A Number of the N-terminal RASSF Family: RASSF7


Cite item

Full Text

Abstract

The Ras association domain family 7 (RASSF7, also named HRC1), a potential tumor-related gene, located on human chromosome 11p15, has been identified as an important member of the N-terminal RASSF family. Whereas, the molecular biological mechanisms of RASSF7 in tumorigenesis remain to be further established. We perform a systematic review of the literature and assessment from PUBMED and MEDLINE databases in this article. RASSF7 plays a significant role in mitosis, microtubule growth, apoptosis, proliferation and differentiation. Many research literature shows that the RASSF7 could promote the occurrence and advance of human tumors by regulating Aurora B, MKK4, MKK7, JNK, YAP, MEK, and ERK, whereas, it might inhibit c-Myc and thus lead to the suppression of tumorigenesis. The pregulation of RASSF7 often occurs in various malignancies such as lung cancer, neuroblastoma, thyroid neoplasm, hepatocellular cancer, breast cancer and gastric cancer. The expression stage of RASSF7 is positively correlated with the tumor TNM stage. In this review, we primarily elaborate on the acknowledged structure and progress in the various biomechanisms and research advances of RASSF7, especially the potential relevant signaling pathways. We hope that RASSF7 , a prospective therapeutic target for human malignancies, could play an available role in future anti-cancer treatment.

About the authors

Yang Xu

Department of Urology, Affiliated Hospital of Xuzhou Medical University

Email: info@benthamscience.net

Wei Du

Department of Urology,, Wanbei Coal-electricity Group General Hospital

Email: info@benthamscience.net

Yongshuang Xiao

Department of Urology,, Affiliated Hospital of Xuzhou Medical University

Email: info@benthamscience.net

Keyu Gao

Department of Urology, Affiliated Hospital of Xuzhou Medical University

Email: info@benthamscience.net

Jie Li

Department of Urology, Affiliated Hospital of Xuzhou Medical University

Email: info@benthamscience.net

Shuofeng Li

Department of Urology, Affiliated Hospital of Xuzhou Medical University

Author for correspondence.
Email: info@benthamscience.net

References

  1. Johnson, S.M.; Grosshans, H.; Shingara, J.; Byrom, M.; Jarvis, R.; Cheng, A.; Labourier, E.; Reinert, K.L.; Brown, D.; Slack, F.J. RAS is regulated by the let-7 microRNA family. Cell, 2005, 120(5), 635-647. doi: 10.1016/j.cell.2005.01.014 PMID: 15766527
  2. Bos, J.L. Ras oncogenes in human cancer: a review. Cancer Res., 1989, 49(17), 4682-4689. PMID: 2547513
  3. Campbell, S.L.; Khosravi-Far, R.; Rossman, K.L.; Clark, G.J.; Der, C.J. Increasing complexity of Ras signaling. Oncogene, 1998, 17(11), 1395-1413. doi: 10.1038/sj.onc.1202174 PMID: 9779987
  4. Selby, P.B.; Lee, S.S.; Kelley, E.M.; Bangham, J.W.; Raymer, G.D.; Hunsicker, P.R. Specific-locus experiments show that female mice exposed near the time of birth to low-LET ionizing radiation exhibit both a low mutational response and a dose-rate effect. Mutat. Res., 1991, 249(2), 351-367. doi: 10.1016/0027-5107(91)90010-L PMID: 2072978
  5. Chen, Y.; Takita, J.; Hiwatari, M.; Igarashi, T.; Hanada, R.; Kikuchi, A.; Hongo, T.; Taki, T.; Ogasawara, M.; Shimada, A.; Hayashi, Y. Mutations of the PTPN11 and RAS genes in rhabdomyosarcoma and pediatric hematological malignancies. Genes Chrom. Can., 2006, 45(6), 583-591. doi: 10.1002/gcc.20322 PMID: 16518851
  6. Agathanggelou, A.; Cooper, W.N.; Latif, F. Role of the Ras-association domain family 1 tumor suppressor gene in human cancers. Cancer Res., 2005, 65(9), 3497-3508. doi: 10.1158/0008-5472.CAN-04-4088 PMID: 15867337
  7. Avruch, J.; Xavier, R.; Bardeesy, N.; Zhang, X.; Praskova, M.; Zhou, D.; Xia, F. Rassf family of tumor suppressor polypeptides. J. Biol. Chem., 2009, 284(17), 11001-11005. doi: 10.1074/jbc.R800073200 PMID: 19091744
  8. Ponting, C.P.; Benjamin, D.R. A novel family ofras-binding domains. Trends Biochem. Sci., 1996, 21(11), 422-425. doi: 10.1016/S0968-0004(96)30038-8 PMID: 8987396
  9. Osborne, C.; Wilson, P.; Tripathy, D. Oncogenes and tumor suppressor genes in breast cancer: potential diagnostic and therapeutic applications. Oncologist, 2004, 9(4), 361-377. doi: 10.1634/theoncologist.9-4-361 PMID: 15266090
  10. Jones, P.A. The DNA methylation paradox. Trends Genet., 1999, 15(1), 34-37. doi: 10.1016/S0168-9525(98)01636-9 PMID: 10087932
  11. Knudson, A.G., Jr Mutation and cancer: statistical study of retinoblastoma. Proc. Natl. Acad. Sci. USA, 1971, 68(4), 820-823. doi: 10.1073/pnas.68.4.820 PMID: 5279523
  12. Hou, Y.; Li, S.; Du, W.; Li, H.; Wen, R. The tumor suppressor role of the ras association domain family 10. Anticancer. Agents Med. Chem., 2020, 20(18), 2207-2215. doi: 10.2174/1871520620666200714141906 PMID: 32664845
  13. Li, S.; Teng, J.; Li, H.; Chen, F.; Zheng, J. The emerging roles of RASSF5 in human malignancy. Anticancer. Agents Med. Chem., 2018, 18(3), 314-322. doi: 10.2174/1871520617666170327120747 PMID: 28356010
  14. Sarkar, A.; Iwasa, H.; Hossain, S.; Xu, X.; Sawada, T.; Shimizu, T.; Maruyama, J.; Arimoto-Matsuzaki, K.; Hata, Y. Domain analysis of Ras-association domain family member 6 upon interaction with MDM2. FEBS Lett., 2017, 591(2), 260-272. doi: 10.1002/1873-3468.12551 PMID: 28054709
  15. Iwasa, H.; Kuroyanagi, H.; Maimaiti, S.; Ikeda, M.; Nakagawa, K.; Hata, Y. Characterization of RSF-1, the Caenorhabditis elegans homolog of the Ras-association domain family protein 1. Exp. Cell Res., 2013, 319(3), 1-11. doi: 10.1016/j.yexcr.2012.10.008 PMID: 23103556
  16. Hwang, E.; Cheong, H.K.; Mushtaq, A.U.; Kim, H.Y.; Yeo, K.J.; Kim, E.; Lee, W.C.; Hwang, K.Y.; Cheong, C.; Jeon, Y.H. Structural basis of the heterodimerization of the MST and RASSF SARAH domains in the Hippo signalling pathway. Acta Crystallogr. D Biol. Crystallogr., 2014, 70(7), 1944-1953. doi: 10.1107/S139900471400947X PMID: 25004971
  17. Cheong.; Chaejoon.; Jeon.; Young, Ho.; Hae-Kap. Acta Crystallogr. D Biol. Crystallogr., 2014, 70(7), 1944-1953.
  18. Hwang, E. Backbone assignment of the SARAH domain from Mst2 kinase. J. Anal. Sci. Technol., 2010, 1(1), 15-18. doi: 10.5355/JAST.2010.15
  19. Saucedo, L.J.; Edgar, B.A. Filling out the Hippo pathway. Nat. Rev. Mol. Cell Biol., 2007, 8(8), 613-621. doi: 10.1038/nrm2221 PMID: 17622252
  20. Praskova, M.; Khoklatchev, A.; Ortiz-Vega, S.; Avruch, J. Regulation of the MST1 kinase by autophosphorylation, by the growth inhibitory proteins, RASSF1 and NORE1, and by Ras. Biochem. J., 2004, 381(2), 453-462. doi: 10.1042/BJ20040025 PMID: 15109305
  21. Romano, D.; Matallanas, D.; Weitsman, G.; Preisinger, C.; Ng, T.; Kolch, W. Proapoptotic kinase MST2 coordinates signaling crosstalk between RASSF1A, Raf-1, and Akt. Cancer Res., 2010, 70(3), 1195-1203. doi: 10.1158/0008-5472.CAN-09-3147 PMID: 20086174
  22. Oh, H.J.; Lee, K.K.; Song, S.J.; Jin, M.S.; Song, M.S.; Lee, J.H.; Im, C.R.; Lee, J.O.; Yonehara, S.; Lim, D.S. Role of the tumor suppressor RASSF1A in Mst1-mediated apoptosis. Cancer Res., 2006, 66(5), 2562-2569. doi: 10.1158/0008-5472.CAN-05-2951 PMID: 16510573
  23. Iwasa, H.; Hossain, S.; Hata, Y. Tumor suppressor C-RASSF proteins. Cell. Mol. Life Sci., 2018, 75(10), 1773-1787. doi: 10.1007/s00018-018-2756-5 PMID: 29353317
  24. Lock, F.E.; Underhill-Day, N.; Dunwell, T.; Matallanas, D.; Cooper, W.; Hesson, L.; Recino, A.; Ward, A.; Pavlova, T.; Zabarovsky, E.; Grant, M.M.; Maher, E.R.; Chalmers, A.D.; Kolch, W.; Latif, F. The RASSF8 candidate tumor suppressor inhibits cell growth and regulates the Wnt and NF-κB signaling pathways. Oncogene, 2010, 29(30), 4307-4316. doi: 10.1038/onc.2010.192 PMID: 20514026
  25. Gulsen, T.; Hadjicosti, I.; Li, Y.; Zhang, X.; Whitley, P.R.; Chalmers, A.D. Truncated RASSF7 promotes centrosomal defects and cell death. Dev. Biol., 2016, 409(2), 502-517. doi: 10.1016/j.ydbio.2015.11.001 PMID: 26569555
  26. Kumaraswamy, A.; Mamidi, A.; Desai, P.; Sivagnanam, A.; Perumalsamy, L.R.; Ramakrishnan, C.; Gromiha, M.; Rajalingam, K.; Mahalingam, S. The non-enzymatic RAS effector RASSF7 inhibits oncogenic c-Myc function. J. Biol. Chem., 2018, 293(40), 15691-15705. doi: 10.1074/jbc.RA118.004452 PMID: 30139745
  27. Miller, V.A. Optimizing therapy in previously treated non-small cell lung cancer. Semin. Oncol., 2006, 33(1)(Suppl. 1), 25-31. doi: 10.1053/j.seminoncol.2005.12.005 PMID: 16472706
  28. Schoen, P.; Leserman, L.; Wilschut, J. Fusion of reconstituted influenza virus envelopes with liposomes mediated by streptavidin/biotin interactions. FEBS Lett., 1996, 390(3), 315-318. doi: 10.1016/0014-5793(96)00682-5 PMID: 8706885
  29. Xin, S.; Li, X.; Zhao, G.; Wang, Y.; Zhang, J.; Duan, Z. RASSF7 and RASSF8 proteins are predictive factors for development and metastasis in malignant thyroid neoplasms. J. Cancer Res. Ther., 2013, 9(7), 173. doi: 10.4103/0973-1482.122519
  30. Weitzel, J.N.; Patel, J. A single P1 clone bearing three genes from human chromosome 11p15.5: HRC1, HRAS1, and RNH. Genet. Anal. Tech. Appl., 1994, 11(5-6), 165-170. doi: 10.1016/1050-3862(94)90037-X PMID: 7710782
  31. Schwab, M. Encyclopedia of Cancer; Springer Berlin Heidelberg: Berlin, Heidelberg, 2017, p. 2129.
  32. Krontiris, T.G.; Devlin, B.; Karp, D.D.; Robert, N.J.; Risch, N. An association between the risk of cancer and mutations in the HRAS1 minisatellite locus. N. Engl. J. Med., 1993, 329(8), 517-523. doi: 10.1056/NEJM199308193290801 PMID: 8336750
  33. Phelan, C.M.; Rebbeck, T.R.; Weber, B.L.; Devilee, P.; Ruttledge, M.H.; Lynch, H.T.; Lenoir, G.M.; Stratton, M.R.; Easton, D.F.; Ponder, B.A.J.; Cannon-Albright, L.; Larsson, C.; Goldgar, D.E.; Narod, S.A. Ovarian cancer risk in BRCA1 carriers is modified by the HRAS1 variable number of tandem repeat (VNTR) locus. Nat. Genet., 1996, 12(3), 309-311. doi: 10.1038/ng0396-309 PMID: 8589723
  34. Vega, A.; Sobrido, M.J.; Ruiz-Ponte, C.; Barros, F.; Carracedo, A. RareHRAS1 alleles are a risk factor for the development of brain tumors. Cancer, 2001, 92(11), 2920-2926. doi: 10.1002/1097-0142(20011201)92:113.0.CO;2-S PMID: 11753967
  35. Porteous, D.J.; Bickmore, W.; Christie, S.; Boyd, P.A.; Cranston, G.; Fletcher, J.M.; Gosden, J.R.; Rout, D.; Seawright, A.; Simola, K.O. HRAS1-selected chromosome transfer generates markers that colocalize aniridia- and genitourinary dysplasia-associated translocation breakpoints and the Wilms tumor gene within band 11p13. Proc. Natl. Acad. Sci. USA, 1987, 84(15), 5355-5359. doi: 10.1073/pnas.84.15.5355 PMID: 3037545
  36. Weitzel, J.N.; Ding, S.; Larson, G.P.; Nelson, R.A.; Goodman, A.; Grendys, E.C.; Ball, H.G.; Krontiris, T.G. The HRAS1 minisatellite locus and risk of ovarian cancer. Cancer Res., 2000, 60(2), 259-261. PMID: 10667571
  37. van der Weyden, L.; Adams, D.J. The Ras-association domain family (RASSF) members and their role in human tumourigenesis. Biochim. Biophys. Acta, 2007, 1776(1), 58-85. PMID: 17692468
  38. Underhill-Day, N.; Hill, V.; Latif, F. N-terminal RASSF family. Epigenetics, 2011, 6(3), 284-292. doi: 10.4161/epi.6.3.14108 PMID: 21116130
  39. Recino, A.; Flaxman, A.; Sherwood, V.; Cooper, W.; Ward, A.; Latif, F.; Chalmers, A.D. RASSF7: A new possible therapeutic cancer target? Genet. Res., 2010, 92(1), 71-72.
  40. Djos, A.; Martinsson, T.; Kogner, P.; Carén, H. The RASSF gene family members RASSF5, RASSF6 and RASSF7 show frequent DNA methylation in neuroblastoma. Mol. Cancer, 2012, 11(1), 40. doi: 10.1186/1476-4598-11-40 PMID: 22695170
  41. Wang, S.; Liang, Q.; Qiao, H.; Li, H.; Shen, T.; Ji, F.; Jiao, J. DISC1 regulates astrogenesis in the embryonic brain via modulation of RAS/MEK/ERK signaling through RASSF7. Development, 2016, 143(15), dev.133066.
  42. Recino, A.; Sherwood, V.; Flaxman, A.; Cooper, W.N.; Latif, F.; Ward, A.; Chalmers, A.D. Human RASSF7 regulates the microtubule cytoskeleton and is required for spindle formation, Aurora B activation and chromosomal congression during mitosis. Biochem. J., 2010, 430(2), 207-213. doi: 10.1042/BJ20100883 PMID: 20629633
  43. Mezzanotte, J.J.; Hill, V.; Schmidt, M.L.; Shinawi, T.; Tommasi, S.; Krex, D.; Schackert, G.; Pfeifer, G.P.; Latif, F.; Clark, G.J. RASSF6 exhibits promoter hypermethylation in metastatic melanoma and inhibits invasion in melanoma cells. Epigenetics, 2014, 9(11), 1496-1503. doi: 10.4161/15592294.2014.983361 PMID: 25482183
  44. Sherwood, V.; Recino, A.; Jeffries, A.; Ward, A.; Chalmers, A.D. The N-terminal RASSF family: a new group of Ras-association-domaincontaining proteins, with emerging links to cancer formation. Biochem. J., 2010, 425(2), 303-311. doi: 10.1042/BJ20091318 PMID: 20025613
  45. Hanahan, D.; Weinberg, R.A. The hallmarks of cancer. Cell, 2000, 100(1), 57-70. doi: 10.1016/S0092-8674(00)81683-9 PMID: 10647931
  46. Sherwood, V.; Manbodh, R.; Sheppard, C.; Chalmers, A.D. RASSF7 is a member of a new family of RAS association domain-containing proteins and is required for completing mitosis. Mol. Biol. Cell, 2008, 19(4), 1772-1782. doi: 10.1091/mbc.e07-07-0652 PMID: 18272789
  47. Takahashi, S.; Ebihara, A.; Kajiho, H.; Kontani, K.; Nishina, H.; Katada, T. RASSF7 negatively regulates pro-apoptotic JNK signaling by inhibiting the activity of phosphorylated-MKK7. Cell Death Differ., 2011, 18(4), 645-655. doi: 10.1038/cdd.2010.137 PMID: 21278800
  48. He, L.; He, X.; Lowe, S.W.; Hannon, G.J. microRNAs join the p53 network-Another piece in the tumour-suppression puzzle. Nat. Rev. Cancer, 2007, 7(11), 819-822. doi: 10.1038/nrc2232 PMID: 17914404
  49. Schüller, U.; Zhao, Q.; Godinho, S.A.; Heine, V.M.; Medema, R.H.; Pellman, D.; Rowitch, D.H. Forkhead transcription factor FoxM1 regulates mitotic entry and prevents spindle defects in cerebellar granule neuron precursors. Mol. Cell. Biol., 2007, 27(23), 8259-8270. doi: 10.1128/MCB.00707-07 PMID: 17893320
  50. Pereira, G.; Schiebel, E. Kin4 kinase delays mitotic exit in response to spindle alignment defects. Mol. Cell, 2005, 19(2), 209-221. doi: 10.1016/j.molcel.2005.05.030 PMID: 16039590
  51. Granic, A.; Potter, H. Mitotic spindle defects and chromosome mis-segregation induced by LDL/cholesterol-implications for Niemann-Pick C1, Alzheimer’s disease, and atherosclerosis. PLoS One, 2013, 8(4), e60718. doi: 10.1371/journal.pone.0060718 PMID: 23593294
  52. Eggert, U.; Mitchison, T. Small molecule screening by imaging. Curr. Opin. Chem. Biol., 2006, 10(3), 232-237. doi: 10.1016/j.cbpa.2006.04.010 PMID: 16682248
  53. Ruchaud, S.; Carmena, M.; Earnshaw, W.C. Chromosomal passengers: conducting cell division. Nat. Rev. Mol. Cell Biol., 2007, 8(10), 798-812. doi: 10.1038/nrm2257 PMID: 17848966
  54. Hauf, S.; Cole, R.W.; LaTerra, S.; Zimmer, C.; Schnapp, G.; Walter, R.; Heckel, A.; van Meel, J.; Rieder, C.L.; Peters, J.M. The small molecule heperadin reveals a role for aurora B in correcting kinetochore-microtubule attachment and in maintaining the spindle assembly checkpoint. J. Cell Biol., 2003, 161(2), 281-294. doi: 10.1083/jcb.200208092 PMID: 12707311
  55. Steigemann, P.; Wurzenberger, C.; Schmitz, M.H.A.; Held, M.; Guizetti, J.; Maar, S.; Gerlich, D.W. Aurora B-mediated abscission checkpoint protects against tetraploidization. Cell, 2009, 136(3), 473-484. doi: 10.1016/j.cell.2008.12.020 PMID: 19203582
  56. Rosasco-Nitcher, S.E.; Lan, W.; Khorasanizadeh, S.; Stukenberg, P.T. Centromeric Aurora-B activation requires TD-60, microtubules, and substrate priming phosphorylation. Science, 2008, 319(5862), 469-472. doi: 10.1126/science.1148980 PMID: 18218899
  57. Funabiki, H. Correcting aberrant kinetochore microtubule attachments: a hidden regulation of Aurora B on microtubules. Curr. Opin. Cell Biol., 2019, 58, 34-41. doi: 10.1016/j.ceb.2018.12.007 PMID: 30684807
  58. Uren, A.G.; Wong, L.; Pakusch, M.; Fowler, K.J.; Burrows, F.J.; Vaux, D.L.; Choo, K.H.A. Survivin and the inner centromere protein INCENP show similar cell-cycle localization and gene knockout phenotype. Curr. Biol., 2000, 10(21), 1319-1328. doi: 10.1016/S0960-9822(00)00769-7 PMID: 11084331
  59. Cooke, C.A.; Heck, M.M.; Earnshaw, W.C. The inner centromere protein (INCENP) antigens: movement from inner centromere to midbody during mitosis. J. Cell Biol., 1987, 105(5), 2053-2067. doi: 10.1083/jcb.105.5.2053 PMID: 3316246
  60. MAP Kinase Kinase Kinases. Schwab, M., Ed.; Encyclopedia of Cancer; Springer Berlin Heidelberg: Berlin, Heidelberg, 2016, p. 2655.
  61. Waetzig, V.; Zhao, Y.; Herdegen, T. The bright side of JNKs-Multitalented mediators in neuronal sprouting, brain development and nerve fiber regeneration. Prog. Neurobiol., 2006, 80(2), 84-97. doi: 10.1016/j.pneurobio.2006.08.002 PMID: 17045385
  62. Ma, X.; Xu, W.; Zhang, D.; Yang, Y.; Li, W.; Xue, L. Wallenda regulates JNK-mediated cell death in Drosophila. Cell Death Dis., 2015, 6(5), e1737. doi: 10.1038/cddis.2015.111 PMID: 25950467
  63. Shimizu, S.; Konishi, A.; Nishida, Y.; Mizuta, T.; Nishina, H.; Yamamoto, A.; Tsujimoto, Y. Involvement of JNK in the regulation of autophagic cell death. Oncogene, 2010, 29(14), 2070-2082. doi: 10.1038/onc.2009.487 PMID: 20101227
  64. He, T.C.; Sparks, A.B.; Rago, C.; Hermeking, H.; Zawel, L.; da Costa, L.T.; Morin, P.J.; Vogelstein, B.; Kinzler, K.W. Identification of c-MYC as a target of the APC pathway. Science, 1998, 281(5382), 1509-1512. doi: 10.1126/science.281.5382.1509 PMID: 9727977
  65. Gao, P.; Tchernyshyov, I.; Chang, T.C.; Lee, Y.S.; Kita, K.; Ochi, T.; Zeller, K.I.; De Marzo, A.M.; Van Eyk, J.E.; Mendell, J.T.; Dang, C.V. c-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism. Nature, 2009, 458(7239), 762-765. doi: 10.1038/nature07823 PMID: 19219026
  66. Minna, J.D.; Roth, J.A.; Gazdar, A.F. Focus on lung cancer. Cancer Cell, 2002, 1(1), 49-52. doi: 10.1016/S1535-6108(02)00027-2 PMID: 12086887
  67. Dong, Q.Z.; Wang, Y.; Dong, X.J.; Li, Z.X.; Tang, Z.P.; Cui, Q.Z.; Wang, E.H. CIP2A is overexpressed in non-small cell lung cancer and correlates with poor prognosis. Ann. Surg. Oncol., 2011, 18(3), 857-865. doi: 10.1245/s10434-010-1313-8 PMID: 20842459
  68. Pan, D. The hippo signaling pathway in development and cancer. Dev. Cell, 2010, 19(4), 491-505. doi: 10.1016/j.devcel.2010.09.011 PMID: 20951342
  69. Song, S.; Honjo, S.; Jin, J.; Chang, S.S.; Scott, A.W.; Chen, Q.; Kalhor, N.; Correa, A.M.; Hofstetter, W.L.; Albarracin, C.T.; Wu, T.T.; Johnson, R.L.; Hung, M.C.; Ajani, J.A. The hippo coactivator YAP1 mediates EGFR overexpression and confers chemoresistance in esophageal cancer. Clin. Cancer Res., 2015, 21(11), 2580-2590. doi: 10.1158/1078-0432.CCR-14-2191 PMID: 25739674
  70. Dong, J.; Feldmann, G.; Huang, J.; Wu, S.; Zhang, N.; Comerford, S.A.; Gayyed, M.F.; Anders, R.A.; Maitra, A.; Pan, D. Elucidation of a universal size-control mechanism in Drosophila and mammals. Cell, 2007, 130(6), 1120-1133. doi: 10.1016/j.cell.2007.07.019 PMID: 17889654
  71. Zheng, X.; Dong, Q.; Zhang, X.; Han, Q.; Han, X.; Han, Y.; Wu, J.; Rong, X.; Wang, E. The coiled-coil domain of oncogene RASSF 7 inhibits hippo signaling and promotes non-small cell lung cancer. Oncotarget, 2017, 8(45), 78734-78748. doi: 10.18632/oncotarget.20223 PMID: 29108261
  72. Johnsen, J.I.; Kogner, P.; Albihn, A.; Henriksson, M.A. Embryonal neural tumours and cell death. Apoptosis, 2009, 14(4), 424-438. doi: 10.1007/s10495-009-0325-y PMID: 19259824
  73. Stern, F.; Lehman, E.; Ruder, A. Mortality among unionized construction plasterers and cement masons. Am. J. Ind. Med., 2001, 39(4), 373-388. doi: 10.1002/ajim.1028 PMID: 11323787
  74. Chen, A.Y.; Jemal, A.; Ward, E.M. Increasing incidence of differentiated thyroid cancer in the United States, 1988-2005. Cancer, 2009, 115(16), 3801-3807. doi: 10.1002/cncr.24416 PMID: 19598221
  75. Said, S.; Schlumberger, M.; Suarez, H.G. Oncogenes and anti-oncogenes in human epithelial thyroid tumors. J. Endocrinol. Invest., 1994, 17(5), 371-379. doi: 10.1007/BF03349004 PMID: 8077623
  76. Zhang, M.; Li, Q.; Zhang, L.; Wang, Y.; Wang, L.; Li, Q.; He, T.; Wan, B.; Wang, X. RASSF7 promotes cell proliferation through activating MEK1/2-ERK1/2 signaling pathway in hepatocellular carcinoma. Cell. Mol. Biol., 2018, 64(5), 73-79. doi: 10.14715/cmb/2018.64.5.12 PMID: 29729697
  77. Fatima, A.; Tariq, F.; Malik, M.F.A.; Qasim, M.; Haq, F. Copy number profiling of mammaprint™ genes reveals association with the prognosis of breast cancer patients. J. Breast Cancer, 2017, 20(3), 246-253. doi: 10.4048/jbc.2017.20.3.246 PMID: 28970850
  78. Uemura, N.; Okamoto, S.; Yamamoto, S.; Matsumura, N.; Yamaguchi, S.; Yamakido, M.; Taniyama, K.; Sasaki, N.; Schlemper, R.J. Helicobacter pylori infection and the development of gastric cancer. N. Engl. J. Med., 2001, 345(11), 784-789. doi: 10.1056/NEJMoa001999 PMID: 11556297

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers