 8939642
- Kelland, L.R. Telomerase: Biology and phase I trials. Lancet Oncol., 2001, 2(2), 95-102. doi: 10.1016/S1470-2045(00)00226-6 PMID: 11905801
- Bearss, D.J.; Hurley, L.H.; Von Hoff, D.D. Telomere maintenance mechanisms as a target for drug development. Oncogene, 2000, 19(56), 6632-6641. doi: 10.1038/sj.onc.1204092 PMID: 11426649
- Campbell, N.H.; Parkinson, G.N.; Reszka, A.P.; Neidle, S. Structural basis of DNA quadruplex recognition by an acridine drug. J. Am. Chem. Soc., 2008, 130(21), 6722-6724. doi: 10.1021/ja8016973 PMID: 18457389
- Sun, D.; Thompson, B.; Cathers, B.E.; Salazar, M.; Kerwin, S.M.; Trent, J.O.; Jenkins, T.C.; Neidle, S.; Hurley, L.H. Inhibition of human telomerase by a G-quadruplex-interactive compound. J. Med. Chem., 1997, 40(14), 2113-2116. doi: 10.1021/jm970199z PMID: 9216827
- Riou, J.F.; Guittat, L.; Mailliet, P.; Laoui, A.; Renou, E.; Petitgenet, O.; Mégnin-Chanet, F.; Hélène, C.; Mergny, J.L. Cell senescence and telomere shortening induced by a new series of specific G-quadruplex DNA ligands. Proc. Natl. Acad. Sci. USA, 2002, 99(5), 2672-2677. doi: 10.1073/pnas.052698099 PMID: 11854467
- Fletcher, T.M. Telomerase: A potential therapeutic target for cancer. Expert Opin. Ther. Targets, 2005, 9(3), 457-469. doi: 10.1517/14728222.9.3.457 PMID: 15948667
- Allsopp, R.C.; Harley, C.B. Evidence for a critical telomere length in senescent human fibroblasts. Exp. Cell Res., 1995, 219(1), 130-136. doi: 10.1006/excr.1995.1213 PMID: 7628529
- Neidle, S. Human telomeric G‐quadruplex: The current status of telomeric G‐quadruplexes as therapeutic targets in human cancer. FEBS J., 2010, 277(5), 1118-1125. doi: 10.1111/j.1742-4658.2009.07463.x PMID: 19951354
- Mergny, J.L.; Hélène, C. G-quadruplex DNA: A target for drug design. Nat. Med., 1998, 4(12), 1366-1367. doi: 10.1038/3949 PMID: 9846570
- Han, H.; Hurley, L.H. G-quadruplex DNA: A potential target for anti-cancer drug design. Trends Pharmacol. Sci., 2000, 21(4), 136-142. doi: 10.1016/S0165-6147(00)01457-7 PMID: 10740289
- Kosiol, N.; Juranek, S.; Brossart, P.; Heine, A.; Paeschke, K. G-quadruplexes: A promising target for cancer therapy. Mol. Cancer, 2021, 20(1), 40. doi: 10.1186/s12943-021-01328-4 PMID: 33632214
- Ruggiero, E.; Richter, S.N. G-quadruplexes and G-quadruplex ligands: Targets and tools in antiviral therapy. Nucleic Acids Res., 2018, 46(7), 3270-3283. doi: 10.1093/nar/gky187 PMID: 29554280
- Tian, T.; Chen, Y.Q.; Wang, S.R.; Zhou, X. G-Quadruplex: A regulator of gene expression and its chemical targeting. Chem, 2018, 4(6), 1314-1344. doi: 10.1016/j.chempr.2018.02.014
- Santos, T.; Salgado, G.F.; Cabrita, E.J.; Cruz, C. G-quadruplexes and their ligands: Biophysical methods to unravel G-quadruplex/ligand interactions. Pharmaceuticals, 2021, 14(8), 769. doi: 10.3390/ph14080769 PMID: 34451866
- Andreeva, D.V.; Tikhomirov, A.S.; Shchekotikhin, A.E. Ligands of G-quadruplex nucleic acids. Russ. Chem. Rev., 2021, 90(1), 1-38. doi: 10.1070/RCR4968
- Tauchi, T.; Shin-ya, K.; Sashida, G.; Sumi, M.; Nakajima, A.; Shimamoto, T.; Ohyashiki, J.H.; Ohyashiki, K. Activity of a novel G-quadruplex-interactive telomerase inhibitor, telomestatin (SOT-095), against human leukemia cells: Involvement of ATM-dependent DNA damage response pathways. Oncogene, 2003, 22(34), 5338-5347. doi: 10.1038/sj.onc.1206833 PMID: 12917635
- Sanchez-Martin, V.; Soriano, M.; Garcia-Salcedo, J.A. Quadruplex ligands in cancer therapy. Cancers (Basel), 2021, 13(13), 3156. doi: 10.3390/cancers13133156 PMID: 34202648
- Wheelhouse, R.T.; Sun, D.; Han, H.; Han, F.X.; Hurley, L.H. Cationic porphyrins as telomerase inhibitors: The interaction of tetra-(N-methyl-4-pyridyl) porphine with quadruplex DNA. J. Am. Chem. Soc., 1998, 120(13), 3261-3262. doi: 10.1021/ja973792e
- Guo, Q.L.; Su, H.F.; Wang, N.; Liao, S.R.; Lu, Y.T.; Ou, T.M.; Tan, J.H.; Li, D.; Huang, Z.S. Synthesis and evaluation of 7-substituted-5,6-dihydrobenzocacridine derivatives as new c-KIT promoter G-quadruplex binding ligands. Eur. J. Med. Chem., 2017, 130, 458-471. doi: 10.1016/j.ejmech.2017.02.051 PMID: 28284084
- Seenisamy, J.; Bashyam, S.; Gokhale, V.; Vankayalapati, H.; Sun, D.; Siddiqui-Jain, A.; Streiner, N.; Shin-ya, K.; White, E.; Wilson, W.D.; Hurley, L.H. Design and synthesis of an expanded porphyrin that has selectivity for the c-MYC G-quadruplex structure. J. Am. Chem. Soc., 2005, 127(9), 2944-2959. doi: 10.1021/ja0444482 PMID: 15740131
- Eidinoff, M.L.; Knoll, J.E.; Marano, B.J.; Klein, D. Pyrimidine studies. III. Effect of several compounds with antitumor activity on utilization of precursors for synthesis of nucleic acid pyrimidines. Cancer Res., 1961, 21(10), 1377-1385. PMID: 13889598
- Donnini, S.; Monti, M.; Castagnini, C.; Solito, R.; Botta, M.; Schenone, S.; Giachetti, A.; Ziche, M. Pyrazolopyrimidine‐derived c‐Src inhibitor reduces angiogenesis and survival of squamous carcinoma cells by suppressing vascular endothelial growth factor production and signaling. Int. J. Cancer, 2007, 120(5), 995-1004. doi: 10.1002/ijc.22410 PMID: 17131343
- Murashima, T.; Sakiyama, D.; Miyoshi, D.; Kuriyama, M.; Yamada, T.; Miyazawa, T. Cationic porphyrin induced a telomeric DNA to G-quadruplex form in water. Bioinorg. Chem. Appl., 2008, 2008, 294756.
- Che, T.; Wang, Y.Q.; Huang, Z.L.; Tan, J.H.; Huang, Z.S.; Chen, S.B. Natural alkaloids and heterocycles as G-quadruplex ligands and potential anticancer agents. Molecules, 2018, 23(2), 493. doi: 10.3390/molecules23020493 PMID: 29473874
- Reznichenko, O.; Leclercq, D.; Franco Pinto, J.; Mouawad, L.; Gabelica, V.; Granzhan, A. Optimization of G‐quadruplex ligands through a SAR study combining parallel synthesis and screening of cationic bis(acylhydrazones). Chemistry, 2023, 29(4), e202202427. doi: 10.1002/chem.202202427 PMID: 36286608
- Guianvarc, H.D.; Lavergne, T.; Yatsunyk, L.; Blondel, M. The composition of the jury. Avilable From: https://www.universite-paris-saclay.fr/recherche/doctorat-et-hdr/la-composition-du-jury-0
- Cadoni, E.; Magalhães, P.R.; Emídio, R.M.; Mendes, E.; Vítor, J.; Carvalho, J.; Cruz, C.; Victor, B.L.; Paulo, A. New (Iso)quinolinyl-pyridine-2,6-dicarboxamide G-Quadruplex Stabilizers. A Structure-Activity Relationship Study. Pharmaceuticals (Basel), 2021, 14(7), 669. doi: 10.3390/ph14070669 PMID: 34358095
- Shaban, N.Z.; Masoud, M.S.; Mawlawi, M.A.; Awad, D.; Sadek, O.M. Effect of some pyrimidine compounds on rat brain monoamine oxidase-B in vitro. J. Physiol. Biochem., 2012, 68(4), 475-484. doi: 10.1007/s13105-012-0160-4 PMID: 22467201
- Mahapatra, A.; Prasad, T.; Sharma, T. Pyrimidine: A review on anticancer activity with key emphasis on SAR. Future J. Pharm. Sci., 2021, 7(1), 123. doi: 10.1186/s43094-021-00274-8
- Prachayasittikul, S.; Worachartcheewan, A.; Nantasenamat, C.; Chinworrungsee, M.; Sornsongkhram, N.; Ruchirawat, S.; Prachayasittikul, V. Synthesis and structureactivity relationship of 2-thiopyrimidine-4-one analogs as antimicrobial and anticancer agents. Eur. J. Med. Chem., 2011, 46(2), 738-742. doi: 10.1016/j.ejmech.2010.12.009 PMID: 21216051
- Sharma, S.K.; Kumar, P.; Narasimhan, B.; Ramasamy, K.; Mani, V.; Mishra, R.K.; Majeed, A.B.A. Synthesis, antimicrobial, anticancer evaluation and QSAR studies of 6-methyl-4-1-(2-substituted-phenylamino-acetyl)-1H-indol-3-yl-2-oxo/thioxo-1,2,3,4-tetrahydropyrimidine-5-carboxylic acid ethyl esters. Eur. J. Med. Chem., 2012, 48, 16-25. doi: 10.1016/j.ejmech.2011.11.028 PMID: 22154835
- Taher, A.T.; Helwa, A.A. Novel pyrimidinone derivatives: Synthesis, antitumor and antimicrobial evaluation. Chem. Pharm. Bull. (Tokyo), 2012, 60(4), 521-530. doi: 10.1248/cpb.60.521 PMID: 22466736
- Taher, A.T.; Abou-Seri, S.M. Synthesis and bioactivity evaluation of new 6-aryl-5-cyano thiouracils as potential antimicrobial and anticancer agents. Molecules, 2012, 17(8), 9868-9886. doi: 10.3390/molecules17089868 PMID: 22902882
- Mirmortazavi, S.S.; Farvandi, M.; Ghafouri, H.; Mohammadi, A.; Shourian, M. Evaluation of novel pyrimidine derivatives as a new class of mushroom tyrosinase inhibitor. Drug Des. Devel. Ther., 2019, 13, 2169-2178. doi: 10.2147/DDDT.S209324 PMID: 31371919
- Ghodasara, H.B.; Trivedi, A.R.; Kataria, V.B.; Patel, B.G.; Shah, V.H. Synthesis and antimicrobial evaluation of novel substituted pyrimidine scaffold. Med. Chem. Res., 2013, 22(12), 6121-6128. doi: 10.1007/s00044-013-0596-2
- Bakavoli, M.; Rahimizadeh, M.; Shiri, A.; Akbarzadeh, M.; Mousavi, S.H.; Atapour-Mashhad, H.; Tayarani-Najaran, Z. Synthesis and Anticancer Evaluation of New Derivatives of 3-Phenyl-1,5-Dimethyl-1H-1,2,4Triazolo4′,3′:1,2Pyrimido4,5-e 1,3,4Oxadiazine. J. Chem. Res., 2010, 34(7), 403-406. doi: 10.3184/030823410X520778
- Bakavoli, M.; Rahimizadeh, M.; Shiri, A.; Akbarzadeh, M.; Mousavi, S.H.; Tayarani-Najaran, Z.; Atapour-Mashhad, H.; Nikpour, M. Synthesis of new derivatives of 3‐aryl‐1,5‐dimethyl‐1H‐1,2,4triazolo4′,3′:1,2pyrimido4,5‐e1,3,4oxadiazines as potential antiproliferative agents. J. Heterocycl. Chem., 2011, 48(1), 183-187. doi: 10.1002/jhet.509
- Mousavi, S.H.; Atapour-Mashhad, H.; Bakavoli, M.; Shiri, A.; Akbarzadeh, M.; Tayarani-Najaran, Z. Pyrimidooxadiazine and triazolopyrimidooxadiazine derivatives: Synthesis and cytotoxic evaluation in human cancer cell lines. Bioorg. Khim., 2015, 41(2), 227-234. doi: 10.7868/S0132342315020074 PMID: 26165130
- Atapour-Mashhad, H.; Soukhtanloo, M.; Massoudi, A.; Shiri, A.; Parizadeh, S.M.; Bakavoli, M. Synthesis and antiproliferative evaluation of new pyrimido1,6‐athieno2,3‐dpyrimidine derivatives. J. Heterocycl. Chem., 2017, 54(1), 366-374. doi: 10.1002/jhet.2592
- Diveshkumar, K.V.; Sakrikar, S.; Harikrishna, S.; Dhamodharan, V.; Pradeepkumar, P.I. Targeting promoter G-quadruplex DNAs by indenopyrimidine-based ligands. ChemMedChem, 2014, 9(12), 2754-2765. doi: 10.1002/cmdc.201402394 PMID: 25359695
- Bhuma, N.; Chand, K.; Andréasson, M.; Mason, J.; Das, R.N.; Patel, A.K.; Öhlund, D.; Chorell, E. The effect of side chain variations on quinazoline-pyrimidine G-quadruplex DNA ligands. Eur. J. Med. Chem., 2023, 248, 115103. doi: 10.1016/j.ejmech.2023.115103 PMID: 36645982
- Ferreira, R; Aviñó, A; Pérez-Tomás, R; Gargallo, R; Eritja, R Synthesis and g-quadruplex-binding properties of defined acridine oligomers. J. Nucleic Acids, 2010, 2010 doi: 10.4061/2010/489060
- Sochacka-Ćwikła, A.; Regiec, A.; Zimecki, M.; Artym, J.; Zaczyńska, E.; Kocięba, M.; Kochanowska, I.; Bryndal, I.; Pyra, A.; Mączyński, M. Synthesis and biological activity of new 7-amino-oxazolo 5, 4-d pyrimidine derivatives. Molecules, 2020, 25(15), 3558. doi: 10.3390/molecules25153558 PMID: 32759841
- Barril, P.; Nates, S. Introduction to agarose and polyacrylamide gel electrophoresis matrices with respect to their detection sensitivities. In: Gel Electrophoresis - Principles and Basics; , 2012; pp. 3-14. doi: 10.5772/38573
- Wang, Y.; Patel, D.J. Solution structure of the human telomeric repeat dAG3(T2AG3)3 G-tetraplex. Structure, 1993, 1(4), 263-282. doi: 10.1016/0969-2126(93)90015-9 PMID: 8081740
- Lu, Q.; Liu, W.; Ding, J.; Cai, J.; Duan, W. Shikonin derivatives: Synthesis and inhibition of human telomerase. Bioorg. Med. Chem. Lett., 2002, 12(10), 1375-1378. doi: 10.1016/S0960-894X(02)00158-0 PMID: 11992780
- Rosu, F.; Gabelica, V.; De Pauw, E.; Antoine, R.; Broyer, M.; Dugourd, P. UV spectroscopy of DNA duplex and quadruplex structures in the gas phase. J. Phys. Chem. A, 2012, 116(22), 5383-5391. doi: 10.1021/jp302468x PMID: 22568521
- Magdeldin, S. Gel Electrophoresis: Principles and Basics; BoDBooks on Demand, 2012, p. 378.
- Di Somma, S.; Amato, J.; Iaccarino, N.; Pagano, B.; Randazzo, A.; Portella, G.; Malfitano, A.M. G-quadruplex binders induce immunogenic cell death markers in aggressive breast cancer cells. Cancers (Basel), 2019, 11(11), 1797. doi: 10.3390/cancers11111797 PMID: 31731707
- Haldar, S.; Zhang, Y.; Xia, Y.; Islam, B.; Liu, S.; Gervasio, F.L.; Mulholland, A.J.; Waller, Z.A.E.; Wei, D.; Haider, S. Mechanistic Insights into the Ligand-Induced Unfolding of an RNA G-Quadruplex. J. Am. Chem. Soc., 2022, 144(2), 935-950. doi: 10.1021/jacs.1c11248 PMID: 34989224
- OHagan, M.P.; Haldar, S.; Morales, J.C.; Mulholland, A.J.; Galan, M.C. Enhanced sampling molecular dynamics simulations correctly predict the diverse activities of a series of stiff-stilbene G-quadruplex DNA ligands. Chem. Sci. (Camb.), 2021, 12(4), 1415-1426. doi: 10.1039/D0SC05223J PMID: 34163904
- Ortiz de Luzuriaga, I.; Lopez, X.; Gil, A. Learning to model G-quadruplexes: Current methods and perspectives. Annu. Rev. Biophys., 2021, 50(1), 209-243. doi: 10.1146/annurev-biophys-060320-091827 PMID: 33561349
- Bakavoli, M.; Rahimizadeh, M. New access to thiazolo 4, 5-d pyrimidine derivatives. J. Heterocycl. Chem., 2006, 43.
- Mousavi, S.H.; Tavakkol-Afshari, J.; Brook, A.; Jafari-Anarkooli, I. Role of caspases and Bax protein in saffron-induced apoptosis in MCF-7 cells. Food Chem. Toxicol., 2009, 47(8), 1909-1913. doi: 10.1016/j.fct.2009.05.017 PMID: 19457443
- Mousavi, S.H.; Tavakkol-Afshari, J.; Brook, A.; Jafari-Anarkooli, I. Direct toxicity of Rose Bengal in MCF-7 cell line: Role of apoptosis. Food Chem. Toxicol., 2009, 47(4), 855-859. doi: 10.1016/j.fct.2009.01.018 PMID: 19271285
- Forouzanfar, F.; Mousavi, S.H. Targeting autophagic pathways by plant natural compounds in cancer treatment. Curr. Drug Targets, 2020, 21(12), 1237-1249. doi: 10.2174/1389450121666200504072635 PMID: 32364070
- de Bruijn, H.S.; Brooks, S.; van der Ploeg-van den Heuvel, A.; ten Hagen, T.L.M.; de Haas, E.R.M.; Robinson, D.J. Light fractionation significantly increases the efficacy of photodynamic therapy using BF-200 ALA in normal mouse skin. PLoS One, 2016, 11(2), e0148850. doi: 10.1371/journal.pone.0148850 PMID: 26872051
- Sitzmann, M.; Weidlich, I.E.; Filippov, I.V.; Liao, C.; Peach, M.L.; Ihlenfeldt, W.D.; Karki, R.G.; Borodina, Y.V.; Cachau, R.E.; Nicklaus, M.C. PDB ligand conformational energies calculated quantum-mechanically. J. Chem. Inf. Model., 2012, 52(3), 739-756. doi: 10.1021/ci200595n PMID: 22303903
- Liao, Q.H.; Gao, Q.Z.; Wei, J.; Chou, K.C. Docking and molecular dynamics study on the inhibitory activity of novel inhibitors on epidermal growth factor receptor (EGFR). Med. Chem., 2011, 7(1), 24-31.
- Lewis, E.A.; Munde, M.; Wang, S.; Rettig, M.; Le, V.; Machha, V.; Wilson, W.D. Complexity in the binding of minor groove agents: netropsin has two thermodynamically different DNA binding modes at a single site. Nucleic Acids Res., 2011, 39(22), 9649-9658. doi: 10.1093/nar/gkr699 PMID: 21890907
- Atapour-Mashhad, H.; Soukhtanloo, M.; Massoudi, A.; Shiri, A.; Bakavoli, M. Synthesis and evaluation of cytotoxicity of 6-amino-4-aryl-2-thioxo-1,2,3,4-tetrahydropyrimidine-5-carbonitriles. Russ. J. Bioorganic Chem., 2016, 42(3), 316-322. doi: 10.1134/S1068162016020047
- Parkinson, G.N.; Lee, M.P.H.; Neidle, S. Crystal structure of parallel quadruplexes from human telomeric DNA. Nature, 2002, 417(6891), 876-880. doi: 10.1038/nature755 PMID: 12050675
- Spiegel, J.; Adhikari, S.; Balasubramanian, S. The structure and function of DNA G-quadruplexes. Trends Chem., 2020, 2(2), 123-136. doi: 10.1016/j.trechm.2019.07.002 PMID: 32923997
- Huppert, J.L. Four-stranded nucleic acids: structure, function and targeting of G-quadruplexes. Chem. Soc. Rev., 2008, 37(7), 1375-1384. doi: 10.1039/b702491f PMID: 18568163
- Tauchi, T.; Shin-ya, K.; Sashida, G.; Sumi, M.; Okabe, S.; Ohyashiki, J.H.; Ohyashiki, K. Telomerase inhibition with a novel G-quadruplex-interactive agent, telomestatin: in vitro and in vivo studies in acute leukemia. Oncogene, 2006, 25(42), 5719-5725. doi: 10.1038/sj.onc.1209577 PMID: 16652154
- Hampel, S.M.; Sidibe, A.; Gunaratnam, M.; Riou, J.F.; Neidle, S. Tetrasubstituted naphthalene diimide ligands with selectivity for telomeric G-quadruplexes and cancer cells. Bioorg. Med. Chem. Lett., 2010, 20(22), 6459-6463. doi: 10.1016/j.bmcl.2010.09.066 PMID: 20932753
- Kelland, L.R. Overcoming the immortality of tumour cells by telomere and telomerase based cancer therapeutics current status and future prospects. Eur. J. Cancer, 2005, 41(7), 971-979. doi: 10.1016/j.ejca.2004.11.024 PMID: 15862745
- Xiong, Y.X.; Huang, Z.S.; Tan, J.H. Targeting G-quadruplex nucleic acids with heterocyclic alkaloids and their derivatives. Eur. J. Med. Chem., 2015, 97, 538-551. doi: 10.1016/j.ejmech.2014.11.021 PMID: 25466923
- Mitteaux, J.; Lejault, P.; Wojciechowski, F.; Joubert, A.; Boudon, J. Identifying G-quadruplex-DNA-disrupting small molecules. J. Antican. Chem. Soc., 2021, 143(32), 12567-12577.
- Olejko, L.; Dutta, A.; Shahsavar, K.; Bald, I. Influence of different salts on the G-quadruplex structure formed from the reversed human telomeric DNA sequence. Int. J. Mol. Sci., 2022, 23(20), 12206. doi: 10.3390/ijms232012206 PMID: 36293060
- Kaneta, T.; Ogura, T.; Yamato, S.; Imasaka, T. Band broadening of DNA fragments isolated by polyacrylamide gel electrophoresis in capillary electrophoresis. J. Sep. Sci., 2012, 35(3), 431-435. doi: 10.1002/jssc.201100909 PMID: 22258810
- Rao, Y.; Xiong, W.; Liu, H.; Jia, C.; Zhang, H.; Cui, Z.; Zhang, Y.; Cui, J. Inhibition of telomerase activity by dominant-negative hTERT retards the growth of breast cancer cells. Breast Cancer, 2016, 23(2), 216-223. doi: 10.1007/s12282-014-0553-z PMID: 25098685
- Baykal, A.; Rosen, D.; Zhou, C.; Liu, J.; Sahin, A.A. Telomerase in breast cancer: A critical evaluation. Adv. Anat. Pathol., 2004, 11(5), 262-268. doi: 10.1097/01.pap.0000138145.19258.64 PMID: 15322492
- Dalle Carbonare, L.; Valenti, M.T.; Azzarello, G.; Balducci, E.; Crepaldi, G.; Realdi, G.; Vinante, O.; Giannini, S. Bisphosphonates decrease telomerase activity and hTERT expression in MCF-7 breast cancer cells. Mol. Cell. Endocrinol., 2005, 240(1-2), 23-31. doi: 10.1016/j.mce.2005.03.018 PMID: 15978718
- Woo, H.J.; Lee, S.J.; Choi, B.T.; Park, Y.M.; Choi, Y.H. Induction of apoptosis and inhibition of telomerase activity by trichostatin A, a histone deacetylase inhibitor, in human leukemic U937 cells. Exp. Mol. Pathol., 2007, 82(1), 77-84. doi: 10.1016/j.yexmp.2006.02.004 PMID: 16574101
- Salimi-Jeda, A.; Badrzadeh, F.; Esghaei, M.; Abdoli, A. The role of telomerase and viruses interaction in cancer development, and telomerase-dependent therapeutic approaches. Cancer Treat. Res. Commun., 2021, 27, 100323. doi: 10.1016/j.ctarc.2021.100323 PMID: 33530025
- Sun, Y.; Yang, Y.; Shen, H.; Huang, M.; Wang, Z.; Liu, Y.; Zhang, H.; Tang, T.S.; Guo, C. iTRAQ-based chromatin proteomic screen reveals CHD4-dependent recruitment of MBD2 to sites of DNA damage. Biochem. Biophys. Res. Commun., 2016, 471(1), 142-148. doi: 10.1016/j.bbrc.2016.01.162 PMID: 26827827
- Zhu, Z.; Tran, H.; Mathahs, M.M.; Fink, B.D.; Albert, J.A.; Moninger, T.O.; Meier, J.L.; Li, M.; Schmidt, W.N. Zinc protoporphyrin binding to telomerase complexes and inhibition of telomerase activity. Pharmacol. Res. Perspect., 2021, 9(6), e00882. doi: 10.1002/prp2.882 PMID: 34747573
Supplementary files
