Liposomal Nano-Based Drug Delivery Systems for Breast Cancer Therapy: Recent Advances and Progresses
- Authors: Yazdan M.1, Naghib S.M.2, Mozafari M.R.3
-
Affiliations:
- Department of Nanotechnology, School of Advanced Technologies,, Iran University of Science and Technology (IUST)
- Department of Nanotechnology, School of Advanced Technologies, Iran University of Science and Technology (IUST)
- Australasian Nanoscience and Nanotechnology Initiative (ANNI), Monash University LPO
- Issue: Vol 24, No 12 (2024)
- Pages: 896-915
- Section: Oncology
- URL: https://rjsocmed.com/1871-5206/article/view/643772
- DOI: https://doi.org/10.2174/0118715206293653240322041047
- ID: 643772
Cite item
Full Text
Abstract
Breast cancer is a highly prevalent disease on a global scale, with a 30% incidence rate among women and a 14% mortality rate. Developing countries bear a disproportionate share of the disease burden, while countries with greater technological advancements exhibit a higher incidence. A mere 7% of women under the age of 40 are diagnosed with breast cancer, and the prevalence of this ailment is significantly diminished among those aged 35 and younger. Chemotherapy, radiation therapy, and surgical intervention comprise the treatment protocol. However, the ongoing quest for a definitive cure for breast cancer continues. The propensity for cancer stem cells to metastasize and resistance to treatment constitute their Achilles' heel. The advancement of drug delivery techniques that target cancer cells specifically holds significant promise in terms of facilitating timely detection and effective intervention. Novel approaches to pharmaceutical delivery, including nanostructures and liposomes, may bring about substantial changes in the way breast cancer is managed. These systems offer a multitude of advantages, such as heightened bioavailability, enhanced solubility, targeted tumor destruction, and diminished adverse effects. The application of nano-drug delivery systems to administer anti-breast cancer medications is a significant subject of research. This article delves into the domain of breast cancer, conventional treatment methods, the incorporation of nanotechnology into managerial tactics, and strategic approaches aimed at tackling the disease at its core.
About the authors
Mostafa Yazdan
Department of Nanotechnology, School of Advanced Technologies,, Iran University of Science and Technology (IUST)
Email: info@benthamscience.net
Seyed Morteza Naghib
Department of Nanotechnology, School of Advanced Technologies, Iran University of Science and Technology (IUST)
Author for correspondence.
Email: info@benthamscience.net
M. R. Mozafari
Australasian Nanoscience and Nanotechnology Initiative (ANNI), Monash University LPO
Email: info@benthamscience.net
References
- Sahoo, B.M.; Banik, B.K.; Borah, P.; Jain, A. Reactive oxygen species (ROS): Key components in cancer therapies. Anticancer. Agents Med. Chem., 2022, 22(2), 215-222. doi: 10.2174/1871520621666210608095512 PMID: 34102991
- Shams ul Hassan, S.; Abbas, S.Q. Computational exploration of anti-cancer potential of guaiane dimers from Xylopia vielana by targeting B-RAF kinase using chemo-informatics, molecular docking, and MD simulation studies. Anticancer. Agents Med. Chem., 2022, 22, 731-746. doi: 10.2174/1871520621666211013115500 PMID: 34645380
- Fatima, M.; Iqubal, M.K.; Iqubal, A.; Kaur, H.; Gilani, S.J.; Rahman, M.H.; Ahmadi, A.; Rizwanullah, M. Current insight into the therapeutic potential of phytocompounds and their nanoparticle-based systems for effective management of lung cancer. Anticancer. Agents Med. Chem., 2022, 22(4), 668-686. doi: 10.2174/1871520621666210708123750 PMID: 34238197
- Dawood, K.M.; Raslan, M.A.; Abbas, A.A.; Mohamed, B.E.; Nafie, M.S. Novel bis-amide-based bis-thiazoles as anti-colorectal cancer agents through Bcl-2 inhibition: Synthesis, in vitro, and in vivo studies. Anticancer. Agents Med. Chem., 2023, 23(3), 328-345. doi: 10.2174/1871520622666220615140239 PMID: 35708084
- Rindi, G.; Klimstra, D.S.; Abedi-Ardekani, B.; Asa, S.L.; Bosman, F.T.; Brambilla, E.; Busam, K.J.; de Krijger, R.R.; Dietel, M.; El-Naggar, A.K.; Fernandez-Cuesta, L.; Klöppel, G.; McCluggage, W.G.; Moch, H.; Ohgaki, H.; Rakha, E.A.; Reed, N.S.; Rous, B.A.; Sasano, H.; Scarpa, A.; Scoazec, J.Y.; Travis, W.D.; Tallini, G.; Trouillas, J.; van Krieken, J.H.; Cree, I.A. A common classification framework for neuroendocrine neoplasms: An International Agency for Research on Cancer (IARC) and World Health Organization (WHO) expert consensus proposal. Mod. Pathol., 2018, 31(12), 1770-1786. doi: 10.1038/s41379-018-0110-y PMID: 30140036
- Fang, X.; Cao, J.; Shen, A. Advances in anti-breast cancer drugs and the application of nano-drug delivery systems in breast cancer therapy. J. Drug Deliv. Sci. Technol., 2020, 57, 101662. doi: 10.1016/j.jddst.2020.101662
- Yedjou, C.; Tchounwou, P.; Payton, M.; Miele, L.; Fonseca, D.; Lowe, L.; Alo, R. Assessing the racial and ethnic disparities in breast cancer mortality in the United States. Int. J. Environ. Res. Public Health, 2017, 14(5), 486. doi: 10.3390/ijerph14050486 PMID: 28475137
- Feng, Y.; Spezia, M.; Huang, S.; Yuan, C.; Zeng, Z.; Zhang, L.; Ji, X.; Liu, W.; Huang, B.; Luo, W.; Liu, B.; Lei, Y.; Du, S.; Vuppalapati, A.; Luu, H.H.; Haydon, R.C.; He, T.C.; Ren, G. Breast cancer development and progression: Risk factors, cancer stem cells, signaling pathways, genomics, and molecular pathogenesis. Genes Dis., 2018, 5(2), 77-106. doi: 10.1016/j.gendis.2018.05.001 PMID: 30258937
- Herdiana, Y.; Wathoni, N.; Shamsuddin, S.; Joni, I.M.; Muchtaridi, M. Chitosan-based nanoparticles of targeted drug delivery system in breast cancer treatment. Polymers, 2021, 13(11), 1717. doi: 10.3390/polym13111717 PMID: 34074020
- Heymach, J.; Krilov, L.; Alberg, A.; Baxter, N.; Chang, S.M.; Corcoran, R.B.; Dale, W.; DeMichele, A.; Magid, D.C.S.; Dreicer, R.; Epstein, A.S.; Gillison, M.L.; Graham, D.L.; Jones, J.; Ko, A.H.; Lopez, A.M.; Maki, R.G.; Rodriguez-Galindo, C.; Schilsky, R.L.; Sznol, M.; Westin, S.N.; Burstein, H. Clinical cancer advances 2018: Annual report on progress against cancer from the american society of clinical oncology. J. Clin. Oncol., 2018, 36(10), 1020-1044. doi: 10.1200/JCO.2017.77.0446 PMID: 29380678
- Prieto-Vila, M.; Takahashi, R.; Usuba, W.; Kohama, I.; Ochiya, T. Drug resistance driven by cancer stem cells and their niche. Int. J. Mol. Sci., 2017, 18(12), 2574. doi: 10.3390/ijms18122574 PMID: 29194401
- Hu, C.; Cun, X.; Ruan, S.; Liu, R.; Xiao, W.; Yang, X.; Yang, Y.; Yang, C.; Gao, H. Enzyme-triggered size shrink and laser-enhanced NO release nanoparticles for deep tumor penetration and combination therapy. Biomaterials, 2018, 168, 64-75. doi: 10.1016/j.biomaterials.2018.03.046 PMID: 29626787
- Momenimovahed, Z.; Salehiniya, H. Epidemiological characteristics of and risk factors for breast cancer in the world. Breast Cancer, 2019, 11, 151-164. doi: 10.2147/BCTT.S176070 PMID: 31040712
- Kangarshahi, B.M.; Naghib, S.M.; Kangarshahi, G.M.; Mozafari, M.R. Bioprinting of self-healing materials and nanostructures for biomedical applications: Recent advances and progresses on fabrication and characterization techniques. Bioprinting, 2024, 38, e00335. doi: 10.1016/j.bprint.2024.e00335
- Goodman, J.; Lynch, H. Improving the international agency for research on cancers consideration of mechanistic evidence. Toxicol. Appl. Pharmacol., 2017, 319, 39-46. doi: 10.1016/j.taap.2017.01.020 PMID: 28162991
- Wang, P.; Du, Y.; Wang, J. Indentification of breast cancer subtypes sensitive to HCQ-induced autophagy inhibition. Pathol. Res. Pract., 2019, 215(10), 152609. doi: 10.1016/j.prp.2019.152609 PMID: 31488317
- Peng, Q.; Ren, X. Mapping of female breast cancer incidence and mortality rates to socioeconomic factors cohort: Path diagram analysis. Front. Public Health, 2022, 9, 761023. doi: 10.3389/fpubh.2021.761023 PMID: 35178368
- Liang, Y.; Zhang, H.; Song, X.; Yang, Q. Metastatic heterogeneity of breast cancer: Molecular mechanism and potential therapeutic targets. Semin. Cancer Biol., 2020, 60, 14-27. doi: 10.1016/j.semcancer.2019.08.012 PMID: 31421262
- De, A.; Kuppusamy, G. Metformin in breast cancer: Preclinical and clinical evidence. Curr. Probl. Cancer, 2020, 44(1), 100488. doi: 10.1016/j.currproblcancer.2019.06.003 PMID: 31235186
- Al-thoubaity, F.K. Molecular classification of breast cancer: A retrospective cohort study. Ann. Med. Surg., 2020, 49, 44-48. doi: 10.1016/j.amsu.2019.11.021 PMID: 31890196
- Pindiprolu, S.K.S.S.; Krishnamurthy, P.T.; Chintamaneni, P.K.; Karri, V.V.S.R. Nanocarrier based approaches for targeting breast cancer stem cells. Artif. Cells Nanomed. Biotechnol., 2018, 46(5), 885-898. doi: 10.1080/21691401.2017.1366337 PMID: 28826237
- Akinyemiju, T.F.; Pisu, M.; Waterbor, J.W.; Altekruse, S.F. Socioeconomic status and incidence of breast cancer by hormone receptor subtype. Springerplus, 2015, 4(1), 508. doi: 10.1186/s40064-015-1282-2 PMID: 26405628
- Thanki, K.; Gangwal, R.P.; Sangamwar, A.T.; Jain, S. Oral delivery of anticancer drugs: Challenges and opportunities. J. Control. Release, 2013, 170(1), 15-40. doi: 10.1016/j.jconrel.2013.04.020 PMID: 23648832
- Tran, P.; Lee, S.E.; Kim, D.H.; Pyo, Y.C.; Park, J.S. Recent advances of nanotechnology for the delivery of anticancer drugs for breast cancer treatment. J. Pharm. Investig., 2020, 50(3), 261-270. doi: 10.1007/s40005-019-00459-7
- Wang, X.; Li, L.; Gao, J.; Liu, J.; Guo, M.; Liu, L.; Wang, W.; Wang, J.; Xing, Z.; Yu, Z.; Wang, X. The association between body size and breast cancer in han women in northern and eastern China. Oncologist, 2016, 21(11), 1362-1368. doi: 10.1634/theoncologist.2016-0147 PMID: 27496041
- Caetano-Pinto, P.; Jansen, J.; Assaraf, Y.G.; Masereeuw, R. The importance of breast cancer resistance protein to the kidneys excretory function and chemotherapeutic resistance. Drug Resist. Updat., 2017, 30, 15-27. doi: 10.1016/j.drup.2017.01.002 PMID: 28363332
- Pastor-Barriuso, R.; Fernández, M.F.; Castaño-Vinyals, G.; Whelan, D.; Pérez-Gómez, B.; Llorca, J.; Villanueva, C.M.; Guevara, M.; Molina-Molina, J.M.; Artacho-Cordón, F.; Barriuso-Lapresa, L.; Tusquets, I.; Dierssen-Sotos, T.; Aragonés, N.; Olea, N.; Kogevinas, M.; Pollán, M. Total effective xenoestrogen burden in serum samples and risk for breast cancer in a population-based multicasecontrol study in Spain. Environ. Health Perspect., 2016, 124(10), 1575-1582. doi: 10.1289/EHP157 PMID: 27203080
- Howlader, N.; Altekruse, S.F.; Li, C.I.; Chen, V.W.; Clarke, C.A.; Ries, L.A.G.; Cronin, K.A. US incidence of breast cancer subtypes defined by joint hormone receptor and HER2 status. J. Natl. Cancer Inst., 2014, 106(5), dju055. doi: 10.1093/jnci/dju055 PMID: 24777111
- Estrella, V.; Chen, T.; Lloyd, M.; Wojtkowiak, J.; Cornnell, H.H.; Ibrahim-Hashim, A.; Bailey, K.; Balagurunathan, Y.; Rothberg, J.M.; Sloane, B.F.; Johnson, J.; Gatenby, R.A.; Gillies, R.J. Acidity generated by the tumor microenvironment drives local invasion. Cancer Res., 2013, 73(5), 1524-1535. doi: 10.1158/0008-5472.CAN-12-2796 PMID: 23288510
- Choi, J.; Cha, Y.J.; Koo, J.S. Adipocyte biology in breast cancer: From silent bystander to active facilitator. Prog. Lipid Res., 2018, 69, 11-20. doi: 10.1016/j.plipres.2017.11.002 PMID: 29175445
- Park, J.; Choi, Y.; Chang, H.; Um, W.; Ryu, J.H.; Kwon, I.C. Alliance with EPR effect: Combined strategies to improve the EPR effect in the tumor microenvironment. Theranostics, 2019, 9(26), 8073-8090. doi: 10.7150/thno.37198 PMID: 31754382
- Voduc, K.D.; Cheang, M.C.U.; Tyldesley, S.; Gelmon, K.; Nielsen, T.O.; Kennecke, H. Breast cancer subtypes and the risk of local and regional relapse. J. Clin. Oncol., 2010, 28(10), 1684-1691. doi: 10.1200/JCO.2009.24.9284 PMID: 20194857
- El Saghir, N.S.; Adebamowo, C.A.; Anderson, B.O.; Carlson, R.W.; Bird, P.A.; Corbex, M.; Badwe, R.A.; Bushnaq, M.A.; Eniu, A.; Gralow, J.R.; Harness, J.K.; Masetti, R.; Perry, F.; Samiei, M.; Thomas, D.B.; Wiafe-Addai, B.; Cazap, E. Breast cancer management in low resource countries (LRCs): Consensus statement from the Breast Health Global Initiative. Breast, 2011, 20(Suppl. 2), S3-S11. doi: 10.1016/j.breast.2011.02.006 PMID: 21392996
- Burstein, H.J.; Curigliano, G.; Thürlimann, B.; Weber, W.P.; Poortmans, P.; Regan, M.M.; Senn, H.J.; Winer, E.P.; Gnant, M.; Aebi, S.; André, F.; Barrios, C.; Bergh, J.; Bonnefoi, H.; Bretel Morales, D.; Brucker, S.; Burstein, H.; Cameron, D.; Cardoso, F.; Carey, L.; Chua, B.; Ciruelos, E.; Colleoni, M.; Curigliano, G.; Delaloge, S.; Denkert, C.; Dubsky, P.; Ejlertsen, B.; Fitzal, F.; Francis, P.; Galimberti, V.; Gamal El Din Mohamed Mahmoud, H.; Garber, J.; Gnant, M.; Gradishar, W.; Gulluoglu, B.; Harbeck, N.; Huang, C.S.; Huober, J.; Ilbawi, A.; Jiang, Z.; Johnston, S.; Lee, E.S.; Loibl, S.; Morrow, M.; Partridge, A.; Piccart, M.; Poortmans, P.; Prat, A.; Regan, M.; Rubio, I.; Rugo, H.; Rutgers, E.; Sedlmayer, F.; Semiglazov, V.; Senn, H.J.; Shao, Z.; Spanic, T.; Tesarova, P.; Thürlimann, B.; Tjulandin, S.; Toi, M.; Trudeau, M.; Turner, N.; Vaz Luis, I.; Viale, G.; Watanabe, T.; Weber, W.P.; Winer, E.P.; Xu, B. Customizing local and systemic therapies for women with early breast cancer: The St. Gallen International Consensus Guidelines for treatment of early breast cancer 2021. Ann. Oncol., 2021, 32(10), 1216-1235. doi: 10.1016/j.annonc.2021.06.023 PMID: 34242744
- Anderson, B.O.; Yip, C.H.; Smith, R.A.; Shyyan, R.; Sener, S.F.; Eniu, A.; Carlson, R.W.; Azavedo, E.; Harford, J. Guideline implementation for breast healthcare in low-income and middle-income countries. Cancer, 2008, 113(S8)(Suppl.), 2221-2243. doi: 10.1002/cncr.23844 PMID: 18816619
- Chen, Q.; Hongu, T.; Sato, T.; Zhang, Y.; Ali, W.; Cavallo, J.A.; van der Velden, A.; Tian, H.; Di Paolo, G.; Nieswandt, B.; Kanaho, Y.; Frohman, M.A. Key roles for the lipid signaling enzyme phospholipase d1 in the tumor microenvironment during tumor angiogenesis and metastasis. Sci. Signal., 2012, 5(249), ra79. doi: 10.1126/scisignal.2003257 PMID: 23131846
- Mota, A.; Evangelista, A.; Macedo, T.; Oliveira, R.; Scapulatempo-Neto, C.; Vieira, R.; Marques, M. Molecular characterization of breast cancer cell lines by clinical immunohistochemical markers. Oncol. Lett., 2017, 13(6), 4708-4712. doi: 10.3892/ol.2017.6093 PMID: 28588725
- Mohammed, M.; Syeda, J.; Wasan, K.; Wasan, E. An overview of chitosan nanoparticles and its application in non-parenteral drug delivery. Pharmaceutics, 2017, 9(4), 53. doi: 10.3390/pharmaceutics9040053 PMID: 29156634
- Waks, A.G.; Winer, E.P. Breast cancer treatment. JAMA, 2019, 321(3), 288-300. doi: 10.1001/jama.2018.19323 PMID: 30667505
- Hjerl, K.; Andersen, E.W.; Keiding, N.; Mouridsen, H.T.; Mortensen, P.B.; Jørgensen, T. Depression as a prognostic factor for breast cancer mortality. Psychosomatics, 2003, 44(1), 24-30. doi: 10.1176/appi.psy.44.1.24 PMID: 12515834
- Kang, X.; Chen, H.; Li, S.; Jie, L.; Hu, J.; Wang, X.; Qi, J.; Ying, X.; Du, Y. Magnesium lithospermate B loaded PEGylated solid lipid nanoparticles for improved oral bioavailability. Colloids Surf. B Biointerfaces, 2018, 161, 597-605. doi: 10.1016/j.colsurfb.2017.11.008 PMID: 29156336
- Kessenbrock, K.; Plaks, V.; Werb, Z. Matrix metalloproteinases: regulators of the tumor microenvironment. Cell, 2010, 141(1), 52-67. doi: 10.1016/j.cell.2010.03.015 PMID: 20371345
- Nadimi, A.E.; Ebrahimipour, S.Y.; Afshar, E.G.; Falahati-pour, S.K.; Ahmadi, Z.; Mohammadinejad, R.; Mohamadi, M. Nano-scale drug delivery systems for antiarrhythmic agents. Eur. J. Med. Chem., 2018, 157, 1153-1163. doi: 10.1016/j.ejmech.2018.08.080 PMID: 30189397
- Rosenblum, D.; Joshi, N.; Tao, W.; Karp, J.M.; Peer, D. Progress and challenges towards targeted delivery of cancer therapeutics. Nat. Commun., 2018, 9(1), 1410. doi: 10.1038/s41467-018-03705-y PMID: 29650952
- Li, Y.; Zhang, H.; Merkher, Y.; Chen, L.; Liu, N.; Leonov, S.; Chen, Y. Recent advances in therapeutic strategies for triple-negative breast cancer. J. Hematol. Oncol., 2022, 15(1), 121. doi: 10.1186/s13045-022-01341-0 PMID: 36038913
- Place, A.E.; Jin Huh, S.; Polyak, K. The microenvironment in breast cancer progression: Biology and implications for treatment. Breast Cancer Res., 2011, 13(6), 227. doi: 10.1186/bcr2912 PMID: 22078026
- Moradi Kashkooli, F.; Jakhmola, A.; Hornsby, T.K.; Tavakkoli, J.J.; Kolios, M.C. Ultrasound-mediated nano drug delivery for treating cancer: Fundamental physics to future directions. J. Control. Release, 2023, 355, 552-578. doi: 10.1016/j.jconrel.2023.02.009 PMID: 36773959
- Sheikh, A.; Md, S.; Kesharwani, P. Aptamer grafted nanoparticle as targeted therapeutic tool for the treatment of breast cancer. Biomed. Pharmacother., 2022, 146, 112530. doi: 10.1016/j.biopha.2021.112530 PMID: 34915416
- Lee, J.; Chatterjee, D.K.; Lee, M.H.; Krishnan, S. Gold nanoparticles in breast cancer treatment: Promise and potential pitfalls. Cancer Lett., 2014, 347(1), 46-53. doi: 10.1016/j.canlet.2014.02.006 PMID: 24556077
- Deng, Z.J.; Morton, S.W.; Ben-Akiva, E.; Dreaden, E.C.; Shopsowitz, K.E.; Hammond, P.T. Layer-by-layer nanoparticles for systemic codelivery of an anticancer drug and siRNA for potential triple-negative breast cancer treatment. ACS Nano, 2013, 7(11), 9571-9584. doi: 10.1021/nn4047925 PMID: 24144228
- Grobmyer, S.R.; Zhou, G.; Gutwein, L.G.; Iwakuma, N.; Sharma, P.; Hochwald, S.N. Nanoparticle delivery for metastatic breast cancer. Nanomedicine, 2012, 8(Suppl. 1), S21-S30. doi: 10.1016/j.nano.2012.05.011 PMID: 22640908
- Mu, Q.; Wang, H.; Zhang, M. Nanoparticles for imaging and treatment of metastatic breast cancer. Expert opinion on drug delivery, 2017, 14(1), 123-136. doi: 10.1080/17425247.2016.1208650
- Luo, X.; Zhang, Q.; Chen, H.; Hou, K.; Zeng, N.; Wu, Y. Smart nanoparticles for breast cancer treatment based on the tumor microenvironment. Front. Oncol., 2022, 12, 907684. doi: 10.3389/fonc.2022.907684 PMID: 35720010
- Raj, S.; Khurana, S.; Choudhari, R.; Kesari, K.K.; Kamal, M.A.; Garg, N.; Ruokolainen, J.; Das, B.C.; Kumar, D. Specific targeting cancer cells with nanoparticles and drug delivery in cancer therapy. Semin. Cancer Biol., 2021, 69, 166-177. doi: 10.1016/j.semcancer.2019.11.002 PMID: 31715247
- Acharya, S.; Dilnawaz, F.; Sahoo, S.K. Targeted epidermal growth factor receptor nanoparticle bioconjugates for breast cancer therapy. Biomaterials, 2009, 30(29), 5737-5750. doi: 10.1016/j.biomaterials.2009.07.008 PMID: 19631377
- Alamdari, S.G.; Amini, M.; Jalilzadeh, N.; Baradaran, B.; Mohammadzadeh, R.; Mokhtarzadeh, A.; Oroojalian, F. Recent advances in nanoparticle-based photothermal therapy for breast cancer. J. Control. Release, 2022, 349, 269-303. doi: 10.1016/j.jconrel.2022.06.050 PMID: 35787915
- Nosrati, H.; Salehiabar, M.; Kheiri Manjili, H.; Davaran, S.; Danafar, H. Theranostic nanoparticles based on magnetic nanoparticles: Design, preparation, characterization, and evaluation as novel anticancer drug carrier and MRI contrast agent. Drug Dev. Ind. Pharm., 2018, 44(10), 1668-1678. doi: 10.1080/03639045.2018.1483398 PMID: 29848101
- Danafar, H.; Sharafi, A.; Kheiri, M. H.; Andalib, S. Sulforaphane delivery using mPEGPCL co-polymer nanoparticles to breast cancer cells. Pharm. Dev. Technol., 2017, 22(5), 642-651. doi: 10.3109/10837450.2016.1146296 PMID: 26916923
- Jain, V.; Kumar, H.; Anod, H.V.; Chand, P.; Gupta, N.V.; Dey, S.; Kesharwani, S.S. A review of nanotechnology-based approaches for breast cancer and triple-negative breast cancer. J. Control. Release, 2020, 326, 628-647. doi: 10.1016/j.jconrel.2020.07.003 PMID: 32653502
- Vasan, N.; Baselga, J.; Hyman, D.M. A view on drug resistance in cancer. Nature, 2019, 575(7782), 299-309. doi: 10.1038/s41586-019-1730-1 PMID: 31723286
- Yap, K.M.; Sekar, M.; Fuloria, S.; Wu, Y.S.; Gan, S.H.; Mat Rani, N.N.I.; Subramaniyan, V.; Kokare, C.; Lum, P.T.; Begum, M.Y.; Mani, S.; Meenakshi, D.U.; Sathasivam, K.V.; Fuloria, N.K. Drug delivery of natural products through nanocarriers for effective breast cancer therapy: A comprehensive review of literature. Int. J. Nanomedicine, 2021, 16, 7891-7941. doi: 10.2147/IJN.S328135 PMID: 34880614
- Mirza, Z.; Karim, S. Nanoparticles-based drug delivery and gene therapy for breast cancer: Recent advancements and future challenges; Elsevier Ltd, 2021, pp. 226-237. doi: 10.1016/j.semcancer.2019.10.020
- Manoharan, S.; Pugalendhi, P. Breast cancer. An Overview, 2010, 10, 2423-2432.
- Akram, M.; Iqbal, M.; Daniyal, M.; Khan, A.U. Awareness and current knowledge of breast cancer. Biol. Res., 2017, 50(1), 33. doi: 10.1186/s40659-017-0140-9 PMID: 28969709
- Kaur, N.; Aditya, R.N.; Singh, A.; Kuo, T.R. Biomedical applications for gold nanoclusters: Recent developments and future perspectives. Nanoscale Res. Lett., 2018, 13(1), 302. doi: 10.1186/s11671-018-2725-9 PMID: 30259230
- Kaczmarczyk, O.; Andrzej, M. Żak. Comment on "Unveiling the antibacterial mechanism of gold nanoclusters via in situ transmission electron microscopy". ACS Sustainable Chem. Eng., 2022, 10(32), 10440-10441.
- Bahreyni, A.; Mohamud, Y.; Luo, H. Emerging nanomedicines for effective breast cancer immunotherapy. J. Nanobiotechnology, 2020, 18(1), 180. doi: 10.1186/s12951-020-00741-z PMID: 33298099
- Yougbaré, S.; Okoro, G.; Lin, I.; Nuh, M. Emerging trends in nanomaterials for antibacterial applications. Int. J. Nanomedicine, 2021, 16, 5831-5867. doi: 10.2147/IJN.S328767
- Nel, J.; Elkhoury, K.; Velot, É.; Bianchi, A.; Acherar, S.; Francius, G.; Tamayol, A.; Grandemange, S.; Arab-Tehrany, E. Functionalized liposomes for targeted breast cancer drug delivery. Bioact. Mater., 2023, 24, 401-437. doi: 10.1016/j.bioactmat.2022.12.027 PMID: 36632508
- Azamjah, N.; Soltan-Zadeh, Y.; Zayeri, F. Global trend of breast cancer mortality rate: A 25-year study. Asian Pac. J. Cancer Prev., 2019, 20(7), 2015-2020. doi: 10.31557/APJCP.2019.20.7.2015 PMID: 31350959
- Mutalik, C.; Wang, D.Y.; Krisnawati, D.I.; Jazidie, A.; Yougbare, S.; Kuo, T.R. Light-activated heterostructured nanomaterials for antibacterial applications. Nanomaterials, 2020, 10(4), 643. doi: 10.3390/nano10040643 PMID: 32235565
- Trevisi, E.; La Salvia, A.; Daniele, L.; Brizzi, M.P.; De Rosa, G.; Scagliotti, G.V.; Di Maio, M. Neuroendocrine breast carcinoma: A rare but challenging entity. Med. Oncol., 2020, 37(8), 70. doi: 10.1007/s12032-020-01396-4 PMID: 32712767
- Hernandez-Aya, L.F.; Gonzalez-Angulo, A.M. Adjuvant systemic therapies in breast cancer. Surg. Clin. North Am., 2013, 93(2), 473-491. doi: 10.1016/j.suc.2012.12.002 PMID: 23464697
- Alimirzaie, S.; Bagherzadeh, M.; Akbari, M.R. Liquid biopsy in breast cancer: A comprehensive review. Clin. Genet., 2019, 95(6), 643-660. doi: 10.1111/cge.13514 PMID: 30671931
- Haney, M.J.; Zhao, Y.; Jin, Y.S.; Li, S.M.; Bago, J.R.; Klyachko, N.L.; Kabanov, A.V.; Batrakova, E.V. Macrophage-derived extracellular vesicles as drug delivery systems for triple negative breast cancer (TNBC) therapy. J. Neuroimmune Pharmacol., 2020, 15(3), 487-500. doi: 10.1007/s11481-019-09884-9 PMID: 31722094
- Riis, M. Modern surgical treatment of breast cancer. Ann. Med. Surg., 2020, 56, 95-107. doi: 10.1016/j.amsu.2020.06.016 PMID: 32637082
- Thakur, V.; Kutty, R.V. Recent advances in nanotheranostics for triple negative breast cancer treatment. J. Exp. Clin. Cancer Res., 2019, 38(1), 430. doi: 10.1186/s13046-019-1443-1 PMID: 31661003
- Tong, C.W.S.; Wu, M.; Cho, W.C.S.; To, K.K.W. Recent advances in the treatment of breast cancer. Front. Oncol., 2018, 8, 227. doi: 10.3389/fonc.2018.00227 PMID: 29963498
- Nikolaou, M.; Pavlopoulou, A.; Georgakilas, A.G.; Kyrodimos, E. The challenge of drug resistance in cancer treatment: A current overview. Clin. Exp. Metastasis, 2018, 35(4), 309-318. doi: 10.1007/s10585-018-9903-0 PMID: 29799080
- Lukong, K.E. Understanding breast cancer The long and winding road. BBA Clin., 2017, 7, 64-77. doi: 10.1016/j.bbacli.2017.01.001 PMID: 28194329
- Ma, D.; Wu, L.; Li, S.; Sun, Z.; Wang, K. Vasohibin2 promotes adriamycin resistance of breast cancer cells through regulating ABCG2 via AKT signaling pathway. Mol. Med. Rep., 2017, 16(6), 9729-9734. doi: 10.3892/mmr.2017.7792 PMID: 29039601
- Amir, H.; Subramanian, V.; Sornambikai, S.; Ponpandian, N.; Viswanathan, C. Nitrogen-enhanced carbon quantum dots mediated immunosensor for electrochemical detection of HER2 breast cancer biomarker. Bioelectrochemistry, 2023, 155, 108589. doi: 10.1016/j.bioelechem.2023.108589 PMID: 37918312
- Narod, S.A. BRCA mutations in the management of breast cancer: The state of the art. Nat. Rev. Clin. Oncol., 2010, 7(12), 702-707. doi: 10.1038/nrclinonc.2010.166 PMID: 20956982
- Adedayo, A.O. Breast cancer subtypes based on ER/PR and Her2 expression: Comparison of clinicopathologic features and survival. Clin. Med. Res., 2009, 7(1-2), 4-13. doi: 10.3121/cmr.2009.825
- Malorni, L.; Shetty, P.B.; De Angelis, C.; Hilsenbeck, S.; Rimawi, M.F.; Elledge, R.; Osborne, C.K.; De Placido, S.; Arpino, G. Clinical and biologic features of triple-negative breast cancers in a large cohort of patients with long-term follow-up. Breast Cancer Res. Treat., 2012, 136(3), 795-804. doi: 10.1007/s10549-012-2315-y PMID: 23124476
- García-Aranda, M.; Redondo, M. Immunotherapy: A challenge of breast cancer treatment. Cancers, 2019, 11(12), 1822. doi: 10.3390/cancers11121822 PMID: 31756919
- Bozorgi, A.; Khazaei, M.; Khazaei, M.R. New findings on breast cancer stem cells: A review. J. Breast Cancer, 2015, 18(4), 303-312. doi: 10.4048/jbc.2015.18.4.303 PMID: 26770236
- Goldhirsch, A.; Wood, W.C.; Coates, A.S.; Gelber, R.D.; Thu, B. Strategies for subtypes dealing with the diversity of breast cancer : Highlights of the St Gallen International Expert Consensus on the Primary. Therapy of Early Breast Cancer, 2011, 2011, 1736-1747.
- Kinnel, B.; Singh, S.K.; Oprea-Ilies, G.; Singh, R. Targeted therapy and mechanisms of drug resistance in breast cancer. Cancers (Basel), 2023, 15(4), 1320. doi: 10.3390/cancers15041320 PMID: 36831661
- Dupont, W.D.; Parl, F.F.; Hartmann, W.H.; Brinton, L.A.; Winfield, A.C.; Worrell, J.A.; Schuyler, P.A.; Plummer, W.D. Breast cancer risk associated with proliferative breast disease and atypical hyperplasia. Cancer, 1993, 71(4), 1258-1265. doi: 10.1002/1097-0142(19930215)71:43.0.CO;2-I PMID: 8435803
- Nounou, M.I.; ElAmrawy, F.; Ahmed, N.; Abdelraouf, K.; Goda, S.; Syed-Sha-Qhattal, H. Breast cancer: Conventional diagnosis and treatment modalities and recent patents and technologies supplementary issue: Targeted therapies in breast cancer treatment. Breast Cancer, 2015, 9s2(Suppl. 2), BCBCR.S29420. doi: 10.4137/BCBCR.S29420 PMID: 26462242
- Schousboe, J.T.; Kerlikowske, K.; Loh, A.; Cummings, S.R. Personalizing mammography by breast density and other risk factors for breast cancer: Analysis of health benefits and cost-effectiveness. Ann. Intern. Med., 2011, 155(1), 10-20. doi: 10.7326/0003-4819-155-1-201107050-00003 PMID: 21727289
- Mansoori, B.; Mohammadi, A.; Davudian, S.; Shirjang, S.; Baradaran, B. The different mechanisms of cancer drug resistance: A brief review. Adv. Pharm. Bull., 2017, 7(3), 339-348. doi: 10.15171/apb.2017.041 PMID: 29071215
- Goutsouliak, K.; Veeraraghavan, J.; Sethunath, V.; De Angelis, C.; Osborne, C.K.; Rimawi, M.F.; Schiff, R. Towards personalized treatment for early stage HER2-positive breast cancer. Nat. Rev. Clin. Oncol., 2020, 17(4), 233-250. doi: 10.1038/s41571-019-0299-9 PMID: 31836877
- Barzaman, K.; Karami, J.; Zarei, Z.; Hosseinzadeh, A.; Kazemi, M.H.; Moradi-Kalbolandi, S.; Safari, E.; Farahmand, L. Breast cancer: Biology, biomarkers, and treatments. Int. Immunopharmacol., 2020, 84, 106535. doi: 10.1016/j.intimp.2020.106535 PMID: 32361569
- Yeldag, G.; Rice, A.; Del Río Hernández, A. Chemoresistance and the self-maintaining tumor microenvironment. Cancers, 2018, 10(12), 471. doi: 10.3390/cancers10120471 PMID: 30487436
- Ji, X.; Lu, Y.; Tian, H.; Meng, X.; Wei, M.; Cho, W.C. Chemoresistance mechanisms of breast cancer and their countermeasures. Biomed. Pharmacother., 2019, 114, 108800. doi: 10.1016/j.biopha.2019.108800 PMID: 30921705
- Sun, C.C.; Li, S.J.; Hu, W.; Zhang, J.; Zhou, Q.; Liu, C.; Li, L.L.; Songyang, Y.Y.; Zhang, F.; Chen, Z.L.; Li, G.; Bi, Z.Y.; Bi, Y.Y.; Gong, F.Y.; Bo, T.; Yuan, Z.P.; Hu, W.D.; Zhan, B.T.; Zhang, Q.; He, Q.Q.; Li, D.J. RETRACTED: Comprehensive analysis of the expression and prognosis for E2Fs in human breast cancer. Mol. Ther., 2019, 27(6), 1153-1165. doi: 10.1016/j.ymthe.2019.03.019 PMID: 31010740
- Gottesman, M.M. Mechanisms of cancer drug resistance. Annu. Rev. Med., 2002, 53(1), 615-627. doi: 10.1146/annurev.med.53.082901.103929 PMID: 11818492
- Sedlmayer, F.; Zehentmayr, F.; Fastner, G. Partial breast re-irradiation for local recurrence of breast carcinoma: Benefit and long term side effects. Breast, 2013, 22(Suppl. 2), S141-S146. doi: 10.1016/j.breast.2013.07.026 PMID: 24074775
- Hennequin, C.; Guillerm, S.; Quéro, L. The sentinel lymph node of breast cancer and the radiation oncologist. Cancer Radiother., 2018, 22(6-7), 473-477. doi: 10.1016/j.canrad.2018.06.012 PMID: 30139693
- Nedeljković, M.; Damjanović, A. Mechanisms of chemotherapy resistance in triple-negative breast cancer-how we can rise to the challenge. Cells, 2019, 8(9), 957. doi: 10.3390/cells8090957 PMID: 31443516
- Nogueras Pérez, R.; Heredia-Nicolás, N.; de Lara-Peña, L.; López de Andrés, J.; Marchal, J.A.; Jiménez, G.; Griñán-Lisón, C. Unraveling the potential of miRNAs from CSCs as an emerging clinical tool for breast cancer diagnosis and prognosis. Int. J. Mol. Sci., 2023, 24(21), 16010. doi: 10.3390/ijms242116010 PMID: 37958993
- Kirkby, M.; Popatia, A.M.; Lavoie, J.R.; Wang, L. The potential of hormonal therapies for treatment of triple-negative breast cancer. Cancers, 2023, 15(19), 4702. doi: 10.3390/cancers15194702 PMID: 37835396
- Shien, T.; Iwata, H. Adjuvant and neoadjuvant therapy for breast cancer. Jpn. J. Clin. Oncol., 2020, 50(3), 225-229. doi: 10.1093/jjco/hyz213 PMID: 32147701
- Zheng, H.C. The molecular mechanisms of chemoresistance in cancers. Oncotarget, 2017, 8(35), 59950-59964. doi: 10.18632/oncotarget.19048 PMID: 28938696
- Chen, S.; Wang, H.; Li, Z.; You, J.; Wu, Q.W.; Zhao, C.; Tzeng, C.M.; Zhang, Z.M. Interaction of WBP2 with ERα increases doxorubicin resistance of breast cancer cells by modulating MDR1 transcription. Br. J. Cancer, 2018, 119(2), 182-192. doi: 10.1038/s41416-018-0119-5 PMID: 29937544
- Hussain, T.; Ramakrishna, S.; Abid, S. Nanofibrous drug delivery systems for breast cancer: A review. Nanotechnology, 2022, 33(10), 102001. doi: 10.1088/1361-6528/ac385c PMID: 34757956
- dos Reis, L.R.; Luiz, M.T.; Sábio, R.M.; Marena, G.D.; Di Filippo, L.D.; Duarte, J.L.; Souza Fernandes, L.; Sousa Araújo, V.H.; Oliveira Silva, V.A.; Chorilli, M. Design of rapamycin and resveratrol coloaded liposomal formulation for breast cancer therapy. Nanomedicine, 2023, 18(10), 789-801. doi: 10.2217/nnm-2022-0227 PMID: 37199266
- Li, J.; Gong, C.; Chen, X.; Guo, H.; Tai, Z.; Ding, N.; Gao, S.; Gao, Y. Biomimetic liposomal nanozymes improve breast cancer chemotherapy with enhanced penetration and alleviated hypoxia. J. Nanobiotechnology, 2023, 21(1), 123. doi: 10.1186/s12951-023-01874-7 PMID: 37038165
- Yu, D.; Wang, H.; Liu, H.; Xu, R. Liposomal ATM siRNA delivery for enhancing triple-negaitive breast cancer immune checkpoint blockade therapy. J. Biomater. Appl., 2023, 37(10), 1835-1846. doi: 10.1177/08853282231162111 PMID: 37016537
- Dinakar, Y.H.; Karole, A.; Parvez, S.; Jain, V.; Mudavath, S.L. Folate receptor targeted NIR cleavable liposomal delivery system augment penetration and therapeutic efficacy in breast cancer. Biochim. Biophys. Acta, Gen. Subj., 2023, 1867(9), 130396. doi: 10.1016/j.bbagen.2023.130396 PMID: 37271407
- Maghsoudi, S.; Hosseini, S.A.; Soraya, H.; Roosta, Y.; Mohammadzadeh, A. Development of doxorubicin-encapsulated magnetic liposome@PEG for treatment of breast cancer in BALB/c mice. Drug Deliv. Transl. Res., 2023, 13(10), 2589-2603. doi: 10.1007/s13346-023-01339-2 PMID: 37133768
- Jensen, E.V.; Jacobson, H.I.; Walf, A.A.; Frye, C.A. Estrogen action: A historic perspective on the implications of considering alternative approaches. Physiol. Behav., 2010, 99(2), 151-162. doi: 10.1016/j.physbeh.2009.08.013 PMID: 19737574
- Robertson, J.F.R.; Llombart-Cussac, A.; Rolski, J.; Feltl, D.; Dewar, J.; Macpherson, E.; Lindemann, J.; Ellis, M.J. Activity of fulvestrant 500 mg versus anastrozole 1 mg as first-line treatment for advanced breast cancer: results from the FIRST study. J. Clin. Oncol., 2009, 27(27), 4530-4535. doi: 10.1200/JCO.2008.21.1136 PMID: 19704066
- Arciero, C.A.; Guo, Y.; Jiang, R.; Behera, M.; ORegan, R.; Peng, L.; Li, X.E.R. +/HER2+ breast cancer has different metastatic patterns and better survival than ER−/HER2+ breast cancer. Clin. Breast Cancer, 2019, 19(4), 236-245. doi: 10.1016/j.clbc.2019.02.001 PMID: 30846407
- Blasco-Benito, S.; Seijo-Vila, M.; Caro-Villalobos, M.; Tundidor, I.; Andradas, C.; García-Taboada, E.; Wade, J.; Smith, S.; Guzmán, M.; Pérez-Gómez, E.; Gordon, M.; Sánchez, C. Appraising the "entourage effect": Antitumor action of a pure cannabinoid versus a botanical drug preparation in preclinical models of breast cancer. Biochem. Pharmacol., 2018, 157, 285-293. doi: 10.1016/j.bcp.2018.06.025 PMID: 29940172
- Page, E.; Assouline, D.; Brun, O.; Coeffic, D.; Fric, D.; Winckel, P.; Seidman, A.D.; Pierri, M.K.; Hudis, C. Cardiac dysfunction in clinical trials of trastuzumab. J. Clin. Oncol., 2002, 20(19), 4119-4120. doi: 10.1200/JCO.2002.99.124 PMID: 12351610
- Wilkinson, A.N. Demystifying breast cancer. Can. Fam. Physician, 2023, 69(7), 473-476. doi: 10.46747/cfp.6907473 PMID: 37451990
- Krauss, W.C.; Park, J.W.; Kirpotin, D.B.; Hong, K.; Benz, C.C. Emerging antibody-based HER2 (ErbB-2/neu) therapeutics. Breast Dis., 2000, 11(1), 113-124. doi: 10.3233/BD-1999-11110 PMID: 15687597
- Toomey, S.; Eustace, A.J.; Fay, J.; Sheehan, K.M.; Carr, A.; Milewska, M.; Madden, S.F.; Teiserskiene, A.; Kay, E.W.; ODonovan, N.; Gallagher, W.; Grogan, L.; Breathnach, O.; Walshe, J.; Kelly, C.; Moulton, B.; Kennedy, M.J.; Gullo, G.; Hill, A.D.; Power, C.; Duke, D.; Hambly, N.; Crown, J.; Hennessy, B.T. Impact of somatic PI3K pathway and ERBB family mutations on pathological complete response (pCR) in HER2-positive breast cancer patients who received neoadjuvant HER2-targeted therapies. Breast Cancer Res., 2017, 19(1), 87. doi: 10.1186/s13058-017-0883-9 PMID: 28750640
- Dimopoulou, I.; Bamias, A.; Lyberopoulos, P.; Dimopoulos, M.A. Pulmonary toxicity from novel antineoplastic agents. Ann. Oncol., 2006, 17(3), 372-379. doi: 10.1093/annonc/mdj057 PMID: 16291774
- Dou, S.; Yao, Y.D.; Yang, X.Z.; Sun, T.M.; Mao, C.Q.; Song, E.W.; Wang, J. Anti-Her2 single-chain antibody mediated DNMTs-siRNA delivery for targeted breast cancer therapy. J. Control. Release, 2012, 161(3), 875-883. doi: 10.1016/j.jconrel.2012.05.015 PMID: 22762887
- Goel, S.; Chirgwin, J.; Francis, P.; Stuart-Harris, R.; Dewar, J.; Mileshkin, L.; Snyder, R.; Michael, M.; Koczwara, B. Rational use of trastuzumab in metastatic and locally advanced breast cancer: Implications of recent research. Breast, 2011, 20(2), 101-110. doi: 10.1016/j.breast.2010.11.008 PMID: 21183347
- Recupero, D.; Daniele, L.; Marchiò, C.; Molinaro, L.; Castellano, I.; Cassoni, P.; Righi, A.; Montemurro, F.; Sismondi, P.; Biglia, N.; Viale, G.; Risio, M.; Sapino, A. Spontaneous and pronase‐induced HER2 truncation increases the trastuzumab binding capacity of breast cancer tissues and cell lines. J. Pathol., 2013, 229(3), 390-399. doi: 10.1002/path.4074 PMID: 22806884
- Matini, A.; Naghib, S.M. The necessity of nanotechnology in Mycoplasma pneumonia detection: A comprehensive examination. Sens. Biosensing Res., 2024, 100631.
- Levitzki, A. Targeting the immune system to fight cancer using chemical receptor homing vectors carrying polyinosine/cytosine (PolyIC). Front. Oncol., 2012, 2, 4. doi: 10.3389/fonc.2012.00004 PMID: 22649773
- Parveen, N.; Abourehab, M.A.S.; Shukla, R.; Thanikachalam, P.V.; Jain, G.K.; Kesharwani, P. Immunoliposomes as an emerging nanocarrier for breast cancer therapy. Eur. Polym. J., 2023, 184, 111781. doi: 10.1016/j.eurpolymj.2022.111781
- Gharoonpour, A.; Simiyari, D.; Yousefzadeh, A.; Badragheh, F.; Rahmati, M. Autophagy modulation in breast cancer utilizing nanomaterials and nanoparticles. Front. Oncol., 2023, 13, 1150492. doi: 10.3389/fonc.2023.1150492 PMID: 37213283
- Vári, B.; Dókus, L.; Borbély, A.; Gaál, A.; Vári-Mező, D.; Ranđelović, I.; Sólyom-Tisza, A.; Varga, Z.; Szoboszlai, N.; Mező, G.; Tóvári, J. SREKA-targeted liposomes for highly metastatic breast cancer therapy. Drug Deliv., 2023, 30(1), 2174210. doi: 10.1080/10717544.2023.2174210 PMID: 36752075
- Lu, W.; Liu, W.; Hu, A.; Shen, J.; Yi, H.; Cheng, Z. Combinatorial polydopamine-liposome nanoformulation as an effective anti-breast cancer therapy. Int. J. Nanomedicine, 2023, 18, 861-879. doi: 10.2147/IJN.S382109 PMID: 36844433
- Zhang, W.; Yu, W.; Cai, G.; Zhu, J.; Zhang, C.; Li, S.; Guo, J.; Yin, G.; Chen, C.; Kong, L. Retracted article: A new synthetic derivative of cryptotanshinone KYZ3 as STAT3 inhibitor for triple-negative breast cancer therapy. Cell Death Dis., 2018, 9(11), 1098. doi: 10.1038/s41419-018-1139-z PMID: 30368518
- Pawar, A.; Prabhu, P. Nanosoldiers: A promising strategy to combat triple negative breast cancer. Biomed. Pharmacother., 2019, 110, 319-341. doi: 10.1016/j.biopha.2018.11.122 PMID: 30529766
- Shir, A.; Ogris, M.; Roedl, W.; Wagner, E.; Levitzki, A. EGFR-homing dsRNA activates cancer-targeted immune response and eliminates disseminated EGFR-overexpressing tumors in mice. Clin. Cancer Res., 2011, 17(5), 1033-1043. doi: 10.1158/1078-0432.CCR-10-1140 PMID: 21196415
- Castañeda, C.A.; Agullo-Ortuño, M.T.; Fresno Vara, J.A.; Cortes-Funes, H.; Gomez, H.L.; Ciruelos, E. Implication of miRNA in the diagnosis and treatment of breast cancer. Expert Rev. Anticancer Ther., 2011, 11(8), 1265-1275. doi: 10.1586/era.11.40 PMID: 21916580
- Madrigano, J. Genetic changes NIH Public Access. Occup. Environ. Med., 2008, 23, 1-7. doi: 10.1007/s10555-010-9204-9.microRNAs
- Weil, M.K.; Chen, A.P. PARP inhibitor treatment in ovarian and breast cancer. Curr. Probl. Cancer, 2011, 35(1), 7-50. doi: 10.1016/j.currproblcancer.2010.12.002 PMID: 21300207
- Khan, M.A.; Jain, V.K.; Rizwanullah, M.; Ahmad, J.; Jain, K. PI3K/AKT/mTOR pathway inhibitors in triple-negative breast cancer: A review on drug discovery and future challenges. Drug Discov. Today, 2019, 24(11), 2181-2191. doi: 10.1016/j.drudis.2019.09.001 PMID: 31520748
- Yao, X.; Xie, R.; Cao, Y.; Tang, J.; Men, Y.; Peng, H.; Yang, W. Simvastatin induced ferroptosis for triple-negative breast cancer therapy. J. Nanobiotechnology, 2021, 19(1), 311. doi: 10.1186/s12951-021-01058-1 PMID: 34627266
- Howe, E.N.; Cochrane, D.R.; Richer, J.K. The miR-200 and miR-221/222 microRNA families: Opposing effects on epithelial identity. J. Mammary Gland Biol. Neoplasia, 2012, 17(1), 65-77. doi: 10.1007/s10911-012-9244-6 PMID: 22350980
- Yang, Z.; Zhang, Q.; Yu, L.; Zhu, J.; Cao, Y.; Gao, X. The signaling pathways and targets of traditional Chinese medicine and natural medicine in triple-negative breast cancer. J. Ethnopharmacol., 2021, 264, 113249. doi: 10.1016/j.jep.2020.113249 PMID: 32810619
- Berrada, N.; Delaloge, S.; André, F. Treatment of triple-negative metastatic breast cancer: toward individualized targeted treatments or chemosensitization? Ann. Oncol., 2010, 21(Suppl. 7), vii30-vii35. doi: 10.1093/annonc/mdq279 PMID: 20943632
- Jin, S.; Ye, K. Targeted drug delivery for breast cancer treatment. Recent Patents Anticancer Drug Discov., 2013, 8(2), 143-153. doi: 10.2174/1574892811308020003 PMID: 23394116
- Bullard, R.S.; Gibson, W.; Bose, S.K.; Belgrave, J.K.; Eaddy, A.C.; Wright, C.J.; Hazen-Martin, D.J.; Lage, J.M.; Keane, T.E.; Ganz, T.A.; Donald, C.D. Functional analysis of the host defense peptide Human Beta Defensin-1: New insight into its potential role in cancer. Mol. Immunol., 2008, 45(3), 839-848. doi: 10.1016/j.molimm.2006.11.026 PMID: 17868871
- Jahangiri, R.; Mosaffa, F.; Gharib, M.; Emami Razavi, A.N.; Abdirad, A.; Jamialahmadi, K. PAX2 expression is correlated with better survival in tamoxifen-treated breast carcinoma patients. Tissue Cell, 2018, 52, 135-142. doi: 10.1016/j.tice.2018.05.005 PMID: 29857823
- Jahangiri, R.; Mosaffa, F.; Emami, R. A.; Teimoori-Toolabi, L.; Jamialahmadi, K. PAX2 promoter methylation and AIB1 overexpression promote tamoxifen resistance in breast carcinoma patients. J. Oncol. Pharm. Pract., 2022, 28(2), 310-325. doi: 10.1177/1078155221989404 PMID: 33509057
- Hurtado, A.; Holmes, K.A.; Geistlinger, T.R.; Hutcheson, I.R.; Nicholson, R.I.; Brown, M.; Jiang, J.; Howat, W.J.; Ali, S.; Carroll, J.S. Regulation of ERBB2 by oestrogen receptorPAX2 determines response to tamoxifen. Nature, 2008, 456(7222), 663-666. doi: 10.1038/nature07483 PMID: 19005469
- Yang, S.; Gao, W.; Wang, H.; Zhang, X.; Mi, Y.; Ding, Y.; Geng, C.; Zhang, J.; Cheng, M.; Li, S. Role of PAX2 in breast cancer verified by bioinformatics analysis and in vitro validation. Ann. Transl. Med., 2023, 11(2), 58-58. doi: 10.21037/atm-22-6360 PMID: 36819548
- Shan, Y. The role of PAX2 in breast cancer: A study based on bioinformatics analysis and in vitro validation. Preprint, 2021, 1-19. doi: 10.21203/rs.3.rs-738037/v1
- Comen, E.A.; Robson, M. Poly(ADP-ribose) polymerase inhibitors in triple-negative breast cancer, Cancer. Principles & Practice of Oncology: Annual Advances in Oncology, 2012, 2, 672-677. PMID: 22263793
- Bischoff, H.; Bigot, C.; Moinard-Butot, F.; Pflumio, C.; Fischbach, C.; Kalish, M.; Kurtz, J.E.; Pierard, L.; Demarchi, M.; Karouby, D.; Coliat, P.; Pivot, X.; Petit, T.; Cox, D.G.; Goepp, L.; Bender, L.; Trensz, P. A propensity scoreweighted study comparing a two- versus four-weekly pegylated liposomal doxorubicin regimen in metastatic breast cancer. Breast Cancer Res. Treat., 2023, 198(1), 23-29. doi: 10.1007/s10549-022-06844-5 PMID: 36562910
- Chavoshi, H.; Taheri, M.; Wan, M.L.Y.; Sabzichi, M. Crocin-loaded liposomes sensitize MDA-MB 231 breast cancer cells to doxorubicin by inducing apoptosis. Process Biochem., 2023, 130, 272-280. doi: 10.1016/j.procbio.2023.04.012
- Gu, H.; Shi, R.; Xu, C.; Lv, W.; Hu, X.; Xu, C.; Pan, Y.; He, X.; Wu, A.; Li, J. EGFR-targeted liposomes combined with ginsenoside Rh2 inhibit triple-negative breast cancer growth and metastasis. Bioconjug. Chem., 2023, 34(6), 1157-1165. doi: 10.1021/acs.bioconjchem.3c00207 PMID: 37235785
- Tsai, J.H.; Li, C.L.; Yeh, D.C.; Hung, C.S.; Hung, C.C.; Lin, C.Y.; Kuo, Y.L. Neoadjuvant pegylated liposomal doxorubicin- and epirubicin-based combination therapy regimens for early breast cancer: A multicenter retrospective casecontrol study. Breast Cancer Res. Treat., 2023, 199(1), 47-55. doi: 10.1007/s10549-023-06867-6 PMID: 36869992
- Hasanbegloo, K.; Banihashem, S.; Faraji Dizaji, B.; Bybordi, S.; Farrokh-Eslamlou, N.; Abadi, P.G.; Jazi, F.S.; Irani, M. Paclitaxel-loaded liposome-incorporated chitosan (core)/poly(ε-caprolactone)/chitosan (shell) nanofibers for the treatment of breast cancer. Int. J. Biol. Macromol., 2023, 230, 123380. doi: 10.1016/j.ijbiomac.2023.123380 PMID: 36706885
- Wang, J.; Min, J.; Eghtesadi, S.A.; Kane, R.S.; Chilkoti, A. Quantitative study of the interaction of multivalent ligand-modified nanoparticles with breast cancer cells with tunable receptor density. ACS Nano, 2020, 14(1), 372-383. doi: 10.1021/acsnano.9b05689 PMID: 31899613
- Juan, A.; Cimas, F.J.; Bravo, I.; Pandiella, A.; Ocaña, A.; Alonso-Moreno, C. An overview of antibody conjugated polymeric nanoparticles for breast cancer therapy. Pharmaceutics, 2020, 12(9), 802. doi: 10.3390/pharmaceutics12090802 PMID: 32854255
- Shakeran, Z.; Keyhanfar, M.; Varshosaz, J.; Sutherland, D.S. Biodegradable nanocarriers based on chitosan-modified mesoporous silica nanoparticles for delivery of methotrexate for application in breast cancer treatment. Mater. Sci. Eng. C, 2021, 118, 111526. doi: 10.1016/j.msec.2020.111526 PMID: 33255079
- Olov, N.; Bagheri-Khoulenjani, S.; Mirzadeh, H. Combinational drug delivery using nanocarriers for breast cancer treatments: A review. J. Biomed. Mater. Res. A, 2018, 106(8), 2272-2283. doi: 10.1002/jbm.a.36410 PMID: 29577607
- Fathi, K.S.; Mohammadhosseini, M.; Panahi, Y.; Milani, M.; Zarghami, N.; Akbarzadeh, A.; Abasi, E.; Hosseini, A.; Davaran, S. Magnetic nanoparticles in cancer diagnosis and treatment: A review. Artif. Cells Nanomed. Biotechnol., 2017, 45(1), 1-5. doi: 10.3109/21691401.2016.1153483 PMID: 27015806
- Kundu, M.; Sadhukhan, P.; Ghosh, N.; Chatterjee, S.; Manna, P.; Das, J.; Sil, P.C. pH-responsive and targeted delivery of curcumin via phenylboronic acid-functionalized ZnO nanoparticles for breast cancer therapy. J. Adv. Res., 2019, 18, 161-172. doi: 10.1016/j.jare.2019.02.036 PMID: 31032117
- Li, Y.; Liu, X.; Pan, W.; Li, N.; Tang, B. Photothermal therapy-induced immunogenic cell death based on natural melanin nanoparticles against breast cancer. Chem. Commun., 2020, 56(9), 1389-1392. doi: 10.1039/C9CC08447A PMID: 31912821
- Minafra, L.; Porcino, N.; Bravatà, V.; Gaglio, D.; Bonanomi, M.; Amore, E.; Cammarata, F.P.; Russo, G.; Militello, C.; Savoca, G.; Baglio, M.; Abbate, B.; Iacoviello, G.; Evangelista, G.; Gilardi, M.C.; Bondì, M.L.; Forte, G.I. Radiosensitizing effect of curcumin-loaded lipid nanoparticles in breast cancer cells. Sci. Rep., 2019, 9(1), 11134. doi: 10.1038/s41598-019-47553-2 PMID: 31366901
- Jin, K.T.; Lu, Z.B.; Chen, J.Y.; Liu, Y.Y.; Lan, H.R.; Dong, H.Y.; Yang, F.; Zhao, Y.Y.; Chen, X.Y. Recent trends in nanocarrier-based targeted chemotherapy: selective delivery of anticancer drugs for effective lung, colon, cervical, and breast cancer treatment. J. Nanomater., 2020, 2020, 1-14. doi: 10.1155/2020/9184284
- Fulton, M.D.; Najahi-Missaoui, W. Liposomes in cancer therapy: How did we start and where are we now. Int. J. Mol. Sci., 2023, 24(7), 6615. doi: 10.3390/ijms24076615 PMID: 37047585
- Kar, S.S.; Dhar, A.K.; Bhatt, S. Nanocarriers and their role in the treatment of breast cancer. In: Therapeutic Nanocarriers in Cancer Treatment: Challenges and Future Perspective; Bentham Science Publishers, 2023; pp. 163-210. doi: 10.2174/9789815080506123010009
- Gupta, P.; Neupane, Y.R.; Parvez, S.; Kohli, K.; Sultana, Y. Combinatorial chemosensitive nanomedicine approach for the treatment of breast cancer. Curr. Mol. Med., 2023, 23(9), 876-888. doi: 10.2174/1566524023666220819122948 PMID: 35986537
- Pandey, P.; Khan, F.; Maqsood, R.; Upadhyay, T.K. Current perspectives on nanoparticle-based targeted drug delivery approaches in breast cancer treatment. Endocr. Metab. Immune Disord. Drug Targets, 2023, 23(10), 1291-1302. doi: 10.2174/1871530323666230315145332 PMID: 36924095
- Patel, P.; Kumar, K.; Jain, V.K.; Popli, H.; Yadav, A.K.; Jain, K. Nanotheranostics for diagnosis and treatment of breast cancer. Curr. Pharm. Des., 2023, 29(10), 732-747. doi: 10.2174/1381612829666230329122911 PMID: 36999427
- Khan, M.S.; Gowda, B.H.J.; Nasir, N.; Wahab, S.; Pichika, M.R.; Sahebkar, A.; Kesharwani, P. Advancements in dextran-based nanocarriers for treatment and imaging of breast cancer. Int. J. Pharm., 2023, 643, 123276. doi: 10.1016/j.ijpharm.2023.123276 PMID: 37516217
- Juan, A.; Cimas, F.J.; Bravo, I.; Pandiella, A.; Ocaña, A.; Alonso-Moreno, C. Antibody conjugation of nanoparticles as therapeutics for breast cancer treatment. Int. J. Mol. Sci., 2020, 21(17), 6018. doi: 10.3390/ijms21176018 PMID: 32825618
- Marshall, S.K.; Angsantikul, P.; Pang, Z.; Nasongkla, N.; Hussen, R.S.D.; Thamphiwatana, S.D. Biomimetic targeted theranostic nanoparticles for breast cancer treatment. Molecules, 2022, 27(19), 6473. doi: 10.3390/molecules27196473 PMID: 36235009
- Dongsar, T.T.; Dongsar, T.S.; Abourehab, M.A.S.; Gupta, N.; Kesharwani, P. Emerging application of magnetic nanoparticles for breast cancer therapy. Eur. Polym. J., 2023, 187, 111898. doi: 10.1016/j.eurpolymj.2023.111898
- England, C.G.; Gobin, A.M.; Frieboes, H.B. Evaluation of uptake and distribution of gold nanoparticles in solid tumors. Eur. Phys. J. Plus, 2015, 130(11), 231. doi: 10.1140/epjp/i2015-15231-1 PMID: 27014559
- Montaseri, H.; Kruger, C.A.; Abrahamse, H. Inorganic nanoparticles applied for active targeted photodynamic therapy of breast cancer. Pharmaceutics, 2021, 13(3), 296. doi: 10.3390/pharmaceutics13030296 PMID: 33668307
- Hosseinkazemi, H.; Samani, S.; ONeill, A.; Soezi, M.; Moghoofei, M.; Azhdari, M.H.; Aavani, F.; Nazbar, A.; Keshel, S.H.; Doroudian, M. Applications of iron oxide nanoparticles against breast cancer. J. Nanomater., 2022, 2022, 1-12. doi: 10.1155/2022/6493458
- Aghebati-Maleki, A.; Dolati, S.; Ahmadi, M.; Baghbanzhadeh, A.; Asadi, M.; Fotouhi, A.; Yousefi, M.; Aghebati-Maleki, L. Nanoparticles and cancer therapy: Perspectives for application of nanoparticles in the treatment of cancers. J. Cell. Physiol., 2020, 235(3), 1962-1972. doi: 10.1002/jcp.29126 PMID: 31441032
- Du, M.; Ouyang, Y.; Meng, F.; Ma, Q.; Liu, H.; Zhuang, Y.; Pang, M.; Cai, T.; Cai, Y. Nanotargeted agents: An emerging therapeutic strategy for breast cancer. Nanomedicine, 2019, 14(13), 1771-1786. doi: 10.2217/nnm-2018-0481 PMID: 31298065
- Grewal, I.K.; Singh, S.; Arora, S.; Sharma, N. Polymeric nanoparticles for breast cancer therapy: A comprehensive review. Biointerface Res. Appl. Chem., 2020, 11(4), 11151-11171. doi: 10.33263/BRIAC114.1115111171
- Tagde, P.; Kulkarni, G.T.; Mishra, D.K.; Kesharwani, P. Recent advances in folic acid engineered nanocarriers for treatment of breast cancer. J. Drug Deliv. Sci. Technol., 2020, 56, 101613. doi: 10.1016/j.jddst.2020.101613
- Bangham, A.D.; Standish, M.M.; Watkins, J.C. Diffusion of univalent ions across the lamellae of swollen phospholipids. J. Mol. Biol., 1965, 13(1), 238-IN27. doi: 10.1016/S0022-2836(65)80093-6 PMID: 5859039
- Jin, Y.; Tomeh, M.A.; Zhang, P.; Su, M.; Zhao, X.; Cai, Z. Microfluidic fabrication of photo-responsive Ansamitocin P-3 loaded liposomes for the treatment of breast cancer. Nanoscale, 2023, 15(8), 3780-3795. doi: 10.1039/D2NR06215A PMID: 36723377
- Liu, H.; Liu, Y.; Li, N.; Zhang, G-Q.; Wang, M. Ginsenoside Rg_3 based liposomes target delivery of dihydroartemisinin and paclitaxel for treatment of triple-negative breast cancer. Zhongguo Zhongyao Zazhi, 2023, 48(13), 3472-3484. doi: 10.19540/j.cnki.cjcmm.20230410.301 PMID: 37474984
- Pogorzelska, A.; Mazur, M.; Świtalska, M.; Wietrzyk, J.; Sigorski, D.; Fronczyk, K.; Wiktorska, K. Anticancer effect and safety of doxorubicin and nutraceutical sulforaphane liposomal formulation in triple-negative breast cancer (TNBC) animal model. Biomed. Pharmacother., 2023, 161, 114490. doi: 10.1016/j.biopha.2023.114490 PMID: 36931031
- Duarte, J.A.; Gomes, E.R.; De Barros, A.L.B.; Leite, E.A. Co-encapsulation of simvastatin and doxorubicin into pH-sensitive liposomes enhances antitumoral activity in breast cancer cell lines. Pharmaceutics, 2023, 15(2), 369. doi: 10.3390/pharmaceutics15020369 PMID: 36839690
- Moudgil, A.; Salve, R.; Gajbhiye, V.; Chaudhari, B.P. Challenges and emerging strategies for next generation liposomal based drug delivery: An account of the breast cancer conundrum. Chem. Phys. Lipids, 2023, 250, 105258. doi: 10.1016/j.chemphyslip.2022.105258 PMID: 36375540
- Cao, J.; Wang, R.; Gao, N.; Li, M.; Tian, X.; Yang, W.; Ruan, Y.; Zhou, C.; Wang, G.; Liu, X.; Tang, S.; Yu, Y.; Liu, Y.; Sun, G.; Peng, H.; Wang, Q. A7RC peptide modified paclitaxel liposomes dually target breast cancer. Biomater. Sci., 2015, 3(12), 1545-1554. doi: 10.1039/C5BM00161G PMID: 26291480
- Eloy, J.O.; Petrilli, R.; Topan, J.F.; Antonio, H.M.R.; Barcellos, J.P.A.; Chesca, D.L.; Serafini, L.N.; Tiezzi, D.G.; Lee, R.J.; Marchetti, J.M. Co-loaded paclitaxel/rapamycin liposomes: Development, characterization and in vitro and in vivo evaluation for breast cancer therapy. Colloids Surf. B Biointerfaces, 2016, 141, 74-82. doi: 10.1016/j.colsurfb.2016.01.032 PMID: 26836480
- Deshpande, P.P.; Biswas, S.; Torchilin, V.P. Current trends in the use of liposomes for tumor targeting. Nanomedicine, 2013, 8(9), 1509-1528. doi: 10.2217/nnm.13.118 PMID: 23914966
- Mitchell, M.J.; Billingsley, M.M.; Haley, R.M.; Wechsler, M.E.; Peppas, N.A.; Langer, R. Engineering precision nanoparticles for drug delivery. Nat. Rev. Drug Discov., 2021, 20(2), 101-124. doi: 10.1038/s41573-020-0090-8 PMID: 33277608
- de Oliveira Silva, J.; Fernandes, R.S.; Ramos Oda, C.M.; Ferreira, T.H.; Machado, B.A.F.; Martins, M.M.; de Miranda, M.C.; Assis, G.D.; Dantas, C.G.; Townsend, D.M.; Rubello, D.; Oliveira, M.C.; de Barros, A.L.B. Folate-coated, long-circulating and pH-sensitive liposomes enhance doxorubicin antitumor effect in a breast cancer animal model. Biomed. Pharmacother., 2019, 118, 109323. doi: 10.1016/j.biopha.2019.109323 PMID: 31400669
- Dunne, M.; Dou, Y.N.; Drake, D.M.; Spence, T.; Gontijo, S.M.L.; Wells, P.G.; Allen, C. Hyperthermia-mediated drug delivery induces biological effects at the tumor and molecular levels that improve cisplatin efficacy in triple negative breast cancer. J. Control. Release, 2018, 282, 35-45. doi: 10.1016/j.jconrel.2018.04.029 PMID: 29673642
- García-Pinel, B.; Porras-Alcalá, C.; Ortega-Rodríguez, A.; Sarabia, F.; Prados, J.; Melguizo, C.; López-Romero, J.M. Lipid-based nanoparticles: Application and recent advances in cancer treatment. Nanomaterials , 2019, 9(4), 638. doi: 10.3390/nano9040638 PMID: 31010180
- Lima, P.H.C.; Butera, A.P.; Cabeça, L.F.; Ribeiro-Viana, R.M. Liposome surface modification by phospholipid chemical reactions. Chem. Phys. Lipids, 2021, 237, 105084. doi: 10.1016/j.chemphyslip.2021.105084 PMID: 33891960
- Gomes, E.R.; Novais, M.V.M.; Silva, I.T.; Barros, A.L.B.; Leite, E.A.; Munkert, J.; Frade, A.C.M.; Cassali, G.D.; Braga, F.C.; Pádua, R.M.; Oliveira, M.C. Long-circulating and fusogenic liposomes loaded with a glucoevatromonoside derivative induce potent antitumor response. Biomed. Pharmacother., 2018, 108, 1152-1161. doi: 10.1016/j.biopha.2018.09.109 PMID: 30372816
- Strebhardt, K.; Ullrich, A. Paul Ehrlichs magic bullet concept: 100 years of progress. Nat. Rev. Cancer, 2008, 8(6), 473-480. doi: 10.1038/nrc2394 PMID: 18469827
- Eloy, J.O.; Petrilli, R.; Brueggemeier, R.W.; Marchetti, J.M.; Lee, R.J. Rapamycin-loaded immunoliposomes functionalized with trastuzumab: A strategy to enhance cytotoxicity to HER2-positive breast cancer cells. Anticancer. Agents Med. Chem., 2017, 17(1), 48-56. doi: 10.2174/1871520616666160526103432 PMID: 27225450
- Sharma, G.; Anabousi, S.; Ehrhardt, C.; Ravi, K.M.N.V. Liposomes as targeted drug delivery systems in the treatment of breast cancer. J. Drug Target., 2006, 14(5), 301-310. doi: 10.1080/10611860600809112 PMID: 16882550
- Yi, H.; Lu, W.; Liu, F.; Zhang, G.; Xie, F.; Liu, W.; Wang, L.; Zhou, W.; Cheng, Z. ROS-responsive liposomes with NIR light-triggered doxorubicin release for combinatorial therapy of breast cancer. J. Nanobiotechnology, 2021, 19(1), 134. doi: 10.1186/s12951-021-00877-6 PMID: 33975609
- Riaz, M.; Riaz, M.; Zhang, X.; Lin, C.; Wong, K.; Chen, X.; Zhang, G.; Lu, A.; Yang, Z. Surface functionalization and targeting strategies of liposomes in solid tumor therapy: A review. Int. J. Mol. Sci., 2018, 19(1), 195. doi: 10.3390/ijms19010195 PMID: 29315231
- Torchilin, V. Tumor delivery of macromolecular drugs based on the EPR effect. Adv. Drug Deliv. Rev., 2011, 63(3), 131-135. doi: 10.1016/j.addr.2010.03.011 PMID: 20304019
- Tucci, S.T.; Kheirolomoom, A.; Ingham, E.S.; Mahakian, L.M.; Tam, S.M.; Foiret, J.; Hubbard, N.E.; Borowsky, A.D.; Baikoghli, M.; Cheng, R.H.; Ferrara, K.W. Tumor-specific delivery of gemcitabine with activatable liposomes. J. Control. Release, 2019, 309, 277-288. doi: 10.1016/j.jconrel.2019.07.014 PMID: 31301340
- Hirota, K.; Czogala, E.; Pedrycz, W. Experimental result of membership and vagueness in questionnaire., 1983, 116-120.
- Shi, J.F.; Sun, M.G.; Li, X.Y.; Zhao, Y.; Ju, R.J.; Mu, L.M.; Yan, Y.; Li, X.T.; Zeng, F.; Lu, W.L. A combination of targeted sunitinib liposomes and targeted vinorelbine liposomes for treating invasive breast cancer. J. Biomed. Nanotechnol., 2015, 11(9), 1568-1582. doi: 10.1166/jbn.2015.2075 PMID: 26485927
- Kang, X.; Zheng, Z.; Liu, Z.; Wang, H.; Zhao, Y.; Zhang, W.; Shi, M.; He, Y.; Cao, Y.; Xu, Q.; Peng, C.; Huang, Y. Liposomal codelivery of doxorubicin and andrographolide inhibits breast cancer growth and metastasis. Mol. Pharm., 2018, 15(4), 1618-1626. doi: 10.1021/acs.molpharmaceut.7b01164 PMID: 29498868
- Gu, W.; Meng, F.; Haag, R.; Zhong, Z. Actively targeted nanomedicines for precision cancer therapy: Concept, construction, challenges and clinical translation. J. Control. Release, 2021, 329, 676-695. doi: 10.1016/j.jconrel.2020.10.003 PMID: 33022328
- Kulma, M.; Anderluh, G. Beyond pore formation: Reorganization of the plasma membrane induced by pore-forming proteins. Cell. Mol. Life Sci., 2021, 78(17-18), 6229-6249. doi: 10.1007/s00018-021-03914-7 PMID: 34387717
- Chen, Y.; Cheng, Y.; Zhao, P.; Zhang, S.; Li, M.; He, C.; Zhang, X.; Yang, T.; Yan, R.; Ye, P.; Ma, X.; Xiang, G. Co-delivery of doxorubicin and imatinib by pH sensitive cleavable PEGylated nanoliposomes with folate-mediated targeting to overcome multidrug resistance. Int. J. Pharm., 2018, 542(1-2), 266-279. doi: 10.1016/j.ijpharm.2018.03.024 PMID: 29551747
- Fu, M.; Tang, W.; Liu, J.J.; Gong, X.Q.; Kong, L.; Yao, X.M.; Jing, M.; Cai, F.Y.; Li, X.T.; Ju, R.J. Combination of targeted daunorubicin liposomes and targeted emodin liposomes for treatment of invasive breast cancer. J. Drug Target., 2020, 28(3), 245-258. doi: 10.1080/1061186X.2019.1656725 PMID: 31462111
- Voinea, M.; Simionescu, M. Designing of intelligent liposomes for efficient delivery of drugs. J. Cell. Mol. Med., 2002, 6(4), 465-474. doi: 10.1111/j.1582-4934.2002.tb00450.x PMID: 12611636
- Bawarski, W.E.; Chidlowsky, E.; Bharali, D.J.; Mousa, S.A. Emerging nanopharmaceuticals. Nanomedicine , 2008, 4(4), 273-282. doi: 10.1016/j.nano.2008.06.002 PMID: 18640076
- Marqués-Gallego, P.; de Kroon, A.I.P.M. Ligation strategies for targeting liposomal nanocarriers. BioMed Res. Int., 2014, 2014, 1-12. doi: 10.1155/2014/129458 PMID: 25126543
- Ross, C.; Taylor, M.; Fullwood, N.; Allsop, D. Liposome delivery systems for the treatment of Alzheimers disease. Int. J. Nanomedicine, 2018, 13, 8507-8522. doi: 10.2147/IJN.S183117 PMID: 30587974
- Antimisiaris, S.G.; Marazioti, A.; Kannavou, M.; Natsaridis, E.; Gkartziou, F.; Kogkos, G.; Mourtas, S. Overcoming barriers by local drug delivery with liposomes. Adv. Drug Deliv. Rev., 2021, 174, 53-86. doi: 10.1016/j.addr.2021.01.019 PMID: 33539852
- Basoglu, H.; Bilgin, M.D.; Demir, M.M. Protoporphyrin IX-loaded magnetoliposomes as a potential drug delivery system for photodynamic therapy: Fabrication, characterization and in vitro study. Photodiagn. Photodyn. Ther., 2016, 13, 81-90. doi: 10.1016/j.pdpdt.2015.12.010 PMID: 26751701
- Abumanhal-Masarweh, H.; Da Silva, D.; Poley, M.; Zinger, A.; Goldman, E.; Krinsky, N.; Kleiner, R.; Shenbach, G.; Schroeder, J.E.; Shklover, J.; Shainsky-Roitman, J.; Schroeder, A. Tailoring the lipid composition of nanoparticles modulates their cellular uptake and affects the viability of triple negative breast cancer cells. J. Control. Release, 2019, 307, 331-341. doi: 10.1016/j.jconrel.2019.06.025 PMID: 31238049
- Zahmatkeshan, M.; Gheybi, F.; Rezayat, S.M.; Jaafari, M.R. Improved drug delivery and therapeutic efficacy of PEgylated liposomal doxorubicin by targeting anti-HER2 peptide in murine breast tumor model. Eur. J. Pharm. Sci., 2016, 86, 125-135. doi: 10.1016/j.ejps.2016.03.009 PMID: 26972276
- Yazdan, M.; Naghib, S.M. Smart ultrasound-responsive polymers for drug delivery: An overview on advanced stimuli-sensitive materials and techniques. Curr. Drug Deliv., 2024. Epub ahead of Print doi: 10.2174/0115672018283792240115053302 PMID: 38288800
- Matini, A.; Naghib, S.M. Microwave-assisted natural gums for drug delivery systems: Recent progresses and advances over emerging biopolymers and technologies. Curr. Med. Chem., 2024. doi: 10.2174/0109298673283144231212055603 PMID: 38192130
- Nikolova, M.P.; Kumar, E.M.; Chavali, M.S. Updates on responsive drug delivery based on liposome vehicles for cancer treatment. Pharmaceutics, 2022, 14(10), 2195. doi: 10.3390/pharmaceutics14102195 PMID: 36297630
- Orthmann, A.; Peiker, L.; Fichtner, I.; Hoffmann, A.; Hilger, R.A.; Zeisig, R. Improved treatment of MT-3 breast cancer and brain metastases in a mouse xenograft by LRP-targeted oxaliplatin liposomes. J. Biomed. Nanotechnol., 2016, 12(1), 56-68. doi: 10.1166/jbn.2016.2143 PMID: 27301172
- Huang, Y.; Zhang, Q.; Feng, P.; Li, W.; Li, X.; Li, Y.; Zhang, D. Hyperthermia-sensitive liposomes containing brucea javanica oil for synergistic photothermal-/chemo-therapy in breast cancer treatment. Curr. Drug Deliv., 2023, 20(2), 192-200. doi: 10.2174/1567201819666220411115632 PMID: 35410599
- Poulios, E.; Koukounari, S.; Psara, E.; Vasios, G.K.; Sakarikou, C.; Giaginis, C. Anti-obesity properties of phytochemicals: Highlighting their molecular mechanisms against obesity. Curr. Med. Chem., 2024, 31(1), 25-61. doi: 10.2174/0929867330666230517124033 PMID: 37198988
- Shanehband, N.; Naghib, S.M. Microfluidics-assisted tumor cell separation approaches for clinical applications: An overview on emerging devices. Comb. Chem. High Throughput Screen., 2024, 27. doi: 10.2174/0113862073277130231110111933 PMID: 38275060
- Mohammad-Jafari, K.; Naghib, S.M. 3D printing of microfluidic-assisted liposomes production for drug delivery and nanobiomedicine: A review. Curr. Med. Chem., 2024. doi: 10.2174/0109298673285199231210170549 PMID: 38299296
- Vaidya, T.; Straubinger, R.M.; Ait-Oudhia, S. Development and evaluation of tri-functional immunoliposomes for the treatment of HER2 positive breast cancer. Pharm. Res., 2018, 35(5), 95. doi: 10.1007/s11095-018-2365-x PMID: 29536232
- Abu Lila, A.S.; Ishida, T. Liposomal delivery systems: Design optimization and current applications. Biol. Pharm. Bull., 2017, 40(1), 1-10. doi: 10.1248/bpb.b16-00624 PMID: 28049940
- Malam, Y.; Loizidou, M.; Seifalian, A.M. Liposomes and nanoparticles: Nanosized vehicles for drug delivery in cancer. Trends Pharmacol. Sci., 2009, 30(11), 592-599. doi: 10.1016/j.tips.2009.08.004 PMID: 19837467
- Almeida, B.; Nag, O.K.; Rogers, K.E.; Delehanty, J.B. Recent progress in bioconjugation strategies for liposome-mediated drug delivery. Molecules, 2020, 25(23), 5672. doi: 10.3390/molecules25235672 PMID: 33271886
- Li, X.; Ding, L.; Xu, Y.; Wang, Y.; Ping, Q. Targeted delivery of doxorubicin using stealth liposomes modified with transferrin. Int. J. Pharm., 2009, 373(1-2), 116-123. doi: 10.1016/j.ijpharm.2009.01.023 PMID: 19429296
- Huwyler, J.; Drewe, J.; Krähenbuhl, S. Tumor targeting using liposomal antineoplastic drugs. Int. J. Nanomedicine, 2008, 3(1), 21-29. doi: 10.2147/IJN.S1253 PMID: 18488413
- Wallrabenstein, T.; Daetwyler, E.; Oseledchyk, A.; Rochlitz, C.; Vetter, M. Pegylated liposomal doxorubicin (PLD) in daily practiceA single center experience of treatment with PLD in patients with comorbidities and older patients with metastatic breast cancer. Cancer Med., 2023, 12(12), 13388-13396. doi: 10.1002/cam4.6041 PMID: 37148541
- Vila-Caballer, M.; Codolo, G.; Munari, F.; Malfanti, A.; Fassan, M.; Rugge, M.; Balasso, A.; de Bernard, M.; Salmaso, S. A pH-sensitive stearoyl-PEG-poly(methacryloyl sulfadimethoxine)-decorated liposome system for protein delivery: An application for bladder cancer treatment. J. Control. Release, 2016, 238, 31-42. doi: 10.1016/j.jconrel.2016.07.024 PMID: 27444816
- Paliwal, S.R.; Paliwal, R.; Vyas, S.P. A review of mechanistic insight and application of pH-sensitive liposomes in drug delivery. Drug Deliv., 2015, 22(3), 231-242. doi: 10.3109/10717544.2014.882469 PMID: 24524308
- Swami, R.; Kumar, Y.; Chaudhari, D.; Katiyar, S.S.; Kuche, K.; Katare, P.B.; Banerjee, S.K.; Jain, S. pH sensitive liposomes assisted specific and improved breast cancer therapy using co-delivery of SIRT1 shRNA and Docetaxel. Mater. Sci. Eng. C, 2021, 120, 111664. doi: 10.1016/j.msec.2020.111664 PMID: 33545830
- Ferreira, D.S.; Lopes, S.C.A.; Franco, M.S.; Oliveira, M.C. pH-sensitive liposomes for drug delivery in cancer treatment. Ther. Deliv., 2013, 4(9), 1099-1123. doi: 10.4155/tde.13.80 PMID: 24024511
- Karanth, H.; Murthy, R.S.R. pH-Sensitive liposomes-principle and application in cancer therapy. J. Pharm. Pharmacol., 2010, 59(4), 469-483. doi: 10.1211/jpp.59.4.0001 PMID: 17430630
- Lee, Y.; Thompson, D.H. Stimuli‐responsive liposomes for drug delivery. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2017, 9(5), e1450. doi: 10.1002/wnan.1450 PMID: 28198148
- Medeiros, S.F.; Santos, A.M.; Fessi, H.; Elaissari, A. Stimuli-responsive magnetic particles for biomedical applications. Int. J. Pharm., 2011, 403(1-2), 139-161. doi: 10.1016/j.ijpharm.2010.10.011 PMID: 20951779
- Karve, S.; Bandekar, A.; Ali, M.R.; Sofou, S. The pH-dependent association with cancer cells of tunable functionalized lipid vesicles with encapsulated doxorubicin for high cell-kill selectivity. Biomaterials, 2010, 31(15), 4409-4416. doi: 10.1016/j.biomaterials.2010.01.064 PMID: 20189243
- Vaishnavi, D.C.; Shubhangi, R.M. Liposomal drug delivery system: An overview. IRJMETS, 2023, 5(3), 4412-4424.
- Zhang, W.; Ngo, L.; Tsao, S.C.H.; Liu, D.; Wang, Y. Engineered cancer-derived small extracellular vesicle-liposome hybrid delivery system for targeted treatment of breast cancer. ACS Appl. Mater. Interfaces, 2023, 15(13), 16420-16433. doi: 10.1021/acsami.2c22749 PMID: 36961985
- Song, Y.; Sheng, Z.; Xu, Y.; Dong, L.; Xu, W.; Li, F.; Wang, J.; Wu, Z.; Yang, Y.; Su, Y.; Sun, X.; Ling, D.; Lu, Y. Magnetic liposomal emodin composite with enhanced killing efficiency against breast cancer. Biomater. Sci., 2019, 7(3), 867-875. doi: 10.1039/C8BM01530A PMID: 30648710
- García, M.C.; Naitlho, N.; Calderón-Montaño, J.M.; Drago, E.; Rueda, M.; Longhi, M.; Rabasco, A.M.; López-Lázaro, M.; Prieto-Dapena, F.; González-Rodríguez, M.L. Cholesterol levels affect the performance of aunps-decorated thermo-sensitive liposomes as nanocarriers for controlled doxorubicin delivery. Pharmaceutics, 2021, 13(7), 973. doi: 10.3390/pharmaceutics13070973 PMID: 34199018
- Shen, S.; Huang, D.; Cao, J.; Chen, Y.; Zhang, X.; Guo, S.; Ma, W.; Qi, X.; Ge, Y.; Wu, L. Magnetic liposomes for light-sensitive drug delivery and combined photothermalchemotherapy of tumors. J. Mater. Chem. B Mater. Biol. Med., 2019, 7(7), 1096-1106. doi: 10.1039/C8TB02684J PMID: 32254777
- Dorjsuren, B.; Chaurasiya, B.; Ye, Z.; Liu, Y.; Li, W.; Wang, C.; Shi, D.; Evans, C.E.; Webster, T.J.; Shen, Y. Cetuximab-coated thermo-sensitive liposomes loaded with magnetic nanoparticles and doxorubicin for targeted EGFR-expressing breast cancer combined therapy. Int. J. Nanomedicine, 2020, 15, 8201-8215. doi: 10.2147/IJN.S261671 PMID: 33122906
- Enzian, P.; Schell, C.; Link, A.; Malich, C.; Pries, R.; Wollenberg, B.; Rahmanzadeh, R. Optically controlled drug release from light-sensitive liposomes with the new photosensitizer 5,10-DiOH. Mol. Pharm., 2020, 17(8), 2779-2788. doi: 10.1021/acs.molpharmaceut.9b01173 PMID: 32543848
- Sofou, S.; Sgouros, G. Antibody-targeted liposomes in cancer therapy and imaging. Expert Opin. Drug Deliv., 2008, 5(2), 189-204. doi: 10.1517/17425247.5.2.189 PMID: 18248318
- Drummond, D.C.; Noble, C.O.; Guo, Z.; Hayes, M.E.; Connolly-Ingram, C.; Gabriel, B.S.; Hann, B.; Liu, B.; Park, J.W.; Hong, K.; Benz, C.C.; Marks, J.D.; Kirpotin, D.B. Development of a highly stable and targetable nanoliposomal formulation of topotecan. J. Control. Release, 2010, 141(1), 13-21. doi: 10.1016/j.jconrel.2009.08.006 PMID: 19686789
- Shah, S.A.; Aslam Khan, M.U.; Arshad, M.; Awan, S.U.; Hashmi, M.U.; Ahmad, N. Doxorubicin-loaded photosensitive magnetic liposomes for multi-modal cancer therapy. Colloids Surf. B Biointerfaces, 2016, 148, 157-164. doi: 10.1016/j.colsurfb.2016.08.055 PMID: 27595890
- Lin, C.; Zhang, X.; Chen, H.; Bian, Z.; Zhang, G.; Riaz, M.K.; Tyagi, D.; Lin, G.; Zhang, Y.; Wang, J.; Lu, A.; Yang, Z. Dual-ligand modified liposomes provide effective local targeted delivery of lung-cancer drug by antibody and tumor lineage-homing cell-penetrating peptide. Drug Deliv., 2018, 25(1), 256-266. doi: 10.1080/10717544.2018.1425777 PMID: 29334814
- Wang, J.; Liu, J.; Liu, Y.; Wang, L.; Cao, M.; Ji, Y.; Wu, X.; Xu, Y.; Bai, B.; Miao, Q.; Chen, C.; Zhao, Y. Gd‐hybridized plasmonic Au‐nanocomposites enhanced tumor‐interior drug permeability in multimodal imaging‐guided therapy. Adv. Mater., 2016, 28(40), 8950-8958. doi: 10.1002/adma.201603114 PMID: 27562240
- Galović Rengel, R.; Bariić, K.; Pavelić, .; anić Grubiić, T.; Čepelak, I.; Filipović-Grčić, J. High efficiency entrapment of superoxide dismutase into mucoadhesive chitosan-coated liposomes. Eur. J. Pharm. Sci., 2002, 15(5), 441-448. doi: 10.1016/S0928-0987(02)00030-1 PMID: 12036721
- Jackson, M.B.; Sturtevant, J.M. Phase transitions of the purple membranes of Halobacterium halobium. Biochemistry, 1978, 17(5), 911-915. doi: 10.1021/bi00598a026 PMID: 629940
- Smith, B.; Lyakhov, I.; Loomis, K.; Needle, D.; Baxa, U.; Yavlovich, A.; Capala, J.; Blumenthal, R.; Puri, A. Hyperthermia-triggered intracellular delivery of anticancer agent to HER2+ cells by HER2-specific affibody (ZHER2-GS-Cys)-conjugated thermosensitive liposomes (HER2+ affisomes). J. Control. Release, 2011, 153(2), 187-194. doi: 10.1016/j.jconrel.2011.04.005 PMID: 21501640
- Franco, M.S.; Roque, M.C.; de Barros, A.L.B.; de Oliveira Silva, J.; Cassali, G.D.; Oliveira, M.C. Investigation of the antitumor activity and toxicity of long-circulating and fusogenic liposomes co-encapsulating paclitaxel and doxorubicin in a murine breast cancer animal model. Biomed. Pharmacother., 2019, 109, 1728-1739. doi: 10.1016/j.biopha.2018.11.011 PMID: 30551427
- Potluri, P.; Betageri, G.V. Mixed-micellar proliposomal systems for enhanced oral delivery of progesterone. Drug Deliv., 2006, 13(3), 227-232. doi: 10.1080/10717540500395007 PMID: 16556576
- Nguyen, V.D.; Zheng, S.; Han, J.; Le, V.H.; Park, J.O.; Park, S. Nanohybrid magnetic liposome functionalized with hyaluronic acid for enhanced cellular uptake and near-infrared-triggered drug release. Colloids Surf. B Biointerfaces, 2017, 154, 104-114. doi: 10.1016/j.colsurfb.2017.03.008 PMID: 28329728
- Yan, F.; Duan, W.; Li, Y.; Wu, H.; Zhou, Y.; Pan, M.; Liu, H.; Liu, X.; Zheng, H. NIR-laser-controlled drug release from DOX/IR-780-loaded temperature-sensitive-liposomes for chemo-photothermal synergistic tumor therapy. Theranostics, 2016, 6(13), 2337-2351. doi: 10.7150/thno.14937 PMID: 27877239
- Meerovich, G.A.; Akhlyustina, E.V.; Tiganova, I.G.; Lukyanets, E.A.; Makarova, E.A.; Tolordava, E.R.; Yuzhakova, O.A.; Romanishkin, I.D.; Philipova, N.I.; Zhizhimova, Y.S.; Romanova, Y.M.; Loschenov, V.B.; Gintsburg, A.L. Novel polycationic photosensitizers for antibacterial photodynamic therapy. Adv. Exp. Med. Biol., 2019, 1282, 1-19. doi: 10.1007/5584_2019_431 PMID: 31446610
- Wong, M.Y.; Chiu, G.N.C. Simultaneous liposomal delivery of quercetin and vincristine for enhanced estrogen-receptor-negative breast cancer treatment. Anticancer Drugs, 2010, 21(4), 401-410. doi: 10.1097/CAD.0b013e328336e940 PMID: 20110806
- Van Ballegooie, C.; Man, A.; Win, M.; Yapp, D.T. Spatially specific liposomal cancer therapy triggered by clinical external sources of energy. Pharmaceutics, 2019, 11(3), 125. doi: 10.3390/pharmaceutics11030125
- Kono, K. Thermosensitive polymer-modified liposomes. Adv. Drug Deliv. Rev., 2001, 53(3), 307-319. doi: 10.1016/S0169-409X(01)00204-6 PMID: 11744174
- Dabbagh, A.; Abdullah, B.J.J.; Abdullah, H.; Hamdi, M.; Kasim, N.H.A. Triggering mechanisms of thermosensitive nanoparticles under hyperthermia condition. J. Pharm. Sci., 2015, 104(8), 2414-2428. doi: 10.1002/jps.24536 PMID: 26073304
- Dou, Y.N.; Chaudary, N.; Chang, M.C.; Dunne, M.; Huang, H.; Jaffray, D.A.; Milosevic, M.; Allen, C. Tumor microenvironment determines response to a heat-activated thermosensitive liposome formulation of cisplatin in cervical carcinoma. J. Control. Release, 2017, 262, 182-191. doi: 10.1016/j.jconrel.2017.07.039 PMID: 28760449
Supplementary files
