Improving Tamoxifen Performance in Inducing Apoptosis and Hepatoprotection by Loading on a Dual Nanomagnetic Targeting System


Cite item

Full Text

Abstract

Background:Although tamoxifen (TMX) belongs to selective estrogen receptor modulators (SERMs) and selectively binds to estrogen receptors, it affects other estrogen-producing tissues due to passive diffusion and non-differentiation of normal and cancerous cells and leads to side effects.

Methods:The problems expressed about tamoxifen (TMX) encouraged us to design a new drug delivery system based on magnetic nanoparticles (MNPs) to simultaneously target two receptors on cancer cells through folic acid (FA) and hyaluronic acid (HA) groups. The mediator of binding of two targeting agents to MNPs is a polymer linker, including dopamine, polyethylene glycol, and terminal amine (DPN).

Results:Zeta potential, dynamic light scattering (DLS), and Field emission scanning electron microscopy (FESEM) methods confirmed that MNPs-DPN-HA-FA has a suitable size of ~105 nm and a surface charge of -41 mV, and therefore, it can be a suitable option for carrying TMX and increasing its solubility. The cytotoxic test showed that the highest concentration of MNPs-DPN-HA-FA-TMX decreased cell viability to about 11% after 72 h of exposure compared to the control. While the protective effect of modified MNPs on normal cells was evident, unlike tamoxifen, the survival rate of liver cells, even after 180 min of treatment, was not significantly different from the control group. The protective effect of MNPs was also confirmed by examining the amount of malondialdehyde, and no significant difference was observed in the amount of lipid peroxidation caused by modified MNPs compared to the control. Flow cytometry proved that TMX loaded onto modified MNPs can induce apoptosis by targeting the overexpressed receptors on cancer cells. Real-time PCR showed that the modified MNPs activated the intrinsic and extrinsic mitochondrial pathways of apoptosis, so the Bak1/Bclx ratio for MNPs-DPN-HAFA- TMX and free TMX was 70.82 and 0.38, respectively. Also, the expression of the caspase-3 gene increased 430 times compared to the control. On the other hand, only TNF gene expression, which is responsible for metastasis in some tumors, was decreased by both free TMX and MNPs-DPN-HA-FA-TMX. Finally, molecular docking proved that MNPs-DPN-HA-FA-TMX could provide a very stable interaction with both CD44 and folate receptors, induce apoptosis in cancer cells, and reduce hepatotoxicity.

Conclusion:All the results showed that MNPs-DPN-HA-FA-TMX can show good affinity to cancer cells using targeting agents and induce apoptosis in metastatic breast ductal carcinoma T-47D cell lines. Also, the protective effects of MNPs on hepatocytes are quite evident, and they can reduce the side effects of TMX.

About the authors

Yanfang Zhao

Key Laboratory of Tumor Immunological Prevention and Treatment, Department of Oncology, Yan’An Hospital Affiliated To Kunming Medical University

Email: info@benthamscience.net

Wanbao Ding

Key Laboratory of Tumor Immunological Prevention and Treatment, Department of Oncology,, Yan’An Hospital Affiliated To Kunming Medical University

Email: info@benthamscience.net

Peixian Zhang

Key Laboratory of Tumor Immunological Prevention and Treatment, Department of Oncology,, Yan’An Hospital Affiliated To Kunming Medical University

Email: info@benthamscience.net

Lei Deng

Key Laboratory of Tumor Immunological Prevention and Treatment, Department of Oncology,, Yan’An Hospital Affiliated To Kunming Medical University

Email: info@benthamscience.net

Yi Long

Key Laboratory of Tumor Immunological Prevention and Treatment, Department of Oncology,, Yan’An Hospital Affiliated To Kunming Medical University

Email: info@benthamscience.net

Jiuqin Lu

Key Laboratory of Tumor Immunological Prevention and Treatment, Department of Oncology,, Yan’An Hospital Affiliated To Kunming Medical University

Author for correspondence.
Email: info@benthamscience.net

Fereshteh Shiri

Department of Chemistry, University of Zabol

Email: info@benthamscience.net

Mostafa Heidari Majd

Department of Medicinal Chemistry, Faculty of Pharmacy, Zabol University of Medical Sciences

Email: info@benthamscience.net

References

  1. Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249. PMID: 33538338
  2. Dehghani, F.; Farhadian, N.; Golmohammadzadeh, S.; Biriaee, A.; Ebrahimi, M.; Karimi, M. Preparation, characterization and in-vivo evaluation of microemulsions containing tamoxifen citrate anti-cancer drug. Eur. J. Pharm. Sci., 2017, 96, 479-489. PMID: 27693298
  3. Majd, M.H. Dual-targeting and specific delivery of tamoxifen to cancer cells by modified magnetic nanoparticles using hyaluronic acid and folic acid. Tumor Discovery, 2022, 1(1), 41.
  4. Majd, M.; Akbarzadeh, A.; Sargazi, A. Evaluation of host-guest system to enhance the tamoxifen efficiency. Artif. Cells Nanomed. Biotechnol., 2017, 45(3), 441-447. PMID: 27012732
  5. Nguyen, S.M.; Pham, A.T.; Nguyen, L.M.; Cai, H.; Tran, T.V.; Shu, X.O.; Tran, H.T.T. Chemotherapy-induced toxicities and their associations with clinical and non-clinical factors among breast cancer patients in vietnam. Curr. Oncol., 2022, 29(11), 8269-8284. doi: 10.3390/curroncol29110653 PMID: 36354713
  6. Song, D.; Hu, Y.; Diao, B.; Miao, R.; Zhang, B.; Cai, Y.; Zeng, H.; Zhang, Y.; Hu, X. Effects of Tamoxifen vs. Toremifene on fatty liver development and lipid profiles in breast Cancer. BMC Cancer, 2021, 21(1), 798. PMID: 34246237
  7. Bhagwat, G.S.; Athawale, R.B.; Gude, R.P.; Md, S.; Alhakamy, N.A.; Fahmy, U.A.; Kesharwani, P. Formulation and development of transferrin targeted solid lipid nanoparticles for breast cancer therapy. Front. Pharmacol., 2020, 11, 614290.
  8. Zhang, L.; Zhu, D.; Dong, X.; Sun, H.; Song, C.; Wang, C.; Kong, D. Folate-modified lipid-polymer hybrid nanoparticles for targeted paclitaxel delivery. Int. J. Nanomedicine, 2015, 10, 2101-2114. PMID: 25844039
  9. Day, C.M.; Hickey, S.M.; Song, Y.; Plush, S.E.; Garg, S. Novel tamoxifen nanoformulations for improving breast cancer treatment: Old wine in new bottles. Molecules, 2020, 25(5), 1182. doi: 10.3390/molecules25051182 PMID: 32151063
  10. Sani, A.; Pourmadadi, M.; Shaghaghi, M.; Mahdi Eshaghi, M.; Shahmollaghamsary, S.; Arshad, R.; Fathi-karkan, S.; Rahdar, A.; Medina, D.I.; Pandey, S. Revolutionizing anticancer drug delivery: Exploring the potential of tamoxifen-loaded nanoformulations. J. Drug Deliv. Sci. Technol., 2023, 86, 104642. doi: 10.1016/j.jddst.2023.104642
  11. Kempe, S.; Mäder, K. In situ forming implants — an attractive formulation principle for parenteral depot formulations. J. Control. Release, 2012, 161(2), 668-679. doi: 10.1016/j.jconrel.2012.04.016 PMID: 22543012
  12. Azizi, S.; Nosrati, H.; Danafar, H. Simple surface functionalization of magnetic nanoparticles with methotrexate-conjugated bovine serum albumin as a biocompatible drug delivery vehicle. Appl. Organomet. Chem., 2020, 34(4), e5479.
  13. Chang, B.Y.; Kim, S.A.; Malla, B.; Kim, S.Y. The effect of selective estrogen receptor modulators (SERMs) on the tamoxifen resistant breast cancer cells. Toxicol. Res., 2011, 27(2), 85-93. doi: 10.5487/TR.2011.27.2.085 PMID: 24278556
  14. Chekhun, V.F.; Lukianova, N.Y.; Chekhun, S.V.; Bezdieniezhnykh, N.O.; Zadvorniy, T.V.; Borikun, T.V.; Polishchuk, L.Z.; Klyusov, O.M. Association of CD44+CD24-/low with markers of aggressiveness and plasticity of cell lines and tumors of patients with breast cancer. Exp. Oncol., 2017, 39(3), 203-211. doi: 10.31768/2312-8852.2017.39(3):203-211 PMID: 28967645
  15. Carthy, J.M.; Sundqvist, A.; Heldin, A. van DAM, H.; Kletsas, D.; Heldin, C.H.; Moustakas, A. Tamoxifen inhibits TGF‐β‐mediated activation of myofibroblasts by blocking non‐smad signaling through ERK1/2. J. Cell. Physiol., 2015, 230(12), 3084-3092. doi: 10.1002/jcp.25049 PMID: 26096876
  16. Williams, M.M.; Lee, L.; Werfel, T.; Joly, M.M.M.; Hicks, D.J.; Rahman, B.; Elion, D.; McKernan, C.; Sanchez, V.; Estrada, M.V.; Massarweh, S.; Elledge, R.; Duvall, C.; Cook, R.S. Intrinsic apoptotic pathway activation increases response to anti-estrogens in luminal breast cancers. Cell Death Dis., 2018, 9(2), 21. doi: 10.1038/s41419-017-0072-x PMID: 29343814
  17. Sargazi, A.; Azhoogh, M.; Allahdad, S.; Majd, M. Evaluation of supramolecule conjugated magnetic nanoparticles as a simultaneous carrier for methotrexate and tamoxifen. J. Drug Deliv. Sci. Technol., 2018, 47, 115-122. doi: 10.1016/j.jddst.2018.07.006
  18. Sargazi, A.; Shiri, F.; Keikha, S.; Majd, M.H. Hyaluronan magnetic nanoparticle for mitoxantrone delivery toward CD44-positive cancer cells. Colloids Surf. B Biointerfaces, 2018, 171, 150-158. doi: 10.1016/j.colsurfb.2018.07.025 PMID: 30025377
  19. Sargazi, A.; Kamali, N.; Shiri, F.; Majd, M. Hyaluronic acid/polyethylene glycol nanoparticles for controlled delivery of mitoxantrone. Artif. Cells Nanomed. Biotechnol., 2018, 46(3), 500-509. doi: 10.1080/21691401.2017.1324462 PMID: 28503952
  20. Nijiati, S.; Zeng, F.; Zuo, C.; Zhang, Q.; Du, C.; Shi, C.; Gao, J.; Zhou, Z. Fe(II)-targeted PET/19 F MRI dual-modal molecular imaging probe for early evaluation of anticancer drug-induced acute kidney injury. Mol. Pharm., 2023, 20(10), 5185-5194. doi: 10.1021/acs.molpharmaceut.3c00531 PMID: 37711135
  21. Dou, J.; Mi, Y.; Daneshmand, S.; Majd, M. The effect of magnetic nanoparticles containing hyaluronic acid and methotrexate on the expression of genes involved in apoptosis and metastasis in A549 lung cancer cell lines. Arab. J. Chem., 2022, 15(12), 104307. doi: 10.1016/j.arabjc.2022.104307
  22. Heidari Majd, M.; Asgari, D.; Barar, J.; Valizadeh, H.; Kafil, V.; Abadpour, A.; Moumivand, E.; Mojarrad, J.S.; Rashidi, M.R.; Coukos, G.; Omidi, Y. Tamoxifen loaded folic acid armed PEGylated magnetic nanoparticles for targeted imaging and therapy of cancer. Colloids Surf. B Biointerfaces, 2013, 106, 117-125. doi: 10.1016/j.colsurfb.2013.01.051 PMID: 23434700
  23. Khan, Z.; Sattar, S.; Abubakar, M.; Arshed, M.J.; Aslam, R.; Shah, S.T.A.; Javed, S.; Tariq, A.; Manzoor, S.; Bostan, N. Preparation and in vitro evaluation of tamoxifen-conjugated, eco-friendly, agar-based hybrid magnetic nanoparticles for their potential use in breast cancer treatment. ACS Omega, 2023, 8(29), 25808-25816. doi: 10.1021/acsomega.3c00844 PMID: 37521645
  24. Mansouri-Torshizi, H.; Zareian-Jahromi, S.; Ghahghaei, A.; Shahraki, S.; Khosravi, F.; Majd, M. Palladium(II) complexes of biorelevant ligands. Synthesis, structures, cytotoxicity and rich DNA/HSA interaction studies. J. Biomol. Struct. Dyn., 2018, 36(11), 2787-2806. doi: 10.1080/07391102.2017.1372309 PMID: 28849726
  25. Sorinezami, Z.; Mansouri-Torshizi, H.; Aminzadeh, M.; Ghahghaei, A.; Jamgohari, N.; Majd, M. Synthesis of new ultrasonic-assisted palladium oxide nanoparticles: An in vitro evaluation on cytotoxicity and DNA/BSA binding properties. J. Biomol. Struct. Dyn., 2019, 37(16), 4238-4250. doi: 10.1080/07391102.2018.1546619 PMID: 30600777
  26. Shahraki, S.; Shiri, F.; Majd, M.; Dahmardeh, S. Anti-cancer study and whey protein complexation of new lanthanum(III) complex with the aim of achieving bioactive anticancer metal-based drugs. J. Biomol. Struct. Dyn., 2019, 37(8), 2072-2085. doi: 10.1080/07391102.2018.1476266 PMID: 29768984
  27. Charni-Natan, M.; Goldstein, I. Protocol for primary mouse hepatocyte isolation. STAR Protocols, 2020, 1(2), 100086. doi: 10.1016/j.xpro.2020.100086 PMID: 33111119
  28. Shahraki, S.; Shiri, F.; Majd, M.H.; Razmara, Z. Comparative study on the anticancer activities and binding properties of a hetero metal binuclear complex Co(dipic)2Ni(OH2)5·2H2O (dipic = dipicolinate) with two carrier proteins. J. Pharm. Biomed. Anal., 2017, 145, 273-282. doi: 10.1016/j.jpba.2017.06.067 PMID: 28700971
  29. Sargazi, A.; Barani, A.; Majd, M. Synthesis and apoptotic efficacy of biosynthesized silver nanoparticles using acacia luciana flower extract in MCF-7 breast cancer cells: Activation of bak1 and bclx for cancer therapy. Bionanoscience, 2020, 10(3), 683-689. doi: 10.1007/s12668-020-00753-x
  30. Habibi K, S.M.; Ghodsi, F.; Arezomandan, H.; Shahraki, M.; Omidikia, N.; Hashemzaei, M.; Heidari M, M. In vitro apoptosis evaluation and kinetic modeling onto cyclodextrin-based host–guest magnetic nanoparticles containing methotrexate and tamoxifen. Bionanoscience, 2021, 11(3), 667-677. doi: 10.1007/s12668-021-00877-8
  31. He, C.; Majd, M.; Shiri, F.; Shahraki, S. Palladium and platinum complexes of folic acid as new drug delivery systems for treatment of breast cancer cells. J. Mol. Struct., 2021, 1229, 129806. doi: 10.1016/j.molstruc.2020.129806
  32. Yu, C.; Majd, M.; Shiri, F.; Shahraki, S.; Karimi, P. The role of folic acid in inducing of apoptosis by zinc(II) complex in ovary and cervix cancer cells. Mol. Divers., 2022, 26(3), 1545-1555. PMID: 34417716
  33. Koes, D.R.; Baumgartner, M.P.; Camacho, C.J. Lessons learned in empirical scoring with smina from the CSAR 2011 benchmarking exercise. J. Chem. Inf. Model., 2013, 53(8), 1893-1904. doi: 10.1021/ci300604z PMID: 23379370
  34. Teriete, P.; Banerji, S.; Noble, M.; Blundell, C.D.; Wright, A.J.; Pickford, A.R.; Lowe, E.; Mahoney, D.J.; Tammi, M.I.; Kahmann, J.D.; Campbell, I.D.; Day, A.J.; Jackson, D.G. Structure of the regulatory hyaluronan binding domain in the inflammatory leukocyte homing receptor CD44. Mol. Cell, 2004, 13(4), 483-496. doi: 10.1016/S1097-2765(04)00080-2 PMID: 14992719
  35. Trott, O.; Olson, A.J. AutoDock vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem., 2010, 31(2), 455-461. doi: 10.1002/jcc.21334 PMID: 19499576
  36. Yadav, N.; Francis, A.P.; Priya, V.V.; Patil, S.; Mustaq, S.; Khan, S.S.; Alzahrani, K.J.; Banjer, H.J.; Mohan, S.K.; Mony, U.; Rajagopalan, R. Polysaccharide-drug conjugates: A tool for enhanced cancer therapy. Polymers, 2022, 14(5), 950. doi: 10.3390/polym14050950 PMID: 35267773
  37. Dheer, D.; Arora, D.; Jaglan, S.; Rawal, R.K.; Shankar, R. Polysaccharides based nanomaterials for targeted anti-cancer drug delivery. J. Drug Target., 2017, 25(1), 1-16. doi: 10.3109/1061186X.2016.1172589 PMID: 27030377
  38. Wang, X.; Li, C.; Wang, Y.; Chen, H.; Zhang, X.; Luo, C.; Zhou, W.; Li, L.; Teng, L.; Yu, H.; Wang, J. Smart drug delivery systems for precise cancer therapy. Acta Pharm. Sin. B, 2022, 12(11), 4098-4121. doi: 10.1016/j.apsb.2022.08.013 PMID: 36386470
  39. Behdarvand, N.; Torbati, M.B.; Shaabanzadeh, M.J.J.o.N.R. Tamoxifen-loaded PLA/DPPE-PEG lipid-polymeric nanocapsules for inhibiting the growth of estrogen-positive human breast cancer cells through cell cycle arrest. J. Nanopart. Res., 2020, 22(262), 1-15.
  40. Saei, A.A.; Barzegari, A.; Majd, M.H.; Asgari, D.; Omidi, Y. Fe3O4 nanoparticles engineered for plasmid DNA delivery to Escherichia coli. J. Nanopart. Res., 2014, 16(8), 2521. doi: 10.1007/s11051-014-2521-0
  41. Yang, Y.; Li, Y.; Chen, K.; Zhang, L.; Qiao, S.; Tan, G.; Chen, F.; Pan, W. Dual receptor-targeted and redox-sensitive polymeric micelles self-assembled from a folic acid-hyaluronic acid-ss-vitamin e succinate polymer for precise cancer therapy. Int. J. Nanomedicine, 2020, 15, 2885-2902. doi: 10.2147/IJN.S249205 PMID: 32425522
  42. Huang, D.; Sun, L.; Huang, L.; Chen, Y. Nanodrug delivery systems modulate tumor vessels to increase the enhanced permeability and retention effect. J. Pers. Med., 2021, 11(2), 124. doi: 10.3390/jpm11020124 PMID: 33672813
  43. Yu, W.; Liu, R.; Zhou, Y.; Gao, H. Size-tunable strategies for a tumor targeted drug delivery system. ACS Cent. Sci., 2020, 6(2), 100-116. doi: 10.1021/acscentsci.9b01139 PMID: 32123729
  44. Patra, J.K.; Das, G.; Fraceto, L.F.; Campos, E.V.R.; Rodriguez-Torres, M.P.; Acosta-Torres, L.S.; Diaz-Torres, L.A.; Grillo, R.; Swamy, M.K.; Sharma, S.; Habtemariam, S.; Shin, H.S. Nano based drug delivery systems: Recent developments and future prospects. J. Nanobiotechnology, 2018, 16(1), 71. doi: 10.1186/s12951-018-0392-8 PMID: 30231877
  45. Ahlawat, J.; Guillama, B. G.; Masoudi Asil, S.; Alvarado, M.; Armendariz, I.; Bernal, J.; Carabaza, X.; Chavez, S.; Cruz, P.; Escalante, V.; Estorga, S.; Fernandez, D.; Lozano, C.; Marrufo, M.; Ahmad, N.; Negrete, S.; Olvera, K.; Parada, X.; Portillo, B.; Ramirez, A.; Ramos, R.; Rodriguez, V.; Rojas, P.; Romero, J.; Suarez, D.; Urueta, G.; Viel, S.; Narayan, M. Nanocarriers as potential drug delivery candidates for overcoming the blood–brain barrier: Challenges and possibilities. ACS Omega, 2020, 5(22), 12583-12595. doi: 10.1021/acsomega.0c01592 PMID: 32548442
  46. Alshawwa, S.Z.; Kassem, A.A.; Farid, R.M.; Mostafa, S.K.; Labib, G.S. Nanocarrier drug delivery systems: Characterization, limitations, future perspectives and implementation of artificial intelligence. Pharmaceutics, 2022, 14(4), 883. doi: 10.3390/pharmaceutics14040883 PMID: 35456717
  47. Hu, S.; Shi, X.; Liu, Y.; He, Y.; Du, Y.; Zhang, G.; Yang, C.; Gao, F. CD44 cross-linking increases malignancy of breast cancer via upregulation of p-Moesin. Cancer Cell Int., 2020, 20(1), 563. doi: 10.1186/s12935-020-01663-4 PMID: 33292278
  48. Vargas-Castro, R.; García-Becerra, R.; Díaz, L.; Avila, E.; Ordaz-Rosado, D.; Bernadez-Vallejo, S.V.; Cano-Colín, S.; Camacho, J.; Larrea, F.; García-Quiroz, J. Enhancing tamoxifen therapy with α-mangostin: synergistic antiproliferative effects on breast cancer cells and potential reduced endometrial impact. Pharmaceuticals, 2023, 16(11), 1576. doi: 10.3390/ph16111576 PMID: 38004441
  49. Elefsiniotis, I.S.; Pantazis, K.D.; Ilias, A.; Pallis, L.; Mariolis, A.; Glynou, I.; Kada, H.; Moulakakis, A. Tamoxifen induced hepatotoxicity in breast cancer patients with pre-existing liver steatosis. Eur. J. Gastroenterol. Hepatol., 2004, 16(6), 593-598. doi: 10.1097/00042737-200406000-00013 PMID: 15167162
  50. Hu, M.; Huang, L. Nanomaterial manipulation of immune microenvironment in the diseased liver. Adv. Funct. Mater., 2019, 29(7), 1805760. doi: 10.1002/adfm.201805760
  51. Singh, R.K.; Knowles, J.C.; Kim, H.W. Advances in nanoparticle development for improved therapeutics delivery: Nanoscale topographical aspect. J. Tissue Eng., 2019, 10 doi: 10.1177/2041731419877528 PMID: 31555432
  52. Dadwal, A.; Baldi, A.; Kumar Narang, R. Nanoparticles as carriers for drug delivery in cancer. Artif. Cells Nanomed. Biotechnol., 2018, 46(sup2), 295-305. doi: 10.1080/21691401.2018.1457039 PMID: 30043651
  53. Adikwu, E.; Ebinyo, N.; Benalayefa, O.J.B.; Journal, B.R. Protective effect of lycopene against tamoxifen-induced hepatotoxicity in albino rats. Biomed. Biotechnol. Res. J., 2020, 4(1), 69-75.
  54. Ou, X.; Shahraki, J.; Heidari Majd, M. Investigation on protective effects of magnetic nanoparticles containing methotrexate and tamoxifen in inhibition of hepatocyte toxicity and induction of apoptosis. Lat. Am. J. Pharm., 2021, 40, 2219-2225.
  55. Yan, M.; Majd, M.H. Evaluation of induced apoptosis by biosynthesized zinc oxide nanoparticles in MCF-7 breast cancer cells using Bak1 and Bclx expression. Dokl. Biochem. Biophys., 2021, 500(1), 360-367. doi: 10.1134/S1607672921050148 PMID: 34697744
  56. Kawiak, A.; Kostecka, A. Regulation of Bcl-2 family proteins in estrogen receptor-positive breast cancer and their implications in endocrine therapy. Cancers, 2022, 14(2), 279. doi: 10.3390/cancers14020279 PMID: 35053443
  57. Lewoniewska, S.; Oscilowska, I.; Forlino, A.; Palka, J. Understanding the role of estrogen receptor status in PRODH/POX-dependent apoptosis/survival in breast cancer cells. Biology, 2021, 10(12), 1314. doi: 10.3390/biology10121314 PMID: 34943229
  58. Xavier, M.A.; de Oliveira, M.T.; Baranoski, A.; Mantovani, M.S. Effects of folic acid on the antiproliferative efficiency of doxorubicin, camptothecin and methyl methanesulfonate in MCF-7 cells by mRNA endpoints. Saudi J. Biol. Sci., 2018, 25(8), 1568-1576. doi: 10.1016/j.sjbs.2016.02.005 PMID: 30581319
  59. Cao, D.Z.; Sun, W.H.; Ou, X.L.; Yu, Q.; Yu, T.; Zhang, Y.Z.; Wu, Z.Y.; Xue, Q.P.; Cheng, Y.L.J.W.J.o.G.W. Effects of folic acid on epithelial apoptosis and expression of Bcl-2 and p53 in premalignant gastric lesions. World J. Gastroenterol., 2005, 11(11), 1571-1576.
  60. Majd, M.H.; Guo, X. Investigation of the apoptosis inducing and β-catenin silencing by tetradentate schiff base Zinc(II) complex on the T-47D breast cancer cells. Anticancer. Agents Med. Chem., 2023, 23(15), 1740-1746. doi: 10.2174/1871520623666230511124547 PMID: 37171012
  61. Qian, S.; Wei, Z.; Yang, W.; Huang, J.; Yang, Y.; Wang, J. The role of BCL-2 family proteins in regulating apoptosis and cancer therapy. Front. Oncol., 2022, 12, 985363. doi: 10.3389/fonc.2022.985363 PMID: 36313628
  62. Morris, J.L.; Gillet, G.; Prudent, J.; Popgeorgiev, N. Bcl-2 family of proteins in the control of mitochondrial calcium signalling: An old chap with new roles. Int. J. Mol. Sci., 2021, 22(7), 3730. doi: 10.3390/ijms22073730 PMID: 33918511
  63. Cheng, W.; Ren, Y.; Yu, C.; Zhou, T.; Zhang, Y.; Lu, L.; Liu, Y.; Xu, D. CyHV-2 infection triggers mitochondrial-mediated apoptosis in GiCF cells by upregulating the pro-apoptotic gene ccBAX. Fish Shellfish Immunol., 2024, 147, 109400. doi: 10.1016/j.fsi.2024.109400 PMID: 38253137
  64. Mandlekar, S.; Hebbar, V.; Christov, K.; Kong, A.N. Pharmacodynamics of tamoxifen and its 4-hydroxy and N-desmethyl metabolites: Activation of caspases and induction of apoptosis in rat mammary tumors and in human breast cancer cell lines. Cancer Res., 2000, 60(23), 6601-6606. PMID: 11118041
  65. Mandlekar, S.; Kong, A.N.T. Mechanisms of tamoxifen-induced apoptosis. Apoptosis, 2001, 6(6), 469-477. doi: 10.1023/A:1012437607881 PMID: 11595837
  66. Archana, M.; Bastian, T. Various methods available for detection of apoptotic cells a review. Indian J. Cancer, 2013, 50(3), 274-283. PMID: 24061471
  67. Sharma, R.; Iovine, C.; Agarwal, A.; Henkel, R. TUNEL assay—Standardized method for testing sperm DNA fragmentation. Andrologia, 2021, 53(2), e13738.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers