Liposomal Nano-Based Drug Delivery Systems for Breast Cancer Therapy: Recent Advances and Progresses


Cite item

Full Text

Abstract

Breast cancer is a highly prevalent disease on a global scale, with a 30% incidence rate among women and a 14% mortality rate. Developing countries bear a disproportionate share of the disease burden, while countries with greater technological advancements exhibit a higher incidence. A mere 7% of women under the age of 40 are diagnosed with breast cancer, and the prevalence of this ailment is significantly diminished among those aged 35 and younger. Chemotherapy, radiation therapy, and surgical intervention comprise the treatment protocol. However, the ongoing quest for a definitive cure for breast cancer continues. The propensity for cancer stem cells to metastasize and resistance to treatment constitute their Achilles' heel. The advancement of drug delivery techniques that target cancer cells specifically holds significant promise in terms of facilitating timely detection and effective intervention. Novel approaches to pharmaceutical delivery, including nanostructures and liposomes, may bring about substantial changes in the way breast cancer is managed. These systems offer a multitude of advantages, such as heightened bioavailability, enhanced solubility, targeted tumor destruction, and diminished adverse effects. The application of nano-drug delivery systems to administer anti-breast cancer medications is a significant subject of research. This article delves into the domain of breast cancer, conventional treatment methods, the incorporation of nanotechnology into managerial tactics, and strategic approaches aimed at tackling the disease at its core.

About the authors

Mostafa Yazdan

Department of Nanotechnology, School of Advanced Technologies,, Iran University of Science and Technology (IUST)

Email: info@benthamscience.net

Seyed Morteza Naghib

Department of Nanotechnology, School of Advanced Technologies, Iran University of Science and Technology (IUST)

Author for correspondence.
Email: info@benthamscience.net

M. R. Mozafari

Australasian Nanoscience and Nanotechnology Initiative (ANNI), Monash University LPO

Email: info@benthamscience.net

References

  1. Sahoo, B.M.; Banik, B.K.; Borah, P.; Jain, A. Reactive oxygen species (ROS): Key components in cancer therapies. Anticancer. Agents Med. Chem., 2022, 22(2), 215-222. doi: 10.2174/1871520621666210608095512 PMID: 34102991
  2. Shams ul Hassan, S.; Abbas, S.Q. Computational exploration of anti-cancer potential of guaiane dimers from Xylopia vielana by targeting B-RAF kinase using chemo-informatics, molecular docking, and MD simulation studies. Anticancer. Agents Med. Chem., 2022, 22, 731-746. doi: 10.2174/1871520621666211013115500 PMID: 34645380
  3. Fatima, M.; Iqubal, M.K.; Iqubal, A.; Kaur, H.; Gilani, S.J.; Rahman, M.H.; Ahmadi, A.; Rizwanullah, M. Current insight into the therapeutic potential of phytocompounds and their nanoparticle-based systems for effective management of lung cancer. Anticancer. Agents Med. Chem., 2022, 22(4), 668-686. doi: 10.2174/1871520621666210708123750 PMID: 34238197
  4. Dawood, K.M.; Raslan, M.A.; Abbas, A.A.; Mohamed, B.E.; Nafie, M.S. Novel bis-amide-based bis-thiazoles as anti-colorectal cancer agents through Bcl-2 inhibition: Synthesis, in vitro, and in vivo studies. Anticancer. Agents Med. Chem., 2023, 23(3), 328-345. doi: 10.2174/1871520622666220615140239 PMID: 35708084
  5. Rindi, G.; Klimstra, D.S.; Abedi-Ardekani, B.; Asa, S.L.; Bosman, F.T.; Brambilla, E.; Busam, K.J.; de Krijger, R.R.; Dietel, M.; El-Naggar, A.K.; Fernandez-Cuesta, L.; Klöppel, G.; McCluggage, W.G.; Moch, H.; Ohgaki, H.; Rakha, E.A.; Reed, N.S.; Rous, B.A.; Sasano, H.; Scarpa, A.; Scoazec, J.Y.; Travis, W.D.; Tallini, G.; Trouillas, J.; van Krieken, J.H.; Cree, I.A. A common classification framework for neuroendocrine neoplasms: An International Agency for Research on Cancer (IARC) and World Health Organization (WHO) expert consensus proposal. Mod. Pathol., 2018, 31(12), 1770-1786. doi: 10.1038/s41379-018-0110-y PMID: 30140036
  6. Fang, X.; Cao, J.; Shen, A. Advances in anti-breast cancer drugs and the application of nano-drug delivery systems in breast cancer therapy. J. Drug Deliv. Sci. Technol., 2020, 57, 101662. doi: 10.1016/j.jddst.2020.101662
  7. Yedjou, C.; Tchounwou, P.; Payton, M.; Miele, L.; Fonseca, D.; Lowe, L.; Alo, R. Assessing the racial and ethnic disparities in breast cancer mortality in the United States. Int. J. Environ. Res. Public Health, 2017, 14(5), 486. doi: 10.3390/ijerph14050486 PMID: 28475137
  8. Feng, Y.; Spezia, M.; Huang, S.; Yuan, C.; Zeng, Z.; Zhang, L.; Ji, X.; Liu, W.; Huang, B.; Luo, W.; Liu, B.; Lei, Y.; Du, S.; Vuppalapati, A.; Luu, H.H.; Haydon, R.C.; He, T.C.; Ren, G. Breast cancer development and progression: Risk factors, cancer stem cells, signaling pathways, genomics, and molecular pathogenesis. Genes Dis., 2018, 5(2), 77-106. doi: 10.1016/j.gendis.2018.05.001 PMID: 30258937
  9. Herdiana, Y.; Wathoni, N.; Shamsuddin, S.; Joni, I.M.; Muchtaridi, M. Chitosan-based nanoparticles of targeted drug delivery system in breast cancer treatment. Polymers, 2021, 13(11), 1717. doi: 10.3390/polym13111717 PMID: 34074020
  10. Heymach, J.; Krilov, L.; Alberg, A.; Baxter, N.; Chang, S.M.; Corcoran, R.B.; Dale, W.; DeMichele, A.; Magid, D.C.S.; Dreicer, R.; Epstein, A.S.; Gillison, M.L.; Graham, D.L.; Jones, J.; Ko, A.H.; Lopez, A.M.; Maki, R.G.; Rodriguez-Galindo, C.; Schilsky, R.L.; Sznol, M.; Westin, S.N.; Burstein, H. Clinical cancer advances 2018: Annual report on progress against cancer from the american society of clinical oncology. J. Clin. Oncol., 2018, 36(10), 1020-1044. doi: 10.1200/JCO.2017.77.0446 PMID: 29380678
  11. Prieto-Vila, M.; Takahashi, R.; Usuba, W.; Kohama, I.; Ochiya, T. Drug resistance driven by cancer stem cells and their niche. Int. J. Mol. Sci., 2017, 18(12), 2574. doi: 10.3390/ijms18122574 PMID: 29194401
  12. Hu, C.; Cun, X.; Ruan, S.; Liu, R.; Xiao, W.; Yang, X.; Yang, Y.; Yang, C.; Gao, H. Enzyme-triggered size shrink and laser-enhanced NO release nanoparticles for deep tumor penetration and combination therapy. Biomaterials, 2018, 168, 64-75. doi: 10.1016/j.biomaterials.2018.03.046 PMID: 29626787
  13. Momenimovahed, Z.; Salehiniya, H. Epidemiological characteristics of and risk factors for breast cancer in the world. Breast Cancer, 2019, 11, 151-164. doi: 10.2147/BCTT.S176070 PMID: 31040712
  14. Kangarshahi, B.M.; Naghib, S.M.; Kangarshahi, G.M.; Mozafari, M.R. Bioprinting of self-healing materials and nanostructures for biomedical applications: Recent advances and progresses on fabrication and characterization techniques. Bioprinting, 2024, 38, e00335. doi: 10.1016/j.bprint.2024.e00335
  15. Goodman, J.; Lynch, H. Improving the international agency for research on cancer’s consideration of mechanistic evidence. Toxicol. Appl. Pharmacol., 2017, 319, 39-46. doi: 10.1016/j.taap.2017.01.020 PMID: 28162991
  16. Wang, P.; Du, Y.; Wang, J. Indentification of breast cancer subtypes sensitive to HCQ-induced autophagy inhibition. Pathol. Res. Pract., 2019, 215(10), 152609. doi: 10.1016/j.prp.2019.152609 PMID: 31488317
  17. Peng, Q.; Ren, X. Mapping of female breast cancer incidence and mortality rates to socioeconomic factors cohort: Path diagram analysis. Front. Public Health, 2022, 9, 761023. doi: 10.3389/fpubh.2021.761023 PMID: 35178368
  18. Liang, Y.; Zhang, H.; Song, X.; Yang, Q. Metastatic heterogeneity of breast cancer: Molecular mechanism and potential therapeutic targets. Semin. Cancer Biol., 2020, 60, 14-27. doi: 10.1016/j.semcancer.2019.08.012 PMID: 31421262
  19. De, A.; Kuppusamy, G. Metformin in breast cancer: Preclinical and clinical evidence. Curr. Probl. Cancer, 2020, 44(1), 100488. doi: 10.1016/j.currproblcancer.2019.06.003 PMID: 31235186
  20. Al-thoubaity, F.K. Molecular classification of breast cancer: A retrospective cohort study. Ann. Med. Surg., 2020, 49, 44-48. doi: 10.1016/j.amsu.2019.11.021 PMID: 31890196
  21. Pindiprolu, S.K.S.S.; Krishnamurthy, P.T.; Chintamaneni, P.K.; Karri, V.V.S.R. Nanocarrier based approaches for targeting breast cancer stem cells. Artif. Cells Nanomed. Biotechnol., 2018, 46(5), 885-898. doi: 10.1080/21691401.2017.1366337 PMID: 28826237
  22. Akinyemiju, T.F.; Pisu, M.; Waterbor, J.W.; Altekruse, S.F. Socioeconomic status and incidence of breast cancer by hormone receptor subtype. Springerplus, 2015, 4(1), 508. doi: 10.1186/s40064-015-1282-2 PMID: 26405628
  23. Thanki, K.; Gangwal, R.P.; Sangamwar, A.T.; Jain, S. Oral delivery of anticancer drugs: Challenges and opportunities. J. Control. Release, 2013, 170(1), 15-40. doi: 10.1016/j.jconrel.2013.04.020 PMID: 23648832
  24. Tran, P.; Lee, S.E.; Kim, D.H.; Pyo, Y.C.; Park, J.S. Recent advances of nanotechnology for the delivery of anticancer drugs for breast cancer treatment. J. Pharm. Investig., 2020, 50(3), 261-270. doi: 10.1007/s40005-019-00459-7
  25. Wang, X.; Li, L.; Gao, J.; Liu, J.; Guo, M.; Liu, L.; Wang, W.; Wang, J.; Xing, Z.; Yu, Z.; Wang, X. The association between body size and breast cancer in han women in northern and eastern China. Oncologist, 2016, 21(11), 1362-1368. doi: 10.1634/theoncologist.2016-0147 PMID: 27496041
  26. Caetano-Pinto, P.; Jansen, J.; Assaraf, Y.G.; Masereeuw, R. The importance of breast cancer resistance protein to the kidneys excretory function and chemotherapeutic resistance. Drug Resist. Updat., 2017, 30, 15-27. doi: 10.1016/j.drup.2017.01.002 PMID: 28363332
  27. Pastor-Barriuso, R.; Fernández, M.F.; Castaño-Vinyals, G.; Whelan, D.; Pérez-Gómez, B.; Llorca, J.; Villanueva, C.M.; Guevara, M.; Molina-Molina, J.M.; Artacho-Cordón, F.; Barriuso-Lapresa, L.; Tusquets, I.; Dierssen-Sotos, T.; Aragonés, N.; Olea, N.; Kogevinas, M.; Pollán, M. Total effective xenoestrogen burden in serum samples and risk for breast cancer in a population-based multicase–control study in Spain. Environ. Health Perspect., 2016, 124(10), 1575-1582. doi: 10.1289/EHP157 PMID: 27203080
  28. Howlader, N.; Altekruse, S.F.; Li, C.I.; Chen, V.W.; Clarke, C.A.; Ries, L.A.G.; Cronin, K.A. US incidence of breast cancer subtypes defined by joint hormone receptor and HER2 status. J. Natl. Cancer Inst., 2014, 106(5), dju055. doi: 10.1093/jnci/dju055 PMID: 24777111
  29. Estrella, V.; Chen, T.; Lloyd, M.; Wojtkowiak, J.; Cornnell, H.H.; Ibrahim-Hashim, A.; Bailey, K.; Balagurunathan, Y.; Rothberg, J.M.; Sloane, B.F.; Johnson, J.; Gatenby, R.A.; Gillies, R.J. Acidity generated by the tumor microenvironment drives local invasion. Cancer Res., 2013, 73(5), 1524-1535. doi: 10.1158/0008-5472.CAN-12-2796 PMID: 23288510
  30. Choi, J.; Cha, Y.J.; Koo, J.S. Adipocyte biology in breast cancer: From silent bystander to active facilitator. Prog. Lipid Res., 2018, 69, 11-20. doi: 10.1016/j.plipres.2017.11.002 PMID: 29175445
  31. Park, J.; Choi, Y.; Chang, H.; Um, W.; Ryu, J.H.; Kwon, I.C. Alliance with EPR effect: Combined strategies to improve the EPR effect in the tumor microenvironment. Theranostics, 2019, 9(26), 8073-8090. doi: 10.7150/thno.37198 PMID: 31754382
  32. Voduc, K.D.; Cheang, M.C.U.; Tyldesley, S.; Gelmon, K.; Nielsen, T.O.; Kennecke, H. Breast cancer subtypes and the risk of local and regional relapse. J. Clin. Oncol., 2010, 28(10), 1684-1691. doi: 10.1200/JCO.2009.24.9284 PMID: 20194857
  33. El Saghir, N.S.; Adebamowo, C.A.; Anderson, B.O.; Carlson, R.W.; Bird, P.A.; Corbex, M.; Badwe, R.A.; Bushnaq, M.A.; Eniu, A.; Gralow, J.R.; Harness, J.K.; Masetti, R.; Perry, F.; Samiei, M.; Thomas, D.B.; Wiafe-Addai, B.; Cazap, E. Breast cancer management in low resource countries (LRCs): Consensus statement from the Breast Health Global Initiative. Breast, 2011, 20(Suppl. 2), S3-S11. doi: 10.1016/j.breast.2011.02.006 PMID: 21392996
  34. Burstein, H.J.; Curigliano, G.; Thürlimann, B.; Weber, W.P.; Poortmans, P.; Regan, M.M.; Senn, H.J.; Winer, E.P.; Gnant, M.; Aebi, S.; André, F.; Barrios, C.; Bergh, J.; Bonnefoi, H.; Bretel Morales, D.; Brucker, S.; Burstein, H.; Cameron, D.; Cardoso, F.; Carey, L.; Chua, B.; Ciruelos, E.; Colleoni, M.; Curigliano, G.; Delaloge, S.; Denkert, C.; Dubsky, P.; Ejlertsen, B.; Fitzal, F.; Francis, P.; Galimberti, V.; Gamal El Din Mohamed Mahmoud, H.; Garber, J.; Gnant, M.; Gradishar, W.; Gulluoglu, B.; Harbeck, N.; Huang, C.S.; Huober, J.; Ilbawi, A.; Jiang, Z.; Johnston, S.; Lee, E.S.; Loibl, S.; Morrow, M.; Partridge, A.; Piccart, M.; Poortmans, P.; Prat, A.; Regan, M.; Rubio, I.; Rugo, H.; Rutgers, E.; Sedlmayer, F.; Semiglazov, V.; Senn, H.J.; Shao, Z.; Spanic, T.; Tesarova, P.; Thürlimann, B.; Tjulandin, S.; Toi, M.; Trudeau, M.; Turner, N.; Vaz Luis, I.; Viale, G.; Watanabe, T.; Weber, W.P.; Winer, E.P.; Xu, B. Customizing local and systemic therapies for women with early breast cancer: The St. Gallen International Consensus Guidelines for treatment of early breast cancer 2021. Ann. Oncol., 2021, 32(10), 1216-1235. doi: 10.1016/j.annonc.2021.06.023 PMID: 34242744
  35. Anderson, B.O.; Yip, C.H.; Smith, R.A.; Shyyan, R.; Sener, S.F.; Eniu, A.; Carlson, R.W.; Azavedo, E.; Harford, J. Guideline implementation for breast healthcare in low-income and middle-income countries. Cancer, 2008, 113(S8)(Suppl.), 2221-2243. doi: 10.1002/cncr.23844 PMID: 18816619
  36. Chen, Q.; Hongu, T.; Sato, T.; Zhang, Y.; Ali, W.; Cavallo, J.A.; van der Velden, A.; Tian, H.; Di Paolo, G.; Nieswandt, B.; Kanaho, Y.; Frohman, M.A. Key roles for the lipid signaling enzyme phospholipase d1 in the tumor microenvironment during tumor angiogenesis and metastasis. Sci. Signal., 2012, 5(249), ra79. doi: 10.1126/scisignal.2003257 PMID: 23131846
  37. Mota, A.; Evangelista, A.; Macedo, T.; Oliveira, R.; Scapulatempo-Neto, C.; Vieira, R.; Marques, M. Molecular characterization of breast cancer cell lines by clinical immunohistochemical markers. Oncol. Lett., 2017, 13(6), 4708-4712. doi: 10.3892/ol.2017.6093 PMID: 28588725
  38. Mohammed, M.; Syeda, J.; Wasan, K.; Wasan, E. An overview of chitosan nanoparticles and its application in non-parenteral drug delivery. Pharmaceutics, 2017, 9(4), 53. doi: 10.3390/pharmaceutics9040053 PMID: 29156634
  39. Waks, A.G.; Winer, E.P. Breast cancer treatment. JAMA, 2019, 321(3), 288-300. doi: 10.1001/jama.2018.19323 PMID: 30667505
  40. Hjerl, K.; Andersen, E.W.; Keiding, N.; Mouridsen, H.T.; Mortensen, P.B.; Jørgensen, T. Depression as a prognostic factor for breast cancer mortality. Psychosomatics, 2003, 44(1), 24-30. doi: 10.1176/appi.psy.44.1.24 PMID: 12515834
  41. Kang, X.; Chen, H.; Li, S.; Jie, L.; Hu, J.; Wang, X.; Qi, J.; Ying, X.; Du, Y. Magnesium lithospermate B loaded PEGylated solid lipid nanoparticles for improved oral bioavailability. Colloids Surf. B Biointerfaces, 2018, 161, 597-605. doi: 10.1016/j.colsurfb.2017.11.008 PMID: 29156336
  42. Kessenbrock, K.; Plaks, V.; Werb, Z. Matrix metalloproteinases: regulators of the tumor microenvironment. Cell, 2010, 141(1), 52-67. doi: 10.1016/j.cell.2010.03.015 PMID: 20371345
  43. Nadimi, A.E.; Ebrahimipour, S.Y.; Afshar, E.G.; Falahati-pour, S.K.; Ahmadi, Z.; Mohammadinejad, R.; Mohamadi, M. Nano-scale drug delivery systems for antiarrhythmic agents. Eur. J. Med. Chem., 2018, 157, 1153-1163. doi: 10.1016/j.ejmech.2018.08.080 PMID: 30189397
  44. Rosenblum, D.; Joshi, N.; Tao, W.; Karp, J.M.; Peer, D. Progress and challenges towards targeted delivery of cancer therapeutics. Nat. Commun., 2018, 9(1), 1410. doi: 10.1038/s41467-018-03705-y PMID: 29650952
  45. Li, Y.; Zhang, H.; Merkher, Y.; Chen, L.; Liu, N.; Leonov, S.; Chen, Y. Recent advances in therapeutic strategies for triple-negative breast cancer. J. Hematol. Oncol., 2022, 15(1), 121. doi: 10.1186/s13045-022-01341-0 PMID: 36038913
  46. Place, A.E.; Jin Huh, S.; Polyak, K. The microenvironment in breast cancer progression: Biology and implications for treatment. Breast Cancer Res., 2011, 13(6), 227. doi: 10.1186/bcr2912 PMID: 22078026
  47. Moradi Kashkooli, F.; Jakhmola, A.; Hornsby, T.K.; Tavakkoli, J.J.; Kolios, M.C. Ultrasound-mediated nano drug delivery for treating cancer: Fundamental physics to future directions. J. Control. Release, 2023, 355, 552-578. doi: 10.1016/j.jconrel.2023.02.009 PMID: 36773959
  48. Sheikh, A.; Md, S.; Kesharwani, P. Aptamer grafted nanoparticle as targeted therapeutic tool for the treatment of breast cancer. Biomed. Pharmacother., 2022, 146, 112530. doi: 10.1016/j.biopha.2021.112530 PMID: 34915416
  49. Lee, J.; Chatterjee, D.K.; Lee, M.H.; Krishnan, S. Gold nanoparticles in breast cancer treatment: Promise and potential pitfalls. Cancer Lett., 2014, 347(1), 46-53. doi: 10.1016/j.canlet.2014.02.006 PMID: 24556077
  50. Deng, Z.J.; Morton, S.W.; Ben-Akiva, E.; Dreaden, E.C.; Shopsowitz, K.E.; Hammond, P.T. Layer-by-layer nanoparticles for systemic codelivery of an anticancer drug and siRNA for potential triple-negative breast cancer treatment. ACS Nano, 2013, 7(11), 9571-9584. doi: 10.1021/nn4047925 PMID: 24144228
  51. Grobmyer, S.R.; Zhou, G.; Gutwein, L.G.; Iwakuma, N.; Sharma, P.; Hochwald, S.N. Nanoparticle delivery for metastatic breast cancer. Nanomedicine, 2012, 8(Suppl. 1), S21-S30. doi: 10.1016/j.nano.2012.05.011 PMID: 22640908
  52. Mu, Q.; Wang, H.; Zhang, M. Nanoparticles for imaging and treatment of metastatic breast cancer. Expert opinion on drug delivery, 2017, 14(1), 123-136. doi: 10.1080/17425247.2016.1208650
  53. Luo, X.; Zhang, Q.; Chen, H.; Hou, K.; Zeng, N.; Wu, Y. Smart nanoparticles for breast cancer treatment based on the tumor microenvironment. Front. Oncol., 2022, 12, 907684. doi: 10.3389/fonc.2022.907684 PMID: 35720010
  54. Raj, S.; Khurana, S.; Choudhari, R.; Kesari, K.K.; Kamal, M.A.; Garg, N.; Ruokolainen, J.; Das, B.C.; Kumar, D. Specific targeting cancer cells with nanoparticles and drug delivery in cancer therapy. Semin. Cancer Biol., 2021, 69, 166-177. doi: 10.1016/j.semcancer.2019.11.002 PMID: 31715247
  55. Acharya, S.; Dilnawaz, F.; Sahoo, S.K. Targeted epidermal growth factor receptor nanoparticle bioconjugates for breast cancer therapy. Biomaterials, 2009, 30(29), 5737-5750. doi: 10.1016/j.biomaterials.2009.07.008 PMID: 19631377
  56. Alamdari, S.G.; Amini, M.; Jalilzadeh, N.; Baradaran, B.; Mohammadzadeh, R.; Mokhtarzadeh, A.; Oroojalian, F. Recent advances in nanoparticle-based photothermal therapy for breast cancer. J. Control. Release, 2022, 349, 269-303. doi: 10.1016/j.jconrel.2022.06.050 PMID: 35787915
  57. Nosrati, H.; Salehiabar, M.; Kheiri Manjili, H.; Davaran, S.; Danafar, H. Theranostic nanoparticles based on magnetic nanoparticles: Design, preparation, characterization, and evaluation as novel anticancer drug carrier and MRI contrast agent. Drug Dev. Ind. Pharm., 2018, 44(10), 1668-1678. doi: 10.1080/03639045.2018.1483398 PMID: 29848101
  58. Danafar, H.; Sharafi, A.; Kheiri, M. H.; Andalib, S. Sulforaphane delivery using mPEG–PCL co-polymer nanoparticles to breast cancer cells. Pharm. Dev. Technol., 2017, 22(5), 642-651. doi: 10.3109/10837450.2016.1146296 PMID: 26916923
  59. Jain, V.; Kumar, H.; Anod, H.V.; Chand, P.; Gupta, N.V.; Dey, S.; Kesharwani, S.S. A review of nanotechnology-based approaches for breast cancer and triple-negative breast cancer. J. Control. Release, 2020, 326, 628-647. doi: 10.1016/j.jconrel.2020.07.003 PMID: 32653502
  60. Vasan, N.; Baselga, J.; Hyman, D.M. A view on drug resistance in cancer. Nature, 2019, 575(7782), 299-309. doi: 10.1038/s41586-019-1730-1 PMID: 31723286
  61. Yap, K.M.; Sekar, M.; Fuloria, S.; Wu, Y.S.; Gan, S.H.; Mat Rani, N.N.I.; Subramaniyan, V.; Kokare, C.; Lum, P.T.; Begum, M.Y.; Mani, S.; Meenakshi, D.U.; Sathasivam, K.V.; Fuloria, N.K. Drug delivery of natural products through nanocarriers for effective breast cancer therapy: A comprehensive review of literature. Int. J. Nanomedicine, 2021, 16, 7891-7941. doi: 10.2147/IJN.S328135 PMID: 34880614
  62. Mirza, Z.; Karim, S. Nanoparticles-based drug delivery and gene therapy for breast cancer: Recent advancements and future challenges; Elsevier Ltd, 2021, pp. 226-237. doi: 10.1016/j.semcancer.2019.10.020
  63. Manoharan, S.; Pugalendhi, P. Breast cancer. An Overview, 2010, 10, 2423-2432.
  64. Akram, M.; Iqbal, M.; Daniyal, M.; Khan, A.U. Awareness and current knowledge of breast cancer. Biol. Res., 2017, 50(1), 33. doi: 10.1186/s40659-017-0140-9 PMID: 28969709
  65. Kaur, N.; Aditya, R.N.; Singh, A.; Kuo, T.R. Biomedical applications for gold nanoclusters: Recent developments and future perspectives. Nanoscale Res. Lett., 2018, 13(1), 302. doi: 10.1186/s11671-018-2725-9 PMID: 30259230
  66. Kaczmarczyk, O.; Andrzej, M. Żak. Comment on "Unveiling the antibacterial mechanism of gold nanoclusters via in situ transmission electron microscopy". ACS Sustainable Chem. Eng., 2022, 10(32), 10440-10441.
  67. Bahreyni, A.; Mohamud, Y.; Luo, H. Emerging nanomedicines for effective breast cancer immunotherapy. J. Nanobiotechnology, 2020, 18(1), 180. doi: 10.1186/s12951-020-00741-z PMID: 33298099
  68. Yougbaré, S.; Okoro, G.; Lin, I.; Nuh, M. Emerging trends in nanomaterials for antibacterial applications. Int. J. Nanomedicine, 2021, 16, 5831-5867. doi: 10.2147/IJN.S328767
  69. Nel, J.; Elkhoury, K.; Velot, É.; Bianchi, A.; Acherar, S.; Francius, G.; Tamayol, A.; Grandemange, S.; Arab-Tehrany, E. Functionalized liposomes for targeted breast cancer drug delivery. Bioact. Mater., 2023, 24, 401-437. doi: 10.1016/j.bioactmat.2022.12.027 PMID: 36632508
  70. Azamjah, N.; Soltan-Zadeh, Y.; Zayeri, F. Global trend of breast cancer mortality rate: A 25-year study. Asian Pac. J. Cancer Prev., 2019, 20(7), 2015-2020. doi: 10.31557/APJCP.2019.20.7.2015 PMID: 31350959
  71. Mutalik, C.; Wang, D.Y.; Krisnawati, D.I.; Jazidie, A.; Yougbare, S.; Kuo, T.R. Light-activated heterostructured nanomaterials for antibacterial applications. Nanomaterials, 2020, 10(4), 643. doi: 10.3390/nano10040643 PMID: 32235565
  72. Trevisi, E.; La Salvia, A.; Daniele, L.; Brizzi, M.P.; De Rosa, G.; Scagliotti, G.V.; Di Maio, M. Neuroendocrine breast carcinoma: A rare but challenging entity. Med. Oncol., 2020, 37(8), 70. doi: 10.1007/s12032-020-01396-4 PMID: 32712767
  73. Hernandez-Aya, L.F.; Gonzalez-Angulo, A.M. Adjuvant systemic therapies in breast cancer. Surg. Clin. North Am., 2013, 93(2), 473-491. doi: 10.1016/j.suc.2012.12.002 PMID: 23464697
  74. Alimirzaie, S.; Bagherzadeh, M.; Akbari, M.R. Liquid biopsy in breast cancer: A comprehensive review. Clin. Genet., 2019, 95(6), 643-660. doi: 10.1111/cge.13514 PMID: 30671931
  75. Haney, M.J.; Zhao, Y.; Jin, Y.S.; Li, S.M.; Bago, J.R.; Klyachko, N.L.; Kabanov, A.V.; Batrakova, E.V. Macrophage-derived extracellular vesicles as drug delivery systems for triple negative breast cancer (TNBC) therapy. J. Neuroimmune Pharmacol., 2020, 15(3), 487-500. doi: 10.1007/s11481-019-09884-9 PMID: 31722094
  76. Riis, M. Modern surgical treatment of breast cancer. Ann. Med. Surg., 2020, 56, 95-107. doi: 10.1016/j.amsu.2020.06.016 PMID: 32637082
  77. Thakur, V.; Kutty, R.V. Recent advances in nanotheranostics for triple negative breast cancer treatment. J. Exp. Clin. Cancer Res., 2019, 38(1), 430. doi: 10.1186/s13046-019-1443-1 PMID: 31661003
  78. Tong, C.W.S.; Wu, M.; Cho, W.C.S.; To, K.K.W. Recent advances in the treatment of breast cancer. Front. Oncol., 2018, 8, 227. doi: 10.3389/fonc.2018.00227 PMID: 29963498
  79. Nikolaou, M.; Pavlopoulou, A.; Georgakilas, A.G.; Kyrodimos, E. The challenge of drug resistance in cancer treatment: A current overview. Clin. Exp. Metastasis, 2018, 35(4), 309-318. doi: 10.1007/s10585-018-9903-0 PMID: 29799080
  80. Lukong, K.E. Understanding breast cancer – The long and winding road. BBA Clin., 2017, 7, 64-77. doi: 10.1016/j.bbacli.2017.01.001 PMID: 28194329
  81. Ma, D.; Wu, L.; Li, S.; Sun, Z.; Wang, K. Vasohibin2 promotes adriamycin resistance of breast cancer cells through regulating ABCG2 via AKT signaling pathway. Mol. Med. Rep., 2017, 16(6), 9729-9734. doi: 10.3892/mmr.2017.7792 PMID: 29039601
  82. Amir, H.; Subramanian, V.; Sornambikai, S.; Ponpandian, N.; Viswanathan, C. Nitrogen-enhanced carbon quantum dots mediated immunosensor for electrochemical detection of HER2 breast cancer biomarker. Bioelectrochemistry, 2023, 155, 108589. doi: 10.1016/j.bioelechem.2023.108589 PMID: 37918312
  83. Narod, S.A. BRCA mutations in the management of breast cancer: The state of the art. Nat. Rev. Clin. Oncol., 2010, 7(12), 702-707. doi: 10.1038/nrclinonc.2010.166 PMID: 20956982
  84. Adedayo, A.O. Breast cancer subtypes based on ER/PR and Her2 expression: Comparison of clinicopathologic features and survival. Clin. Med. Res., 2009, 7(1-2), 4-13. doi: 10.3121/cmr.2009.825
  85. Malorni, L.; Shetty, P.B.; De Angelis, C.; Hilsenbeck, S.; Rimawi, M.F.; Elledge, R.; Osborne, C.K.; De Placido, S.; Arpino, G. Clinical and biologic features of triple-negative breast cancers in a large cohort of patients with long-term follow-up. Breast Cancer Res. Treat., 2012, 136(3), 795-804. doi: 10.1007/s10549-012-2315-y PMID: 23124476
  86. García-Aranda, M.; Redondo, M. Immunotherapy: A challenge of breast cancer treatment. Cancers, 2019, 11(12), 1822. doi: 10.3390/cancers11121822 PMID: 31756919
  87. Bozorgi, A.; Khazaei, M.; Khazaei, M.R. New findings on breast cancer stem cells: A review. J. Breast Cancer, 2015, 18(4), 303-312. doi: 10.4048/jbc.2015.18.4.303 PMID: 26770236
  88. Goldhirsch, A.; Wood, W.C.; Coates, A.S.; Gelber, R.D.; Thu, B. Strategies for subtypes — dealing with the diversity of breast cancer : Highlights of the St Gallen International Expert Consensus on the Primary. Therapy of Early Breast Cancer, 2011, 2011, 1736-1747.
  89. Kinnel, B.; Singh, S.K.; Oprea-Ilies, G.; Singh, R. Targeted therapy and mechanisms of drug resistance in breast cancer. Cancers (Basel), 2023, 15(4), 1320. doi: 10.3390/cancers15041320 PMID: 36831661
  90. Dupont, W.D.; Parl, F.F.; Hartmann, W.H.; Brinton, L.A.; Winfield, A.C.; Worrell, J.A.; Schuyler, P.A.; Plummer, W.D. Breast cancer risk associated with proliferative breast disease and atypical hyperplasia. Cancer, 1993, 71(4), 1258-1265. doi: 10.1002/1097-0142(19930215)71:43.0.CO;2-I PMID: 8435803
  91. Nounou, M.I.; ElAmrawy, F.; Ahmed, N.; Abdelraouf, K.; Goda, S.; Syed-Sha-Qhattal, H. Breast cancer: Conventional diagnosis and treatment modalities and recent patents and technologies supplementary issue: Targeted therapies in breast cancer treatment. Breast Cancer, 2015, 9s2(Suppl. 2), BCBCR.S29420. doi: 10.4137/BCBCR.S29420 PMID: 26462242
  92. Schousboe, J.T.; Kerlikowske, K.; Loh, A.; Cummings, S.R. Personalizing mammography by breast density and other risk factors for breast cancer: Analysis of health benefits and cost-effectiveness. Ann. Intern. Med., 2011, 155(1), 10-20. doi: 10.7326/0003-4819-155-1-201107050-00003 PMID: 21727289
  93. Mansoori, B.; Mohammadi, A.; Davudian, S.; Shirjang, S.; Baradaran, B. The different mechanisms of cancer drug resistance: A brief review. Adv. Pharm. Bull., 2017, 7(3), 339-348. doi: 10.15171/apb.2017.041 PMID: 29071215
  94. Goutsouliak, K.; Veeraraghavan, J.; Sethunath, V.; De Angelis, C.; Osborne, C.K.; Rimawi, M.F.; Schiff, R. Towards personalized treatment for early stage HER2-positive breast cancer. Nat. Rev. Clin. Oncol., 2020, 17(4), 233-250. doi: 10.1038/s41571-019-0299-9 PMID: 31836877
  95. Barzaman, K.; Karami, J.; Zarei, Z.; Hosseinzadeh, A.; Kazemi, M.H.; Moradi-Kalbolandi, S.; Safari, E.; Farahmand, L. Breast cancer: Biology, biomarkers, and treatments. Int. Immunopharmacol., 2020, 84, 106535. doi: 10.1016/j.intimp.2020.106535 PMID: 32361569
  96. Yeldag, G.; Rice, A.; Del Río Hernández, A. Chemoresistance and the self-maintaining tumor microenvironment. Cancers, 2018, 10(12), 471. doi: 10.3390/cancers10120471 PMID: 30487436
  97. Ji, X.; Lu, Y.; Tian, H.; Meng, X.; Wei, M.; Cho, W.C. Chemoresistance mechanisms of breast cancer and their countermeasures. Biomed. Pharmacother., 2019, 114, 108800. doi: 10.1016/j.biopha.2019.108800 PMID: 30921705
  98. Sun, C.C.; Li, S.J.; Hu, W.; Zhang, J.; Zhou, Q.; Liu, C.; Li, L.L.; Songyang, Y.Y.; Zhang, F.; Chen, Z.L.; Li, G.; Bi, Z.Y.; Bi, Y.Y.; Gong, F.Y.; Bo, T.; Yuan, Z.P.; Hu, W.D.; Zhan, B.T.; Zhang, Q.; He, Q.Q.; Li, D.J. RETRACTED: Comprehensive analysis of the expression and prognosis for E2Fs in human breast cancer. Mol. Ther., 2019, 27(6), 1153-1165. doi: 10.1016/j.ymthe.2019.03.019 PMID: 31010740
  99. Gottesman, M.M. Mechanisms of cancer drug resistance. Annu. Rev. Med., 2002, 53(1), 615-627. doi: 10.1146/annurev.med.53.082901.103929 PMID: 11818492
  100. Sedlmayer, F.; Zehentmayr, F.; Fastner, G. Partial breast re-irradiation for local recurrence of breast carcinoma: Benefit and long term side effects. Breast, 2013, 22(Suppl. 2), S141-S146. doi: 10.1016/j.breast.2013.07.026 PMID: 24074775
  101. Hennequin, C.; Guillerm, S.; Quéro, L. The sentinel lymph node of breast cancer and the radiation oncologist. Cancer Radiother., 2018, 22(6-7), 473-477. doi: 10.1016/j.canrad.2018.06.012 PMID: 30139693
  102. Nedeljković, M.; Damjanović, A. Mechanisms of chemotherapy resistance in triple-negative breast cancer-how we can rise to the challenge. Cells, 2019, 8(9), 957. doi: 10.3390/cells8090957 PMID: 31443516
  103. Nogueras Pérez, R.; Heredia-Nicolás, N.; de Lara-Peña, L.; López de Andrés, J.; Marchal, J.A.; Jiménez, G.; Griñán-Lisón, C. Unraveling the potential of miRNAs from CSCs as an emerging clinical tool for breast cancer diagnosis and prognosis. Int. J. Mol. Sci., 2023, 24(21), 16010. doi: 10.3390/ijms242116010 PMID: 37958993
  104. Kirkby, M.; Popatia, A.M.; Lavoie, J.R.; Wang, L. The potential of hormonal therapies for treatment of triple-negative breast cancer. Cancers, 2023, 15(19), 4702. doi: 10.3390/cancers15194702 PMID: 37835396
  105. Shien, T.; Iwata, H. Adjuvant and neoadjuvant therapy for breast cancer. Jpn. J. Clin. Oncol., 2020, 50(3), 225-229. doi: 10.1093/jjco/hyz213 PMID: 32147701
  106. Zheng, H.C. The molecular mechanisms of chemoresistance in cancers. Oncotarget, 2017, 8(35), 59950-59964. doi: 10.18632/oncotarget.19048 PMID: 28938696
  107. Chen, S.; Wang, H.; Li, Z.; You, J.; Wu, Q.W.; Zhao, C.; Tzeng, C.M.; Zhang, Z.M. Interaction of WBP2 with ERα increases doxorubicin resistance of breast cancer cells by modulating MDR1 transcription. Br. J. Cancer, 2018, 119(2), 182-192. doi: 10.1038/s41416-018-0119-5 PMID: 29937544
  108. Hussain, T.; Ramakrishna, S.; Abid, S. Nanofibrous drug delivery systems for breast cancer: A review. Nanotechnology, 2022, 33(10), 102001. doi: 10.1088/1361-6528/ac385c PMID: 34757956
  109. dos Reis, L.R.; Luiz, M.T.; Sábio, R.M.; Marena, G.D.; Di Filippo, L.D.; Duarte, J.L.; Souza Fernandes, L.; Sousa Araújo, V.H.; Oliveira Silva, V.A.; Chorilli, M. Design of rapamycin and resveratrol coloaded liposomal formulation for breast cancer therapy. Nanomedicine, 2023, 18(10), 789-801. doi: 10.2217/nnm-2022-0227 PMID: 37199266
  110. Li, J.; Gong, C.; Chen, X.; Guo, H.; Tai, Z.; Ding, N.; Gao, S.; Gao, Y. Biomimetic liposomal nanozymes improve breast cancer chemotherapy with enhanced penetration and alleviated hypoxia. J. Nanobiotechnology, 2023, 21(1), 123. doi: 10.1186/s12951-023-01874-7 PMID: 37038165
  111. Yu, D.; Wang, H.; Liu, H.; Xu, R. Liposomal ATM siRNA delivery for enhancing triple-negaitive breast cancer immune checkpoint blockade therapy. J. Biomater. Appl., 2023, 37(10), 1835-1846. doi: 10.1177/08853282231162111 PMID: 37016537
  112. Dinakar, Y.H.; Karole, A.; Parvez, S.; Jain, V.; Mudavath, S.L. Folate receptor targeted NIR cleavable liposomal delivery system augment penetration and therapeutic efficacy in breast cancer. Biochim. Biophys. Acta, Gen. Subj., 2023, 1867(9), 130396. doi: 10.1016/j.bbagen.2023.130396 PMID: 37271407
  113. Maghsoudi, S.; Hosseini, S.A.; Soraya, H.; Roosta, Y.; Mohammadzadeh, A. Development of doxorubicin-encapsulated magnetic liposome@PEG for treatment of breast cancer in BALB/c mice. Drug Deliv. Transl. Res., 2023, 13(10), 2589-2603. doi: 10.1007/s13346-023-01339-2 PMID: 37133768
  114. Jensen, E.V.; Jacobson, H.I.; Walf, A.A.; Frye, C.A. Estrogen action: A historic perspective on the implications of considering alternative approaches. Physiol. Behav., 2010, 99(2), 151-162. doi: 10.1016/j.physbeh.2009.08.013 PMID: 19737574
  115. Robertson, J.F.R.; Llombart-Cussac, A.; Rolski, J.; Feltl, D.; Dewar, J.; Macpherson, E.; Lindemann, J.; Ellis, M.J. Activity of fulvestrant 500 mg versus anastrozole 1 mg as first-line treatment for advanced breast cancer: results from the FIRST study. J. Clin. Oncol., 2009, 27(27), 4530-4535. doi: 10.1200/JCO.2008.21.1136 PMID: 19704066
  116. Arciero, C.A.; Guo, Y.; Jiang, R.; Behera, M.; O’Regan, R.; Peng, L.; Li, X.E.R. +/HER2+ breast cancer has different metastatic patterns and better survival than ER−/HER2+ breast cancer. Clin. Breast Cancer, 2019, 19(4), 236-245. doi: 10.1016/j.clbc.2019.02.001 PMID: 30846407
  117. Blasco-Benito, S.; Seijo-Vila, M.; Caro-Villalobos, M.; Tundidor, I.; Andradas, C.; García-Taboada, E.; Wade, J.; Smith, S.; Guzmán, M.; Pérez-Gómez, E.; Gordon, M.; Sánchez, C. Appraising the "entourage effect": Antitumor action of a pure cannabinoid versus a botanical drug preparation in preclinical models of breast cancer. Biochem. Pharmacol., 2018, 157, 285-293. doi: 10.1016/j.bcp.2018.06.025 PMID: 29940172
  118. Page, E.; Assouline, D.; Brun, O.; Coeffic, D.; Fric, D.; Winckel, P.; Seidman, A.D.; Pierri, M.K.; Hudis, C. Cardiac dysfunction in clinical trials of trastuzumab. J. Clin. Oncol., 2002, 20(19), 4119-4120. doi: 10.1200/JCO.2002.99.124 PMID: 12351610
  119. Wilkinson, A.N. Demystifying breast cancer. Can. Fam. Physician, 2023, 69(7), 473-476. doi: 10.46747/cfp.6907473 PMID: 37451990
  120. Krauss, W.C.; Park, J.W.; Kirpotin, D.B.; Hong, K.; Benz, C.C. Emerging antibody-based HER2 (ErbB-2/neu) therapeutics. Breast Dis., 2000, 11(1), 113-124. doi: 10.3233/BD-1999-11110 PMID: 15687597
  121. Toomey, S.; Eustace, A.J.; Fay, J.; Sheehan, K.M.; Carr, A.; Milewska, M.; Madden, S.F.; Teiserskiene, A.; Kay, E.W.; O’Donovan, N.; Gallagher, W.; Grogan, L.; Breathnach, O.; Walshe, J.; Kelly, C.; Moulton, B.; Kennedy, M.J.; Gullo, G.; Hill, A.D.; Power, C.; Duke, D.; Hambly, N.; Crown, J.; Hennessy, B.T. Impact of somatic PI3K pathway and ERBB family mutations on pathological complete response (pCR) in HER2-positive breast cancer patients who received neoadjuvant HER2-targeted therapies. Breast Cancer Res., 2017, 19(1), 87. doi: 10.1186/s13058-017-0883-9 PMID: 28750640
  122. Dimopoulou, I.; Bamias, A.; Lyberopoulos, P.; Dimopoulos, M.A. Pulmonary toxicity from novel antineoplastic agents. Ann. Oncol., 2006, 17(3), 372-379. doi: 10.1093/annonc/mdj057 PMID: 16291774
  123. Dou, S.; Yao, Y.D.; Yang, X.Z.; Sun, T.M.; Mao, C.Q.; Song, E.W.; Wang, J. Anti-Her2 single-chain antibody mediated DNMTs-siRNA delivery for targeted breast cancer therapy. J. Control. Release, 2012, 161(3), 875-883. doi: 10.1016/j.jconrel.2012.05.015 PMID: 22762887
  124. Goel, S.; Chirgwin, J.; Francis, P.; Stuart-Harris, R.; Dewar, J.; Mileshkin, L.; Snyder, R.; Michael, M.; Koczwara, B. Rational use of trastuzumab in metastatic and locally advanced breast cancer: Implications of recent research. Breast, 2011, 20(2), 101-110. doi: 10.1016/j.breast.2010.11.008 PMID: 21183347
  125. Recupero, D.; Daniele, L.; Marchiò, C.; Molinaro, L.; Castellano, I.; Cassoni, P.; Righi, A.; Montemurro, F.; Sismondi, P.; Biglia, N.; Viale, G.; Risio, M.; Sapino, A. Spontaneous and pronase‐induced HER2 truncation increases the trastuzumab binding capacity of breast cancer tissues and cell lines. J. Pathol., 2013, 229(3), 390-399. doi: 10.1002/path.4074 PMID: 22806884
  126. Matini, A.; Naghib, S.M. The necessity of nanotechnology in Mycoplasma pneumonia detection: A comprehensive examination. Sens. Biosensing Res., 2024, 100631.
  127. Levitzki, A. Targeting the immune system to fight cancer using chemical receptor homing vectors carrying polyinosine/cytosine (PolyIC). Front. Oncol., 2012, 2, 4. doi: 10.3389/fonc.2012.00004 PMID: 22649773
  128. Parveen, N.; Abourehab, M.A.S.; Shukla, R.; Thanikachalam, P.V.; Jain, G.K.; Kesharwani, P. Immunoliposomes as an emerging nanocarrier for breast cancer therapy. Eur. Polym. J., 2023, 184, 111781. doi: 10.1016/j.eurpolymj.2022.111781
  129. Gharoonpour, A.; Simiyari, D.; Yousefzadeh, A.; Badragheh, F.; Rahmati, M. Autophagy modulation in breast cancer utilizing nanomaterials and nanoparticles. Front. Oncol., 2023, 13, 1150492. doi: 10.3389/fonc.2023.1150492 PMID: 37213283
  130. Vári, B.; Dókus, L.; Borbély, A.; Gaál, A.; Vári-Mező, D.; Ranđelović, I.; Sólyom-Tisza, A.; Varga, Z.; Szoboszlai, N.; Mező, G.; Tóvári, J. SREKA-targeted liposomes for highly metastatic breast cancer therapy. Drug Deliv., 2023, 30(1), 2174210. doi: 10.1080/10717544.2023.2174210 PMID: 36752075
  131. Lu, W.; Liu, W.; Hu, A.; Shen, J.; Yi, H.; Cheng, Z. Combinatorial polydopamine-liposome nanoformulation as an effective anti-breast cancer therapy. Int. J. Nanomedicine, 2023, 18, 861-879. doi: 10.2147/IJN.S382109 PMID: 36844433
  132. Zhang, W.; Yu, W.; Cai, G.; Zhu, J.; Zhang, C.; Li, S.; Guo, J.; Yin, G.; Chen, C.; Kong, L. Retracted article: A new synthetic derivative of cryptotanshinone KYZ3 as STAT3 inhibitor for triple-negative breast cancer therapy. Cell Death Dis., 2018, 9(11), 1098. doi: 10.1038/s41419-018-1139-z PMID: 30368518
  133. Pawar, A.; Prabhu, P. Nanosoldiers: A promising strategy to combat triple negative breast cancer. Biomed. Pharmacother., 2019, 110, 319-341. doi: 10.1016/j.biopha.2018.11.122 PMID: 30529766
  134. Shir, A.; Ogris, M.; Roedl, W.; Wagner, E.; Levitzki, A. EGFR-homing dsRNA activates cancer-targeted immune response and eliminates disseminated EGFR-overexpressing tumors in mice. Clin. Cancer Res., 2011, 17(5), 1033-1043. doi: 10.1158/1078-0432.CCR-10-1140 PMID: 21196415
  135. Castañeda, C.A.; Agullo-Ortuño, M.T.; Fresno Vara, J.A.; Cortes-Funes, H.; Gomez, H.L.; Ciruelos, E. Implication of miRNA in the diagnosis and treatment of breast cancer. Expert Rev. Anticancer Ther., 2011, 11(8), 1265-1275. doi: 10.1586/era.11.40 PMID: 21916580
  136. Madrigano, J. Genetic changes NIH Public Access. Occup. Environ. Med., 2008, 23, 1-7. doi: 10.1007/s10555-010-9204-9.microRNAs
  137. Weil, M.K.; Chen, A.P. PARP inhibitor treatment in ovarian and breast cancer. Curr. Probl. Cancer, 2011, 35(1), 7-50. doi: 10.1016/j.currproblcancer.2010.12.002 PMID: 21300207
  138. Khan, M.A.; Jain, V.K.; Rizwanullah, M.; Ahmad, J.; Jain, K. PI3K/AKT/mTOR pathway inhibitors in triple-negative breast cancer: A review on drug discovery and future challenges. Drug Discov. Today, 2019, 24(11), 2181-2191. doi: 10.1016/j.drudis.2019.09.001 PMID: 31520748
  139. Yao, X.; Xie, R.; Cao, Y.; Tang, J.; Men, Y.; Peng, H.; Yang, W. Simvastatin induced ferroptosis for triple-negative breast cancer therapy. J. Nanobiotechnology, 2021, 19(1), 311. doi: 10.1186/s12951-021-01058-1 PMID: 34627266
  140. Howe, E.N.; Cochrane, D.R.; Richer, J.K. The miR-200 and miR-221/222 microRNA families: Opposing effects on epithelial identity. J. Mammary Gland Biol. Neoplasia, 2012, 17(1), 65-77. doi: 10.1007/s10911-012-9244-6 PMID: 22350980
  141. Yang, Z.; Zhang, Q.; Yu, L.; Zhu, J.; Cao, Y.; Gao, X. The signaling pathways and targets of traditional Chinese medicine and natural medicine in triple-negative breast cancer. J. Ethnopharmacol., 2021, 264, 113249. doi: 10.1016/j.jep.2020.113249 PMID: 32810619
  142. Berrada, N.; Delaloge, S.; André, F. Treatment of triple-negative metastatic breast cancer: toward individualized targeted treatments or chemosensitization? Ann. Oncol., 2010, 21(Suppl. 7), vii30-vii35. doi: 10.1093/annonc/mdq279 PMID: 20943632
  143. Jin, S.; Ye, K. Targeted drug delivery for breast cancer treatment. Recent Patents Anticancer Drug Discov., 2013, 8(2), 143-153. doi: 10.2174/1574892811308020003 PMID: 23394116
  144. Bullard, R.S.; Gibson, W.; Bose, S.K.; Belgrave, J.K.; Eaddy, A.C.; Wright, C.J.; Hazen-Martin, D.J.; Lage, J.M.; Keane, T.E.; Ganz, T.A.; Donald, C.D. Functional analysis of the host defense peptide Human Beta Defensin-1: New insight into its potential role in cancer. Mol. Immunol., 2008, 45(3), 839-848. doi: 10.1016/j.molimm.2006.11.026 PMID: 17868871
  145. Jahangiri, R.; Mosaffa, F.; Gharib, M.; Emami Razavi, A.N.; Abdirad, A.; Jamialahmadi, K. PAX2 expression is correlated with better survival in tamoxifen-treated breast carcinoma patients. Tissue Cell, 2018, 52, 135-142. doi: 10.1016/j.tice.2018.05.005 PMID: 29857823
  146. Jahangiri, R.; Mosaffa, F.; Emami, R. A.; Teimoori-Toolabi, L.; Jamialahmadi, K. PAX2 promoter methylation and AIB1 overexpression promote tamoxifen resistance in breast carcinoma patients. J. Oncol. Pharm. Pract., 2022, 28(2), 310-325. doi: 10.1177/1078155221989404 PMID: 33509057
  147. Hurtado, A.; Holmes, K.A.; Geistlinger, T.R.; Hutcheson, I.R.; Nicholson, R.I.; Brown, M.; Jiang, J.; Howat, W.J.; Ali, S.; Carroll, J.S. Regulation of ERBB2 by oestrogen receptor–PAX2 determines response to tamoxifen. Nature, 2008, 456(7222), 663-666. doi: 10.1038/nature07483 PMID: 19005469
  148. Yang, S.; Gao, W.; Wang, H.; Zhang, X.; Mi, Y.; Ding, Y.; Geng, C.; Zhang, J.; Cheng, M.; Li, S. Role of PAX2 in breast cancer verified by bioinformatics analysis and in vitro validation. Ann. Transl. Med., 2023, 11(2), 58-58. doi: 10.21037/atm-22-6360 PMID: 36819548
  149. Shan, Y. The role of PAX2 in breast cancer: A study based on bioinformatics analysis and in vitro validation. Preprint, 2021, 1-19. doi: 10.21203/rs.3.rs-738037/v1
  150. Comen, E.A.; Robson, M. Poly(ADP-ribose) polymerase inhibitors in triple-negative breast cancer, Cancer. Principles & Practice of Oncology: Annual Advances in Oncology, 2012, 2, 672-677. PMID: 22263793
  151. Bischoff, H.; Bigot, C.; Moinard-Butot, F.; Pflumio, C.; Fischbach, C.; Kalish, M.; Kurtz, J.E.; Pierard, L.; Demarchi, M.; Karouby, D.; Coliat, P.; Pivot, X.; Petit, T.; Cox, D.G.; Goepp, L.; Bender, L.; Trensz, P. A propensity score–weighted study comparing a two- versus four-weekly pegylated liposomal doxorubicin regimen in metastatic breast cancer. Breast Cancer Res. Treat., 2023, 198(1), 23-29. doi: 10.1007/s10549-022-06844-5 PMID: 36562910
  152. Chavoshi, H.; Taheri, M.; Wan, M.L.Y.; Sabzichi, M. Crocin-loaded liposomes sensitize MDA-MB 231 breast cancer cells to doxorubicin by inducing apoptosis. Process Biochem., 2023, 130, 272-280. doi: 10.1016/j.procbio.2023.04.012
  153. Gu, H.; Shi, R.; Xu, C.; Lv, W.; Hu, X.; Xu, C.; Pan, Y.; He, X.; Wu, A.; Li, J. EGFR-targeted liposomes combined with ginsenoside Rh2 inhibit triple-negative breast cancer growth and metastasis. Bioconjug. Chem., 2023, 34(6), 1157-1165. doi: 10.1021/acs.bioconjchem.3c00207 PMID: 37235785
  154. Tsai, J.H.; Li, C.L.; Yeh, D.C.; Hung, C.S.; Hung, C.C.; Lin, C.Y.; Kuo, Y.L. Neoadjuvant pegylated liposomal doxorubicin- and epirubicin-based combination therapy regimens for early breast cancer: A multicenter retrospective case–control study. Breast Cancer Res. Treat., 2023, 199(1), 47-55. doi: 10.1007/s10549-023-06867-6 PMID: 36869992
  155. Hasanbegloo, K.; Banihashem, S.; Faraji Dizaji, B.; Bybordi, S.; Farrokh-Eslamlou, N.; Abadi, P.G.; Jazi, F.S.; Irani, M. Paclitaxel-loaded liposome-incorporated chitosan (core)/poly(ε-caprolactone)/chitosan (shell) nanofibers for the treatment of breast cancer. Int. J. Biol. Macromol., 2023, 230, 123380. doi: 10.1016/j.ijbiomac.2023.123380 PMID: 36706885
  156. Wang, J.; Min, J.; Eghtesadi, S.A.; Kane, R.S.; Chilkoti, A. Quantitative study of the interaction of multivalent ligand-modified nanoparticles with breast cancer cells with tunable receptor density. ACS Nano, 2020, 14(1), 372-383. doi: 10.1021/acsnano.9b05689 PMID: 31899613
  157. Juan, A.; Cimas, F.J.; Bravo, I.; Pandiella, A.; Ocaña, A.; Alonso-Moreno, C. An overview of antibody conjugated polymeric nanoparticles for breast cancer therapy. Pharmaceutics, 2020, 12(9), 802. doi: 10.3390/pharmaceutics12090802 PMID: 32854255
  158. Shakeran, Z.; Keyhanfar, M.; Varshosaz, J.; Sutherland, D.S. Biodegradable nanocarriers based on chitosan-modified mesoporous silica nanoparticles for delivery of methotrexate for application in breast cancer treatment. Mater. Sci. Eng. C, 2021, 118, 111526. doi: 10.1016/j.msec.2020.111526 PMID: 33255079
  159. Olov, N.; Bagheri-Khoulenjani, S.; Mirzadeh, H. Combinational drug delivery using nanocarriers for breast cancer treatments: A review. J. Biomed. Mater. Res. A, 2018, 106(8), 2272-2283. doi: 10.1002/jbm.a.36410 PMID: 29577607
  160. Fathi, K.S.; Mohammadhosseini, M.; Panahi, Y.; Milani, M.; Zarghami, N.; Akbarzadeh, A.; Abasi, E.; Hosseini, A.; Davaran, S. Magnetic nanoparticles in cancer diagnosis and treatment: A review. Artif. Cells Nanomed. Biotechnol., 2017, 45(1), 1-5. doi: 10.3109/21691401.2016.1153483 PMID: 27015806
  161. Kundu, M.; Sadhukhan, P.; Ghosh, N.; Chatterjee, S.; Manna, P.; Das, J.; Sil, P.C. pH-responsive and targeted delivery of curcumin via phenylboronic acid-functionalized ZnO nanoparticles for breast cancer therapy. J. Adv. Res., 2019, 18, 161-172. doi: 10.1016/j.jare.2019.02.036 PMID: 31032117
  162. Li, Y.; Liu, X.; Pan, W.; Li, N.; Tang, B. Photothermal therapy-induced immunogenic cell death based on natural melanin nanoparticles against breast cancer. Chem. Commun., 2020, 56(9), 1389-1392. doi: 10.1039/C9CC08447A PMID: 31912821
  163. Minafra, L.; Porcino, N.; Bravatà, V.; Gaglio, D.; Bonanomi, M.; Amore, E.; Cammarata, F.P.; Russo, G.; Militello, C.; Savoca, G.; Baglio, M.; Abbate, B.; Iacoviello, G.; Evangelista, G.; Gilardi, M.C.; Bondì, M.L.; Forte, G.I. Radiosensitizing effect of curcumin-loaded lipid nanoparticles in breast cancer cells. Sci. Rep., 2019, 9(1), 11134. doi: 10.1038/s41598-019-47553-2 PMID: 31366901
  164. Jin, K.T.; Lu, Z.B.; Chen, J.Y.; Liu, Y.Y.; Lan, H.R.; Dong, H.Y.; Yang, F.; Zhao, Y.Y.; Chen, X.Y. Recent trends in nanocarrier-based targeted chemotherapy: selective delivery of anticancer drugs for effective lung, colon, cervical, and breast cancer treatment. J. Nanomater., 2020, 2020, 1-14. doi: 10.1155/2020/9184284
  165. Fulton, M.D.; Najahi-Missaoui, W. Liposomes in cancer therapy: How did we start and where are we now. Int. J. Mol. Sci., 2023, 24(7), 6615. doi: 10.3390/ijms24076615 PMID: 37047585
  166. Kar, S.S.; Dhar, A.K.; Bhatt, S. Nanocarriers and their role in the treatment of breast cancer. In: Therapeutic Nanocarriers in Cancer Treatment: Challenges and Future Perspective; Bentham Science Publishers, 2023; pp. 163-210. doi: 10.2174/9789815080506123010009
  167. Gupta, P.; Neupane, Y.R.; Parvez, S.; Kohli, K.; Sultana, Y. Combinatorial chemosensitive nanomedicine approach for the treatment of breast cancer. Curr. Mol. Med., 2023, 23(9), 876-888. doi: 10.2174/1566524023666220819122948 PMID: 35986537
  168. Pandey, P.; Khan, F.; Maqsood, R.; Upadhyay, T.K. Current perspectives on nanoparticle-based targeted drug delivery approaches in breast cancer treatment. Endocr. Metab. Immune Disord. Drug Targets, 2023, 23(10), 1291-1302. doi: 10.2174/1871530323666230315145332 PMID: 36924095
  169. Patel, P.; Kumar, K.; Jain, V.K.; Popli, H.; Yadav, A.K.; Jain, K. Nanotheranostics for diagnosis and treatment of breast cancer. Curr. Pharm. Des., 2023, 29(10), 732-747. doi: 10.2174/1381612829666230329122911 PMID: 36999427
  170. Khan, M.S.; Gowda, B.H.J.; Nasir, N.; Wahab, S.; Pichika, M.R.; Sahebkar, A.; Kesharwani, P. Advancements in dextran-based nanocarriers for treatment and imaging of breast cancer. Int. J. Pharm., 2023, 643, 123276. doi: 10.1016/j.ijpharm.2023.123276 PMID: 37516217
  171. Juan, A.; Cimas, F.J.; Bravo, I.; Pandiella, A.; Ocaña, A.; Alonso-Moreno, C. Antibody conjugation of nanoparticles as therapeutics for breast cancer treatment. Int. J. Mol. Sci., 2020, 21(17), 6018. doi: 10.3390/ijms21176018 PMID: 32825618
  172. Marshall, S.K.; Angsantikul, P.; Pang, Z.; Nasongkla, N.; Hussen, R.S.D.; Thamphiwatana, S.D. Biomimetic targeted theranostic nanoparticles for breast cancer treatment. Molecules, 2022, 27(19), 6473. doi: 10.3390/molecules27196473 PMID: 36235009
  173. Dongsar, T.T.; Dongsar, T.S.; Abourehab, M.A.S.; Gupta, N.; Kesharwani, P. Emerging application of magnetic nanoparticles for breast cancer therapy. Eur. Polym. J., 2023, 187, 111898. doi: 10.1016/j.eurpolymj.2023.111898
  174. England, C.G.; Gobin, A.M.; Frieboes, H.B. Evaluation of uptake and distribution of gold nanoparticles in solid tumors. Eur. Phys. J. Plus, 2015, 130(11), 231. doi: 10.1140/epjp/i2015-15231-1 PMID: 27014559
  175. Montaseri, H.; Kruger, C.A.; Abrahamse, H. Inorganic nanoparticles applied for active targeted photodynamic therapy of breast cancer. Pharmaceutics, 2021, 13(3), 296. doi: 10.3390/pharmaceutics13030296 PMID: 33668307
  176. Hosseinkazemi, H.; Samani, S.; O’Neill, A.; Soezi, M.; Moghoofei, M.; Azhdari, M.H.; Aavani, F.; Nazbar, A.; Keshel, S.H.; Doroudian, M. Applications of iron oxide nanoparticles against breast cancer. J. Nanomater., 2022, 2022, 1-12. doi: 10.1155/2022/6493458
  177. Aghebati-Maleki, A.; Dolati, S.; Ahmadi, M.; Baghbanzhadeh, A.; Asadi, M.; Fotouhi, A.; Yousefi, M.; Aghebati-Maleki, L. Nanoparticles and cancer therapy: Perspectives for application of nanoparticles in the treatment of cancers. J. Cell. Physiol., 2020, 235(3), 1962-1972. doi: 10.1002/jcp.29126 PMID: 31441032
  178. Du, M.; Ouyang, Y.; Meng, F.; Ma, Q.; Liu, H.; Zhuang, Y.; Pang, M.; Cai, T.; Cai, Y. Nanotargeted agents: An emerging therapeutic strategy for breast cancer. Nanomedicine, 2019, 14(13), 1771-1786. doi: 10.2217/nnm-2018-0481 PMID: 31298065
  179. Grewal, I.K.; Singh, S.; Arora, S.; Sharma, N. Polymeric nanoparticles for breast cancer therapy: A comprehensive review. Biointerface Res. Appl. Chem., 2020, 11(4), 11151-11171. doi: 10.33263/BRIAC114.1115111171
  180. Tagde, P.; Kulkarni, G.T.; Mishra, D.K.; Kesharwani, P. Recent advances in folic acid engineered nanocarriers for treatment of breast cancer. J. Drug Deliv. Sci. Technol., 2020, 56, 101613. doi: 10.1016/j.jddst.2020.101613
  181. Bangham, A.D.; Standish, M.M.; Watkins, J.C. Diffusion of univalent ions across the lamellae of swollen phospholipids. J. Mol. Biol., 1965, 13(1), 238-IN27. doi: 10.1016/S0022-2836(65)80093-6 PMID: 5859039
  182. Jin, Y.; Tomeh, M.A.; Zhang, P.; Su, M.; Zhao, X.; Cai, Z. Microfluidic fabrication of photo-responsive Ansamitocin P-3 loaded liposomes for the treatment of breast cancer. Nanoscale, 2023, 15(8), 3780-3795. doi: 10.1039/D2NR06215A PMID: 36723377
  183. Liu, H.; Liu, Y.; Li, N.; Zhang, G-Q.; Wang, M. Ginsenoside Rg_3 based liposomes target delivery of dihydroartemisinin and paclitaxel for treatment of triple-negative breast cancer. Zhongguo Zhongyao Zazhi, 2023, 48(13), 3472-3484. doi: 10.19540/j.cnki.cjcmm.20230410.301 PMID: 37474984
  184. Pogorzelska, A.; Mazur, M.; Świtalska, M.; Wietrzyk, J.; Sigorski, D.; Fronczyk, K.; Wiktorska, K. Anticancer effect and safety of doxorubicin and nutraceutical sulforaphane liposomal formulation in triple-negative breast cancer (TNBC) animal model. Biomed. Pharmacother., 2023, 161, 114490. doi: 10.1016/j.biopha.2023.114490 PMID: 36931031
  185. Duarte, J.A.; Gomes, E.R.; De Barros, A.L.B.; Leite, E.A. Co-encapsulation of simvastatin and doxorubicin into pH-sensitive liposomes enhances antitumoral activity in breast cancer cell lines. Pharmaceutics, 2023, 15(2), 369. doi: 10.3390/pharmaceutics15020369 PMID: 36839690
  186. Moudgil, A.; Salve, R.; Gajbhiye, V.; Chaudhari, B.P. Challenges and emerging strategies for next generation liposomal based drug delivery: An account of the breast cancer conundrum. Chem. Phys. Lipids, 2023, 250, 105258. doi: 10.1016/j.chemphyslip.2022.105258 PMID: 36375540
  187. Cao, J.; Wang, R.; Gao, N.; Li, M.; Tian, X.; Yang, W.; Ruan, Y.; Zhou, C.; Wang, G.; Liu, X.; Tang, S.; Yu, Y.; Liu, Y.; Sun, G.; Peng, H.; Wang, Q. A7RC peptide modified paclitaxel liposomes dually target breast cancer. Biomater. Sci., 2015, 3(12), 1545-1554. doi: 10.1039/C5BM00161G PMID: 26291480
  188. Eloy, J.O.; Petrilli, R.; Topan, J.F.; Antonio, H.M.R.; Barcellos, J.P.A.; Chesca, D.L.; Serafini, L.N.; Tiezzi, D.G.; Lee, R.J.; Marchetti, J.M. Co-loaded paclitaxel/rapamycin liposomes: Development, characterization and in vitro and in vivo evaluation for breast cancer therapy. Colloids Surf. B Biointerfaces, 2016, 141, 74-82. doi: 10.1016/j.colsurfb.2016.01.032 PMID: 26836480
  189. Deshpande, P.P.; Biswas, S.; Torchilin, V.P. Current trends in the use of liposomes for tumor targeting. Nanomedicine, 2013, 8(9), 1509-1528. doi: 10.2217/nnm.13.118 PMID: 23914966
  190. Mitchell, M.J.; Billingsley, M.M.; Haley, R.M.; Wechsler, M.E.; Peppas, N.A.; Langer, R. Engineering precision nanoparticles for drug delivery. Nat. Rev. Drug Discov., 2021, 20(2), 101-124. doi: 10.1038/s41573-020-0090-8 PMID: 33277608
  191. de Oliveira Silva, J.; Fernandes, R.S.; Ramos Oda, C.M.; Ferreira, T.H.; Machado, B.A.F.; Martins, M.M.; de Miranda, M.C.; Assis, G.D.; Dantas, C.G.; Townsend, D.M.; Rubello, D.; Oliveira, M.C.; de Barros, A.L.B. Folate-coated, long-circulating and pH-sensitive liposomes enhance doxorubicin antitumor effect in a breast cancer animal model. Biomed. Pharmacother., 2019, 118, 109323. doi: 10.1016/j.biopha.2019.109323 PMID: 31400669
  192. Dunne, M.; Dou, Y.N.; Drake, D.M.; Spence, T.; Gontijo, S.M.L.; Wells, P.G.; Allen, C. Hyperthermia-mediated drug delivery induces biological effects at the tumor and molecular levels that improve cisplatin efficacy in triple negative breast cancer. J. Control. Release, 2018, 282, 35-45. doi: 10.1016/j.jconrel.2018.04.029 PMID: 29673642
  193. García-Pinel, B.; Porras-Alcalá, C.; Ortega-Rodríguez, A.; Sarabia, F.; Prados, J.; Melguizo, C.; López-Romero, J.M. Lipid-based nanoparticles: Application and recent advances in cancer treatment. Nanomaterials , 2019, 9(4), 638. doi: 10.3390/nano9040638 PMID: 31010180
  194. Lima, P.H.C.; Butera, A.P.; Cabeça, L.F.; Ribeiro-Viana, R.M. Liposome surface modification by phospholipid chemical reactions. Chem. Phys. Lipids, 2021, 237, 105084. doi: 10.1016/j.chemphyslip.2021.105084 PMID: 33891960
  195. Gomes, E.R.; Novais, M.V.M.; Silva, I.T.; Barros, A.L.B.; Leite, E.A.; Munkert, J.; Frade, A.C.M.; Cassali, G.D.; Braga, F.C.; Pádua, R.M.; Oliveira, M.C. Long-circulating and fusogenic liposomes loaded with a glucoevatromonoside derivative induce potent antitumor response. Biomed. Pharmacother., 2018, 108, 1152-1161. doi: 10.1016/j.biopha.2018.09.109 PMID: 30372816
  196. Strebhardt, K.; Ullrich, A. Paul Ehrlich’s magic bullet concept: 100 years of progress. Nat. Rev. Cancer, 2008, 8(6), 473-480. doi: 10.1038/nrc2394 PMID: 18469827
  197. Eloy, J.O.; Petrilli, R.; Brueggemeier, R.W.; Marchetti, J.M.; Lee, R.J. Rapamycin-loaded immunoliposomes functionalized with trastuzumab: A strategy to enhance cytotoxicity to HER2-positive breast cancer cells. Anticancer. Agents Med. Chem., 2017, 17(1), 48-56. doi: 10.2174/1871520616666160526103432 PMID: 27225450
  198. Sharma, G.; Anabousi, S.; Ehrhardt, C.; Ravi, K.M.N.V. Liposomes as targeted drug delivery systems in the treatment of breast cancer. J. Drug Target., 2006, 14(5), 301-310. doi: 10.1080/10611860600809112 PMID: 16882550
  199. Yi, H.; Lu, W.; Liu, F.; Zhang, G.; Xie, F.; Liu, W.; Wang, L.; Zhou, W.; Cheng, Z. ROS-responsive liposomes with NIR light-triggered doxorubicin release for combinatorial therapy of breast cancer. J. Nanobiotechnology, 2021, 19(1), 134. doi: 10.1186/s12951-021-00877-6 PMID: 33975609
  200. Riaz, M.; Riaz, M.; Zhang, X.; Lin, C.; Wong, K.; Chen, X.; Zhang, G.; Lu, A.; Yang, Z. Surface functionalization and targeting strategies of liposomes in solid tumor therapy: A review. Int. J. Mol. Sci., 2018, 19(1), 195. doi: 10.3390/ijms19010195 PMID: 29315231
  201. Torchilin, V. Tumor delivery of macromolecular drugs based on the EPR effect. Adv. Drug Deliv. Rev., 2011, 63(3), 131-135. doi: 10.1016/j.addr.2010.03.011 PMID: 20304019
  202. Tucci, S.T.; Kheirolomoom, A.; Ingham, E.S.; Mahakian, L.M.; Tam, S.M.; Foiret, J.; Hubbard, N.E.; Borowsky, A.D.; Baikoghli, M.; Cheng, R.H.; Ferrara, K.W. Tumor-specific delivery of gemcitabine with activatable liposomes. J. Control. Release, 2019, 309, 277-288. doi: 10.1016/j.jconrel.2019.07.014 PMID: 31301340
  203. Hirota, K.; Czogala, E.; Pedrycz, W. Experimental result of membership and vagueness in questionnaire., 1983, 116-120.
  204. Shi, J.F.; Sun, M.G.; Li, X.Y.; Zhao, Y.; Ju, R.J.; Mu, L.M.; Yan, Y.; Li, X.T.; Zeng, F.; Lu, W.L. A combination of targeted sunitinib liposomes and targeted vinorelbine liposomes for treating invasive breast cancer. J. Biomed. Nanotechnol., 2015, 11(9), 1568-1582. doi: 10.1166/jbn.2015.2075 PMID: 26485927
  205. Kang, X.; Zheng, Z.; Liu, Z.; Wang, H.; Zhao, Y.; Zhang, W.; Shi, M.; He, Y.; Cao, Y.; Xu, Q.; Peng, C.; Huang, Y. Liposomal codelivery of doxorubicin and andrographolide inhibits breast cancer growth and metastasis. Mol. Pharm., 2018, 15(4), 1618-1626. doi: 10.1021/acs.molpharmaceut.7b01164 PMID: 29498868
  206. Gu, W.; Meng, F.; Haag, R.; Zhong, Z. Actively targeted nanomedicines for precision cancer therapy: Concept, construction, challenges and clinical translation. J. Control. Release, 2021, 329, 676-695. doi: 10.1016/j.jconrel.2020.10.003 PMID: 33022328
  207. Kulma, M.; Anderluh, G. Beyond pore formation: Reorganization of the plasma membrane induced by pore-forming proteins. Cell. Mol. Life Sci., 2021, 78(17-18), 6229-6249. doi: 10.1007/s00018-021-03914-7 PMID: 34387717
  208. Chen, Y.; Cheng, Y.; Zhao, P.; Zhang, S.; Li, M.; He, C.; Zhang, X.; Yang, T.; Yan, R.; Ye, P.; Ma, X.; Xiang, G. Co-delivery of doxorubicin and imatinib by pH sensitive cleavable PEGylated nanoliposomes with folate-mediated targeting to overcome multidrug resistance. Int. J. Pharm., 2018, 542(1-2), 266-279. doi: 10.1016/j.ijpharm.2018.03.024 PMID: 29551747
  209. Fu, M.; Tang, W.; Liu, J.J.; Gong, X.Q.; Kong, L.; Yao, X.M.; Jing, M.; Cai, F.Y.; Li, X.T.; Ju, R.J. Combination of targeted daunorubicin liposomes and targeted emodin liposomes for treatment of invasive breast cancer. J. Drug Target., 2020, 28(3), 245-258. doi: 10.1080/1061186X.2019.1656725 PMID: 31462111
  210. Voinea, M.; Simionescu, M. Designing of ‘intelligent’ liposomes for efficient delivery of drugs. J. Cell. Mol. Med., 2002, 6(4), 465-474. doi: 10.1111/j.1582-4934.2002.tb00450.x PMID: 12611636
  211. Bawarski, W.E.; Chidlowsky, E.; Bharali, D.J.; Mousa, S.A. Emerging nanopharmaceuticals. Nanomedicine , 2008, 4(4), 273-282. doi: 10.1016/j.nano.2008.06.002 PMID: 18640076
  212. Marqués-Gallego, P.; de Kroon, A.I.P.M. Ligation strategies for targeting liposomal nanocarriers. BioMed Res. Int., 2014, 2014, 1-12. doi: 10.1155/2014/129458 PMID: 25126543
  213. Ross, C.; Taylor, M.; Fullwood, N.; Allsop, D. Liposome delivery systems for the treatment of Alzheimer’s disease. Int. J. Nanomedicine, 2018, 13, 8507-8522. doi: 10.2147/IJN.S183117 PMID: 30587974
  214. Antimisiaris, S.G.; Marazioti, A.; Kannavou, M.; Natsaridis, E.; Gkartziou, F.; Kogkos, G.; Mourtas, S. Overcoming barriers by local drug delivery with liposomes. Adv. Drug Deliv. Rev., 2021, 174, 53-86. doi: 10.1016/j.addr.2021.01.019 PMID: 33539852
  215. Basoglu, H.; Bilgin, M.D.; Demir, M.M. Protoporphyrin IX-loaded magnetoliposomes as a potential drug delivery system for photodynamic therapy: Fabrication, characterization and in vitro study. Photodiagn. Photodyn. Ther., 2016, 13, 81-90. doi: 10.1016/j.pdpdt.2015.12.010 PMID: 26751701
  216. Abumanhal-Masarweh, H.; Da Silva, D.; Poley, M.; Zinger, A.; Goldman, E.; Krinsky, N.; Kleiner, R.; Shenbach, G.; Schroeder, J.E.; Shklover, J.; Shainsky-Roitman, J.; Schroeder, A. Tailoring the lipid composition of nanoparticles modulates their cellular uptake and affects the viability of triple negative breast cancer cells. J. Control. Release, 2019, 307, 331-341. doi: 10.1016/j.jconrel.2019.06.025 PMID: 31238049
  217. Zahmatkeshan, M.; Gheybi, F.; Rezayat, S.M.; Jaafari, M.R. Improved drug delivery and therapeutic efficacy of PEgylated liposomal doxorubicin by targeting anti-HER2 peptide in murine breast tumor model. Eur. J. Pharm. Sci., 2016, 86, 125-135. doi: 10.1016/j.ejps.2016.03.009 PMID: 26972276
  218. Yazdan, M.; Naghib, S.M. Smart ultrasound-responsive polymers for drug delivery: An overview on advanced stimuli-sensitive materials and techniques. Curr. Drug Deliv., 2024. Epub ahead of Print doi: 10.2174/0115672018283792240115053302 PMID: 38288800
  219. Matini, A.; Naghib, S.M. Microwave-assisted natural gums for drug delivery systems: Recent progresses and advances over emerging biopolymers and technologies. Curr. Med. Chem., 2024. doi: 10.2174/0109298673283144231212055603 PMID: 38192130
  220. Nikolova, M.P.; Kumar, E.M.; Chavali, M.S. Updates on responsive drug delivery based on liposome vehicles for cancer treatment. Pharmaceutics, 2022, 14(10), 2195. doi: 10.3390/pharmaceutics14102195 PMID: 36297630
  221. Orthmann, A.; Peiker, L.; Fichtner, I.; Hoffmann, A.; Hilger, R.A.; Zeisig, R. Improved treatment of MT-3 breast cancer and brain metastases in a mouse xenograft by LRP-targeted oxaliplatin liposomes. J. Biomed. Nanotechnol., 2016, 12(1), 56-68. doi: 10.1166/jbn.2016.2143 PMID: 27301172
  222. Huang, Y.; Zhang, Q.; Feng, P.; Li, W.; Li, X.; Li, Y.; Zhang, D. Hyperthermia-sensitive liposomes containing brucea javanica oil for synergistic photothermal-/chemo-therapy in breast cancer treatment. Curr. Drug Deliv., 2023, 20(2), 192-200. doi: 10.2174/1567201819666220411115632 PMID: 35410599
  223. Poulios, E.; Koukounari, S.; Psara, E.; Vasios, G.K.; Sakarikou, C.; Giaginis, C. Anti-obesity properties of phytochemicals: Highlighting their molecular mechanisms against obesity. Curr. Med. Chem., 2024, 31(1), 25-61. doi: 10.2174/0929867330666230517124033 PMID: 37198988
  224. Shanehband, N.; Naghib, S.M. Microfluidics-assisted tumor cell separation approaches for clinical applications: An overview on emerging devices. Comb. Chem. High Throughput Screen., 2024, 27. doi: 10.2174/0113862073277130231110111933 PMID: 38275060
  225. Mohammad-Jafari, K.; Naghib, S.M. 3D printing of microfluidic-assisted liposomes production for drug delivery and nanobiomedicine: A review. Curr. Med. Chem., 2024. doi: 10.2174/0109298673285199231210170549 PMID: 38299296
  226. Vaidya, T.; Straubinger, R.M.; Ait-Oudhia, S. Development and evaluation of tri-functional immunoliposomes for the treatment of HER2 positive breast cancer. Pharm. Res., 2018, 35(5), 95. doi: 10.1007/s11095-018-2365-x PMID: 29536232
  227. Abu Lila, A.S.; Ishida, T. Liposomal delivery systems: Design optimization and current applications. Biol. Pharm. Bull., 2017, 40(1), 1-10. doi: 10.1248/bpb.b16-00624 PMID: 28049940
  228. Malam, Y.; Loizidou, M.; Seifalian, A.M. Liposomes and nanoparticles: Nanosized vehicles for drug delivery in cancer. Trends Pharmacol. Sci., 2009, 30(11), 592-599. doi: 10.1016/j.tips.2009.08.004 PMID: 19837467
  229. Almeida, B.; Nag, O.K.; Rogers, K.E.; Delehanty, J.B. Recent progress in bioconjugation strategies for liposome-mediated drug delivery. Molecules, 2020, 25(23), 5672. doi: 10.3390/molecules25235672 PMID: 33271886
  230. Li, X.; Ding, L.; Xu, Y.; Wang, Y.; Ping, Q. Targeted delivery of doxorubicin using stealth liposomes modified with transferrin. Int. J. Pharm., 2009, 373(1-2), 116-123. doi: 10.1016/j.ijpharm.2009.01.023 PMID: 19429296
  231. Huwyler, J.; Drewe, J.; Krähenbuhl, S. Tumor targeting using liposomal antineoplastic drugs. Int. J. Nanomedicine, 2008, 3(1), 21-29. doi: 10.2147/IJN.S1253 PMID: 18488413
  232. Wallrabenstein, T.; Daetwyler, E.; Oseledchyk, A.; Rochlitz, C.; Vetter, M. Pegylated liposomal doxorubicin (PLD) in daily practice—A single center experience of treatment with PLD in patients with comorbidities and older patients with metastatic breast cancer. Cancer Med., 2023, 12(12), 13388-13396. doi: 10.1002/cam4.6041 PMID: 37148541
  233. Vila-Caballer, M.; Codolo, G.; Munari, F.; Malfanti, A.; Fassan, M.; Rugge, M.; Balasso, A.; de Bernard, M.; Salmaso, S. A pH-sensitive stearoyl-PEG-poly(methacryloyl sulfadimethoxine)-decorated liposome system for protein delivery: An application for bladder cancer treatment. J. Control. Release, 2016, 238, 31-42. doi: 10.1016/j.jconrel.2016.07.024 PMID: 27444816
  234. Paliwal, S.R.; Paliwal, R.; Vyas, S.P. A review of mechanistic insight and application of pH-sensitive liposomes in drug delivery. Drug Deliv., 2015, 22(3), 231-242. doi: 10.3109/10717544.2014.882469 PMID: 24524308
  235. Swami, R.; Kumar, Y.; Chaudhari, D.; Katiyar, S.S.; Kuche, K.; Katare, P.B.; Banerjee, S.K.; Jain, S. pH sensitive liposomes assisted specific and improved breast cancer therapy using co-delivery of SIRT1 shRNA and Docetaxel. Mater. Sci. Eng. C, 2021, 120, 111664. doi: 10.1016/j.msec.2020.111664 PMID: 33545830
  236. Ferreira, D.S.; Lopes, S.C.A.; Franco, M.S.; Oliveira, M.C. pH-sensitive liposomes for drug delivery in cancer treatment. Ther. Deliv., 2013, 4(9), 1099-1123. doi: 10.4155/tde.13.80 PMID: 24024511
  237. Karanth, H.; Murthy, R.S.R. pH-Sensitive liposomes-principle and application in cancer therapy. J. Pharm. Pharmacol., 2010, 59(4), 469-483. doi: 10.1211/jpp.59.4.0001 PMID: 17430630
  238. Lee, Y.; Thompson, D.H. Stimuli‐responsive liposomes for drug delivery. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2017, 9(5), e1450. doi: 10.1002/wnan.1450 PMID: 28198148
  239. Medeiros, S.F.; Santos, A.M.; Fessi, H.; Elaissari, A. Stimuli-responsive magnetic particles for biomedical applications. Int. J. Pharm., 2011, 403(1-2), 139-161. doi: 10.1016/j.ijpharm.2010.10.011 PMID: 20951779
  240. Karve, S.; Bandekar, A.; Ali, M.R.; Sofou, S. The pH-dependent association with cancer cells of tunable functionalized lipid vesicles with encapsulated doxorubicin for high cell-kill selectivity. Biomaterials, 2010, 31(15), 4409-4416. doi: 10.1016/j.biomaterials.2010.01.064 PMID: 20189243
  241. Vaishnavi, D.C.; Shubhangi, R.M. Liposomal drug delivery system: An overview. IRJMETS, 2023, 5(3), 4412-4424.
  242. Zhang, W.; Ngo, L.; Tsao, S.C.H.; Liu, D.; Wang, Y. Engineered cancer-derived small extracellular vesicle-liposome hybrid delivery system for targeted treatment of breast cancer. ACS Appl. Mater. Interfaces, 2023, 15(13), 16420-16433. doi: 10.1021/acsami.2c22749 PMID: 36961985
  243. Song, Y.; Sheng, Z.; Xu, Y.; Dong, L.; Xu, W.; Li, F.; Wang, J.; Wu, Z.; Yang, Y.; Su, Y.; Sun, X.; Ling, D.; Lu, Y. Magnetic liposomal emodin composite with enhanced killing efficiency against breast cancer. Biomater. Sci., 2019, 7(3), 867-875. doi: 10.1039/C8BM01530A PMID: 30648710
  244. García, M.C.; Naitlho, N.; Calderón-Montaño, J.M.; Drago, E.; Rueda, M.; Longhi, M.; Rabasco, A.M.; López-Lázaro, M.; Prieto-Dapena, F.; González-Rodríguez, M.L. Cholesterol levels affect the performance of aunps-decorated thermo-sensitive liposomes as nanocarriers for controlled doxorubicin delivery. Pharmaceutics, 2021, 13(7), 973. doi: 10.3390/pharmaceutics13070973 PMID: 34199018
  245. Shen, S.; Huang, D.; Cao, J.; Chen, Y.; Zhang, X.; Guo, S.; Ma, W.; Qi, X.; Ge, Y.; Wu, L. Magnetic liposomes for light-sensitive drug delivery and combined photothermal–chemotherapy of tumors. J. Mater. Chem. B Mater. Biol. Med., 2019, 7(7), 1096-1106. doi: 10.1039/C8TB02684J PMID: 32254777
  246. Dorjsuren, B.; Chaurasiya, B.; Ye, Z.; Liu, Y.; Li, W.; Wang, C.; Shi, D.; Evans, C.E.; Webster, T.J.; Shen, Y. Cetuximab-coated thermo-sensitive liposomes loaded with magnetic nanoparticles and doxorubicin for targeted EGFR-expressing breast cancer combined therapy. Int. J. Nanomedicine, 2020, 15, 8201-8215. doi: 10.2147/IJN.S261671 PMID: 33122906
  247. Enzian, P.; Schell, C.; Link, A.; Malich, C.; Pries, R.; Wollenberg, B.; Rahmanzadeh, R. Optically controlled drug release from light-sensitive liposomes with the new photosensitizer 5,10-DiOH. Mol. Pharm., 2020, 17(8), 2779-2788. doi: 10.1021/acs.molpharmaceut.9b01173 PMID: 32543848
  248. Sofou, S.; Sgouros, G. Antibody-targeted liposomes in cancer therapy and imaging. Expert Opin. Drug Deliv., 2008, 5(2), 189-204. doi: 10.1517/17425247.5.2.189 PMID: 18248318
  249. Drummond, D.C.; Noble, C.O.; Guo, Z.; Hayes, M.E.; Connolly-Ingram, C.; Gabriel, B.S.; Hann, B.; Liu, B.; Park, J.W.; Hong, K.; Benz, C.C.; Marks, J.D.; Kirpotin, D.B. Development of a highly stable and targetable nanoliposomal formulation of topotecan. J. Control. Release, 2010, 141(1), 13-21. doi: 10.1016/j.jconrel.2009.08.006 PMID: 19686789
  250. Shah, S.A.; Aslam Khan, M.U.; Arshad, M.; Awan, S.U.; Hashmi, M.U.; Ahmad, N. Doxorubicin-loaded photosensitive magnetic liposomes for multi-modal cancer therapy. Colloids Surf. B Biointerfaces, 2016, 148, 157-164. doi: 10.1016/j.colsurfb.2016.08.055 PMID: 27595890
  251. Lin, C.; Zhang, X.; Chen, H.; Bian, Z.; Zhang, G.; Riaz, M.K.; Tyagi, D.; Lin, G.; Zhang, Y.; Wang, J.; Lu, A.; Yang, Z. Dual-ligand modified liposomes provide effective local targeted delivery of lung-cancer drug by antibody and tumor lineage-homing cell-penetrating peptide. Drug Deliv., 2018, 25(1), 256-266. doi: 10.1080/10717544.2018.1425777 PMID: 29334814
  252. Wang, J.; Liu, J.; Liu, Y.; Wang, L.; Cao, M.; Ji, Y.; Wu, X.; Xu, Y.; Bai, B.; Miao, Q.; Chen, C.; Zhao, Y. Gd‐hybridized plasmonic Au‐nanocomposites enhanced tumor‐interior drug permeability in multimodal imaging‐guided therapy. Adv. Mater., 2016, 28(40), 8950-8958. doi: 10.1002/adma.201603114 PMID: 27562240
  253. Galović Rengel, R.; Barišić, K.; Pavelić, Ž.; Žanić Grubišić, T.; Čepelak, I.; Filipović-Grčić, J. High efficiency entrapment of superoxide dismutase into mucoadhesive chitosan-coated liposomes. Eur. J. Pharm. Sci., 2002, 15(5), 441-448. doi: 10.1016/S0928-0987(02)00030-1 PMID: 12036721
  254. Jackson, M.B.; Sturtevant, J.M. Phase transitions of the purple membranes of Halobacterium halobium. Biochemistry, 1978, 17(5), 911-915. doi: 10.1021/bi00598a026 PMID: 629940
  255. Smith, B.; Lyakhov, I.; Loomis, K.; Needle, D.; Baxa, U.; Yavlovich, A.; Capala, J.; Blumenthal, R.; Puri, A. Hyperthermia-triggered intracellular delivery of anticancer agent to HER2+ cells by HER2-specific affibody (ZHER2-GS-Cys)-conjugated thermosensitive liposomes (HER2+ affisomes). J. Control. Release, 2011, 153(2), 187-194. doi: 10.1016/j.jconrel.2011.04.005 PMID: 21501640
  256. Franco, M.S.; Roque, M.C.; de Barros, A.L.B.; de Oliveira Silva, J.; Cassali, G.D.; Oliveira, M.C. Investigation of the antitumor activity and toxicity of long-circulating and fusogenic liposomes co-encapsulating paclitaxel and doxorubicin in a murine breast cancer animal model. Biomed. Pharmacother., 2019, 109, 1728-1739. doi: 10.1016/j.biopha.2018.11.011 PMID: 30551427
  257. Potluri, P.; Betageri, G.V. Mixed-micellar proliposomal systems for enhanced oral delivery of progesterone. Drug Deliv., 2006, 13(3), 227-232. doi: 10.1080/10717540500395007 PMID: 16556576
  258. Nguyen, V.D.; Zheng, S.; Han, J.; Le, V.H.; Park, J.O.; Park, S. Nanohybrid magnetic liposome functionalized with hyaluronic acid for enhanced cellular uptake and near-infrared-triggered drug release. Colloids Surf. B Biointerfaces, 2017, 154, 104-114. doi: 10.1016/j.colsurfb.2017.03.008 PMID: 28329728
  259. Yan, F.; Duan, W.; Li, Y.; Wu, H.; Zhou, Y.; Pan, M.; Liu, H.; Liu, X.; Zheng, H. NIR-laser-controlled drug release from DOX/IR-780-loaded temperature-sensitive-liposomes for chemo-photothermal synergistic tumor therapy. Theranostics, 2016, 6(13), 2337-2351. doi: 10.7150/thno.14937 PMID: 27877239
  260. Meerovich, G.A.; Akhlyustina, E.V.; Tiganova, I.G.; Lukyanets, E.A.; Makarova, E.A.; Tolordava, E.R.; Yuzhakova, O.A.; Romanishkin, I.D.; Philipova, N.I.; Zhizhimova, Y.S.; Romanova, Y.M.; Loschenov, V.B.; Gintsburg, A.L. Novel polycationic photosensitizers for antibacterial photodynamic therapy. Adv. Exp. Med. Biol., 2019, 1282, 1-19. doi: 10.1007/5584_2019_431 PMID: 31446610
  261. Wong, M.Y.; Chiu, G.N.C. Simultaneous liposomal delivery of quercetin and vincristine for enhanced estrogen-receptor-negative breast cancer treatment. Anticancer Drugs, 2010, 21(4), 401-410. doi: 10.1097/CAD.0b013e328336e940 PMID: 20110806
  262. Van Ballegooie, C.; Man, A.; Win, M.; Yapp, D.T. Spatially specific liposomal cancer therapy triggered by clinical external sources of energy. Pharmaceutics, 2019, 11(3), 125. doi: 10.3390/pharmaceutics11030125
  263. Kono, K. Thermosensitive polymer-modified liposomes. Adv. Drug Deliv. Rev., 2001, 53(3), 307-319. doi: 10.1016/S0169-409X(01)00204-6 PMID: 11744174
  264. Dabbagh, A.; Abdullah, B.J.J.; Abdullah, H.; Hamdi, M.; Kasim, N.H.A. Triggering mechanisms of thermosensitive nanoparticles under hyperthermia condition. J. Pharm. Sci., 2015, 104(8), 2414-2428. doi: 10.1002/jps.24536 PMID: 26073304
  265. Dou, Y.N.; Chaudary, N.; Chang, M.C.; Dunne, M.; Huang, H.; Jaffray, D.A.; Milosevic, M.; Allen, C. Tumor microenvironment determines response to a heat-activated thermosensitive liposome formulation of cisplatin in cervical carcinoma. J. Control. Release, 2017, 262, 182-191. doi: 10.1016/j.jconrel.2017.07.039 PMID: 28760449

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers