Determination of Pralsetinib in Human Plasma and Cerebrospinal Fluid for Therapeutic Drug Monitoring by Ultra-performance Liquid Chromatography-Tandem Mass Spectrometry (UPLC-MS/MS)


Cite item

Full Text

Abstract

Background:Ultra-performance Liquid Chromatography-tandem Mass Spectrometry (UPLC-MS/MS) is widely used for concentration detection of many Tyrosine Kinase Inhibitors (TKIs), including afatinib, crizotinib, and osimertinib. In order to analyze whether pralsetinib takes effect in Rearranged during Transfection (RET)-positive patients with central nervous system metastasis, we aimed to develop a method for the detection of pralsetinib concentrations in human plasma and Cerebrospinal Fluid (CSF) by UPLC-MS/MS.

Methods:The method was developed using the external standard method, and method validation included precision, accuracy, stability, extraction recovery, and matrix effect. Working solutions were all obtained based on stock solutions of pralsetinib of 1mg/mL. The plasma/CSF samples were precipitated by acetonitrile for protein precipitation and then separated on an ACQUITY UPLC HSS T3 column (2.1×100 mm, 1.8 µm) with a gradient elution using 0.1% formic acid (solution A) and acetonitrile (solution B) as mobile phases at a flow rate of 0.4 mL/min. The tandem mass spectrometry was performed by a triple quadrupole linear ion trap mass spectrometry system (QTRAPTM 6500+) with an electrospray ion (ESI) source and Analyst 1.7.2 data acquisition system. Data were collected in Multiple Reaction Monitoring (MRM) and positive ionization mode.

Results:A good linear relationship of pralsetinib in both plasma and CSF was successfully established, and the calibration ranges were found to be 1.0-64.0 µg/mL and 50.0ng/mL-12.8 µg/mL for pralsetinib in the plasma and CSF, respectively. Validation was performed, including calibration assessment, selectivity, precision, accuracy, matrix effect, extraction recovery, and stability, and all results have been found to be acceptable. The method has been successfully applied to pralsetinib concentration detection in a clinical sample, and the concentrations have been found to be 475 ng/mL and 61.55 µg/mL in the CSF and plasma, respectively.

Conclusion:We have developed a quick and effective method for concentration detection in both plasma and CSF, and it can be applied for drug monitoring in clinical practice. The method can also provide a reference for further optimization.

About the authors

Zichen Zhao

Lung Cancer Center, West China Hospital, Sichuan University

Email: info@benthamscience.net

Qianlun Pu

Research Core Facility, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University

Email: info@benthamscience.net

Tonglin Sun

Lung Cancer Center, West China Hospital, Sichuan University

Email: info@benthamscience.net

Qian Huang

Lung Cancer Center, West China Hospital, Sichuan University

Email: info@benthamscience.net

Liping Tong

Lung Cancer Center, West China Hospital, Sichuan University, West China Hospital of Sichuan University

Email: info@benthamscience.net

Ting Fan

Lung Cancer Center, West China Hospital, Sichuan University

Email: info@benthamscience.net

Jingyue Kang

Lung Cancer Center, West China Hospital, Sichuan University

Email: info@benthamscience.net

Yuhong Chen

Lung Cancer Center, West China Hospital, Sichuan University

Email: info@benthamscience.net

Yan Zhang

Lung Cancer Center, West China Hospital, Sichuan University

Author for correspondence.
Email: info@benthamscience.net

References

  1. Hirsch, F.R.; Scagliotti, G.V.; Mulshine, J.L.; Kwon, R.; Curran, W.J., Jr; Wu, Y.L.; Paz-Ares, L. Lung cancer: Current therapies and new targeted treatments. Lancet, 2017, 389(10066), 299-311. doi: 10.1016/S0140-6736(16)30958-8 PMID: 27574741
  2. Herbst, R.S.; Morgensztern, D.; Boshoff, C. The biology and management of non-small cell lung cancer. Nature, 2018, 553(7689), 446-454. doi: 10.1038/nature25183 PMID: 29364287
  3. Nicholson, A.G.; Tsao, M.S.; Beasley, M.B.; Borczuk, A.C.; Brambilla, E.; Cooper, W.A.; Dacic, S.; Jain, D.; Kerr, K.M.; Lantuejoul, S.; Noguchi, M.; Papotti, M.; Rekhtman, N.; Scagliotti, G.; van Schil, P.; Sholl, L.; Yatabe, Y.; Yoshida, A.; Travis, W.D. The 2021 WHO classification of lung tumors: Impact of advances since 2015. J. Thorac. Oncol., 2022, 17(3), 362-387. doi: 10.1016/j.jtho.2021.11.003 PMID: 34808341
  4. Wang, M.; Herbst, R.S.; Boshoff, C. Toward personalized treatment approaches for non-small-cell lung cancer. Nat. Med., 2021, 27(8), 1345-1356. doi: 10.1038/s41591-021-01450-2 PMID: 34385702
  5. Mok, T.S.; Wu, Y.L.; Ahn, M.J.; Garassino, M.C.; Kim, H.R.; Ramalingam, S.S.; Shepherd, F.A.; He, Y.; Akamatsu, H.; Theelen, W.S.M.E.; Lee, C.K.; Sebastian, M.; Templeton, A.; Mann, H.; Marotti, M.; Ghiorghiu, S.; Papadimitrakopoulou, V.A. Osimertinib or platinum–pemetrexed in EGFR T790M–positive lung cancer. N. Engl. J. Med., 2017, 376(7), 629-640. doi: 10.1056/NEJMoa1612674 PMID: 27959700
  6. Remon, J.; Steuer, C.E.; Ramalingam, S.S.; Felip, E. Osimertinib and other third-generation EGFR TKI in EGFR-mutant NSCLC patients. Ann. Oncol., 2018, 29(Suppl. 1), i20-i27. doi: 10.1093/annonc/mdx704 PMID: 29462255
  7. Mok, T.S.; Wu, Y.L.; Thongprasert, S.; Yang, C.H.; Chu, D.T.; Saijo, N.; Sunpaweravong, P.; Han, B.; Margono, B.; Ichinose, Y.; Nishiwaki, Y.; Ohe, Y.; Yang, J.J.; Chewaskulyong, B.; Jiang, H.; Duffield, E.L.; Watkins, C.L.; Armour, A.A.; Fukuoka, M. Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma. N. Engl. J. Med., 2009, 361(10), 947-957. doi: 10.1056/NEJMoa0810699 PMID: 19692680
  8. Felip, E.; Shaw, A.T.; Bearz, A.; Camidge, D.R.; Solomon, B.J.; Bauman, J.R.; Bauer, T.M.; Peters, S.; Toffalorio, F.; Abbattista, A.; Thurm, H.; Peltz, G.; Wiltshire, R.; Besse, B. Intracranial and extracranial efficacy of lorlatinib in patients with ALK-positive non-small-cell lung cancer previously treated with second-generation ALK TKIs. Ann. Oncol., 2021, 32(5), 620-630. doi: 10.1016/j.annonc.2021.02.012 PMID: 33639216
  9. Song, Z.; Lv, D.; Chen, S.Q.; Huang, J.; Li, Y.; Ying, S.; Wu, X.; Hua, F.; Wang, W.; Xu, C.; Bei, T.; Gao, C.; Sun, Z.; Zhang, Y.; Lu, S. Pyrotinib in patients with HER2-amplified advanced non–small cell lung cancer: A Prospective, Multicenter, Single-Arm Trial. Clin. Cancer Res., 2022, 28(3), 461-467. doi: 10.1158/1078-0432.CCR-21-2936 PMID: 34753778
  10. Rochette, L.; Zeller, M.; Cottin, Y.; Vergely, C. Insights into mechanisms of GDF15 and receptor GFRAL: Therapeutic targets. Trends Endocrinol. Metab., 2020, 31(12), 939-951. doi: 10.1016/j.tem.2020.10.004 PMID: 33172749
  11. Engelmann, D.; Koczan, D.; Ricken, P.; Rimpler, U.; Pahnke, J.; Li, Z.; Pützer, B.M. Transcriptome analysis in mouse tumors induced by Ret-MEN2/FMTC mutations reveals subtype-specific role in survival and interference with immune surveillance. Endocr. Relat. Cancer, 2009, 16(1), 211-224. doi: 10.1677/ERC-08-0158 PMID: 18984779
  12. Li, A.Y.; McCusker, M.G.; Russo, A.; Scilla, K.A.; Gittens, A.; Arensmeyer, K.; Mehra, R.; Adamo, V.; Rolfo, C. RET fusions in solid tumors. Cancer Treat. Rev., 2019, 81, 101911. doi: 10.1016/j.ctrv.2019.101911 PMID: 31715421
  13. Servetto, A.; Esposito, D.; Ferrara, R.; Signorelli, D.; Belli, S.; Napolitano, F.; Santaniello, A.; Ciciola, P.; Formisano, L.; Bianco, R. RET rearrangements in non-small cell lung cancer: Evolving treatment landscape and future challenges. Biochim. Biophys. Acta Rev. Cancer, 2022, 1877(6), 188810. doi: 10.1016/j.bbcan.2022.188810 PMID: 36202311
  14. Wang, R.; Hu, H.; Pan, Y.; Li, Y.; Ye, T.; Li, C.; Luo, X.; Wang, L.; Li, H.; Zhang, Y.; Li, F.; Lu, Y.; Lu, Q.; Xu, J.; Garfield, D.; Shen, L.; Ji, H.; Pao, W.; Sun, Y.; Chen, H. RET fusions define a unique molecular and clinicopathologic subtype of non-small-cell lung cancer. J. Clin. Oncol., 2012, 30(35), 4352-4359. doi: 10.1200/JCO.2012.44.1477 PMID: 23150706
  15. Drilon, A.; Lin, J.J.; Filleron, T.; Ni, A.; Milia, J.; Bergagnini, I.; Hatzoglou, V.; Velcheti, V.; Offin, M.; Li, B.; Carbone, D.P.; Besse, B.; Mok, T.; Awad, M.M.; Wolf, J.; Owen, D.; Camidge, D.R.; Riely, G.J.; Peled, N.; Kris, M.G.; Mazieres, J.; Gainor, J.F.; Gautschi, O. Frequency of brain metastases and multikinase inhibitor outcomes in patients with RET–rearranged lung cancers. J. Thorac. Oncol., 2018, 13(10), 1595-1601. doi: 10.1016/j.jtho.2018.07.004 PMID: 30017832
  16. Subbiah, V.; Gainor, J.F.; Rahal, R.; Brubaker, J.D.; Kim, J.L.; Maynard, M.; Hu, W.; Cao, Q.; Sheets, M.P.; Wilson, D.; Wilson, K.J.; DiPietro, L.; Fleming, P.; Palmer, M.; Hu, M.I.; Wirth, L.; Brose, M.S.; Ou, S.H.I.; Taylor, M.; Garralda, E.; Miller, S.; Wolf, B.; Lengauer, C.; Guzi, T.; Evans, E.K. Precision targeted therapy with BLU-667 for RET -driven cancers. Cancer Discov., 2018, 8(7), 836-849. doi: 10.1158/2159-8290.CD-18-0338 PMID: 29657135
  17. Gainor, J.F.; Curigliano, G.; Kim, D.W.; Lee, D.H.; Besse, B.; Baik, C.S.; Doebele, R.C.; Cassier, P.A.; Lopes, G.; Tan, D.S.W.; Garralda, E.; Paz-Ares, L.G.; Cho, B.C.; Gadgeel, S.M.; Thomas, M.; Liu, S.V.; Taylor, M.H.; Mansfield, A.S.; Zhu, V.W.; Clifford, C.; Zhang, H.; Palmer, M.; Green, J.; Turner, C.D.; Subbiah, V. Pralsetinib for RET fusion-positive non-small-cell lung cancer (ARROW): A multi-cohort, open-label, phase 1/2 study. Lancet Oncol., 2021, 22(7), 959-969. doi: 10.1016/S1470-2045(21)00247-3 PMID: 34118197
  18. Griesinger, F.; Curigliano, G.; Thomas, M.; Subbiah, V.; Baik, C.S.; Tan, D.S.W.; Lee, D.H.; Misch, D.; Garralda, E.; Kim, D.W.; van der Wekken, A.J.; Gainor, J.F.; Paz-Ares, L.; Liu, S.V.; Kalemkerian, G.P.; Houvras, Y.; Bowles, D.W.; Mansfield, A.S.; Lin, J.J.; Smoljanovic, V.; Rahman, A.; Kong, S.; Zalutskaya, A.; Louie-Gao, M.; Boral, A.L.; Mazières, J. Safety and efficacy of pralsetinib in RET fusion–positive non-small-cell lung cancer including as first-line therapy: Update from the ARROW trial. Ann. Oncol., 2022, 33(11), 1168-1178. doi: 10.1016/j.annonc.2022.08.002 PMID: 35973665
  19. Subbiah, V.; Hu, M.I.; Wirth, L.J.; Schuler, M.; Mansfield, A.S.; Curigliano, G.; Brose, M.S.; Zhu, V.W.; Leboulleux, S.; Bowles, D.W.; Baik, C.S.; Adkins, D.; Keam, B.; Matos, I.; Garralda, E.; Gainor, J.F.; Lopes, G.; Lin, C.C.; Godbert, Y.; Sarker, D.; Miller, S.G.; Clifford, C.; Zhang, H.; Turner, C.D.; Taylor, M.H. Pralsetinib for patients with advanced or metastatic RET-altered thyroid cancer (ARROW): A multi-cohort, open-label, registrational, phase 1/2 study. Lancet Diabetes Endocrinol., 2021, 9(8), 491-501. doi: 10.1016/S2213-8587(21)00120-0 PMID: 34118198
  20. Subbiah, V.; Hu, M.I.; Mansfield, A.S.; Taylor, M.H.; Schuler, M.; Zhu, V.W.; Hadoux, J.; Curigliano, G.; Wirth, L.; Gainor, J.F.; Alonso, G.; Adkins, D.; Godbert, Y.; Ahn, M.J.; Cassier, P.A.; Cho, B.C.; Lin, C.C.; Zalutskaya, A.; Barata, T.; Trask, P.; Scalori, A.; Bordogna, W.; Heinzmann, S.; Brose, M.S. Pralsetinib in Patients with advanced/metastatic Rearranged During Transfection (RET)-altered thyroid cancer: Updated efficacy and safety data from the ARROW study. Thyroid, 2024, 34(1), 26-40. doi: 10.1089/thy.2023.0363 PMID: 38009200
  21. Russo, G.L.; Bironzo, P.; Bennati, C.; Bonanno, L.; Catino, A.; Metro, G.; Petrini, I.; Russano, M.; Passaro, A. Clinical evidence and adverse event management update of patients with RET- rearranged advanced non-small-cell lung cancer (NSCLC) treated with pralsetinib. Crit. Rev. Oncol. Hematol., 2024, 194, 104243. doi: 10.1016/j.critrevonc.2023.104243 PMID: 38135019
  22. Reis, R.; Labat, L.; Allard, M.; Boudou-Rouquette, P.; Chapron, J.; Bellesoeur, A.; Thomas-Schoemann, A.; Arrondeau, J.; Giraud, F.; Alexandre, J.; Vidal, M.; Goldwasser, F.; Blanchet, B. Liquid chromatography-tandem mass spectrometric assay for therapeutic drug monitoring of the EGFR inhibitors afatinib, erlotinib and osimertinib, the ALK inhibitor crizotinib and the VEGFR inhibitor nintedanib in human plasma from non-small cell lung cancer patients. J. Pharm. Biomed. Anal., 2018, 158, 174-183. doi: 10.1016/j.jpba.2018.05.052 PMID: 29883880
  23. Sparidans, R.W.; Rosing, H.; Rood, J.J.M.; Schellens, J.H.M.; Beijnen, J.H. Liquid chromatography-tandem mass spectrometric assay for therapeutic drug monitoring of the B-Raf inhibitor encorafenib, the EGFR inhibitors afatinib, erlotinib and gefitinib and the O-desmethyl metabolites of erlotinib and gefitinib in human plasma. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2016, 1033-1034, 390-398. doi: 10.1016/j.jchromb.2016.09.012 PMID: 27639128
  24. Bustillo, M.; Zabala, A.; Querejeta, I.; Carton, J.I.; Mentxaka, O.; González-Pinto, A.; García, S.; Meana, J.J.; Eguiluz, J.I.; Segarra, R. Therapeutic drug monitoring of second-generation antipsychotics for the estimation of early drug effect in first-episode psychosis: A cross-sectional assessment. Ther. Drug Monit., 2018, 40(2), 257-267. doi: 10.1097/FTD.0000000000000480 PMID: 29369974
  25. Haouala, A.; Zanolari, B.; Rochat, B.; Montemurro, M.; Zaman, K.; Duchosal, M.A.; Ris, H.B.; Leyvraz, S.; Widmer, N.; Decosterd, L.A. Therapeutic Drug Monitoring of the new targeted anticancer agents imatinib, nilotinib, dasatinib, sunitinib, sorafenib and lapatinib by LC tandem mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2009, 877(22), 1982-1996. doi: 10.1016/j.jchromb.2009.04.045 PMID: 19505856
  26. Huang, R.S.; Ratain, M.J. Pharmacogenetics and pharmacogenomics of anticancer agents. CA Cancer J. Clin., 2009, 59(1), 42-55. doi: 10.3322/caac.20002 PMID: 19147868
  27. Yan, S.; Yang, L.; Lu, L.; Guo, Q.; Hu, X.; Yuan, Y.; Li, Y.; Wu, M.; Zhang, J. Improved pharmacokinetic characteristics and bioactive effects of anticancer enzyme delivery systems. Expert Opin. Drug Metab. Toxicol., 2018, 14(9), 951-960. doi: 10.1080/17425255.2018.1505863 PMID: 30058385
  28. Widmer, N.; Bardin, C.; Chatelut, E.; Paci, A.; Beijnen, J.; Levêque, D.; Veal, G.; Astier, A. Review of therapeutic drug monitoring of anticancer drugs part two – Targeted therapies. Eur. J. Cancer, 2014, 50(12), 2020-2036. doi: 10.1016/j.ejca.2014.04.015 PMID: 24928190
  29. Panda, S.S. Bioanalysis of anticancer agents: Evaluating LC-MS/MS procedures with greenness metrics. Trac-Trend. Anal. Chem., 2023, 169, 117394.
  30. Li, Y.; Meng, L.; Ma, Y.; Li, Y.; Xing, X.; Guo, C.; Dong, Z. Determination of osimertinib, aumolertinib, and furmonertinib in human plasma for therapeutic drug monitoring by UPLC-MS/MS. Molecules, 2022, 27(14), 4474. doi: 10.3390/molecules27144474 PMID: 35889345
  31. Seyfinejad, B.; Jouyban, A. Overview of therapeutic drug monitoring of immunosuppressive drugs: Analytical and clinical practices. J. Pharm. Biomed. Anal., 2021, 205, 114315. doi: 10.1016/j.jpba.2021.114315 PMID: 34399192
  32. Pieri, M.; Miraglia, N.; Polichetti, G.; Tarantino, G.; Acampora, A.; Capone, D. Analytical and pharmacological aspects of therapeutic drug monitoring of mTOR inhibitors. Curr. Drug Metab., 2011, 12(3), 253-267. doi: 10.2174/138920011795101868 PMID: 21342112
  33. Pardi, J.; Ford, S.; Cooper, G. Validation of an analytical method for quantitation of metonitazene and isotonitazene in plasma, blood, urine, liver and brain and application to authentic postmortem casework in New York City. J. Anal. Toxicol., 2023, 47(8), 648-655. doi: 10.1093/jat/bkad062 PMID: 37638699
  34. Qi, Y.; Liu, G. Ultra-performance liquid chromatography-tandem mass spectrometry for simultaneous determination of antipsychotic drugs in human plasma and its application in therapeutic drug monitoring. Drug Des. Devel. Ther., 2021, 15, 463-479. doi: 10.2147/DDDT.S290963 PMID: 33613026
  35. Li, G.; Zhao, M.; Zhao, L. Ultra-performance liquid chromatography-tandem mass spectrometry for simultaneous determination of 12 anti-tumor drugs in human plasma and its application in therapeutic drug monitoring. J. Pharm. Biomed. Anal., 2021, 206, 114380. doi: 10.1016/j.jpba.2021.114380 PMID: 34607204
  36. Lu, S.; Zhao, M.; Zhao, L.; Li, G. Development of a UPLC–MS/MS method for simultaneous therapeutic drug monitoring of anti-hepatocellular carcinoma drugs and analgesics in human plasma. Front. Pharmacol., 2023, 14, 1136735. doi: 10.3389/fphar.2023.1136735 PMID: 37324468
  37. Ye, Z.; Wu, L.; Zhang, X.; Hu, Y.; Zheng, L. Quantification of sorafenib, lenvatinib, and apatinib in human plasma for therapeutic drug monitoring by UPLC-MS/MS. J. Pharm. Biomed. Anal., 2021, 202, 114161. doi: 10.1016/j.jpba.2021.114161 PMID: 34052550
  38. Gu, E.M.; Liu, Y.N.; Pan, L.; Hu, Y.; Ye, X.; Luo, P. A high throughput method for Monitoring of Sorafenib, regorafenib, cabozantinib and their metabolites with UPLC-MS/MS in rat plasma. Front. Pharmacol., 2022, 13, 955263. doi: 10.3389/fphar.2022.955263 PMID: 36160432
  39. Yu, M.; Liu, A.; Liu, S.; Wu, X.; Zhang, X.; Li, H.; Wang, H. Development and validation of a UPLC–MS/MS method for determination of SYHA1807 in a first-in-human study. Bioanalysis, 2023, 15(24), 1489-1501. doi: 10.4155/bio-2023-0143 PMID: 37991204
  40. Veerman, G.D.M.; Lam, M.H.; Mathijssen, R.H.J.; Koolen, S.L.W.; de Bruijn, P. Quantification of afatinib, alectinib, crizotinib and osimertinib in human plasma by liquid chromatography/triple-quadrupole mass spectrometry; focusing on the stability of osimertinib. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2019, 1113, 37-44. doi: 10.1016/j.jchromb.2019.03.011 PMID: 30889498
  41. Roberts, M.S.; Turner, D.C.; Broniscer, A.; Stewart, C.F. Determination of crizotinib in human and mouse plasma by liquid chromatography electrospray ionization–tandem mass spectrometry (LC-ESI–MS/MS). J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2014, 960, 151-157. doi: 10.1016/j.jchromb.2014.04.035 PMID: 24811158
  42. Rood, J.J.M.; van Bussel, M.T.J.; Schellens, J.H.M.; Beijnen, J.H.; Sparidans, R.W. Liquid chromatography–tandem mass spectrometric assay for the T790M mutant EGFR inhibitor osimertinib (AZD9291) in human plasma. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2016, 1031, 80-85. doi: 10.1016/j.jchromb.2016.07.037 PMID: 27469903
  43. Heinig, K.; Miya, K.; Kamei, T.; Guerini, E.; Fraier, D.; Yu, L.; Bansal, S.; Morcos, P.N. Bioanalysis of alectinib and metabolite M4 in human plasma, cross-validation and impact on PK assessment. Bioanalysis, 2016, 8(14), 1465-1479. doi: 10.4155/bio-2016-0068 PMID: 27329641
  44. Nave, O.P. Modification of semi-analytical method applied system of ODE. Mod. Appl. Sci., 2020, 14(6), 75. doi: 10.5539/mas.v14n6p75
  45. Rood, J.J.M.; Schellens, J.H.M.; Beijnen, J.H.; Sparidans, R.W. Recent developments in the chromatographic bioanalysis of approved kinase inhibitor drugs in oncology. J. Pharm. Biomed. Anal., 2016, 130, 244-263. doi: 10.1016/j.jpba.2016.06.037 PMID: 27460293
  46. Wang, Y.; Sparidans, R.W.; Potters, S.; Lebre, M.C.; Beijnen, J.H.; Schinkel, A.H. ABCB1 and ABCG2, but not CYP3A4 limit oral availability and brain accumulation of the RET inhibitor pralsetinib. Pharmacol. Res., 2021, 172, 105850. doi: 10.1016/j.phrs.2021.105850 PMID: 34450308
  47. Zhao, Z.; Su, C.; Xiu, W.; Wang, W.; Zeng, S.; Huang, M.; Gong, Y.; Lu, Y.; Zhang, Y. Response to Pralsetinib Observed in Meningeal-Metastatic EGFR-Mutant NSCLC With Acquired RET Fusion: A Brief Report. JTO Clinical and Research Reports, 2022, 3(6), 100343. doi: 10.1016/j.jtocrr.2022.100343 PMID: 35711719
  48. Pan, K.; Concannon, K.; Li, J.; Zhang, J.; Heymach, J.V.; Le, X. Emerging therapeutics and evolving assessment criteria for intracranial metastases in patients with oncogene-driven non-small-cell lung cancer. Nat. Rev. Clin. Oncol., 2023, 20(10), 716-732. doi: 10.1038/s41571-023-00808-4 PMID: 37592034
  49. Li, D.; Song, Z.; Dong, B.; Song, W. cheng, C.; Zhang, Y.; Zhang, W. Advances in targeted therapy in non-small cell lung cancer with actionable mutations and leptomeningeal metastasis. J. Clin. Pharm. Ther., 2022, 47(1), 24-32. doi: 10.1111/jcpt.13489 PMID: 34309914
  50. Ozcan, G.; Singh, M.; Vredenburgh, J.J. Leptomeningeal metastasis from non–small cell lung cancer and current landscape of treatments. Clin. Cancer Res., 2023, 29(1), 11-29. doi: 10.1158/1078-0432.CCR-22-1585 PMID: 35972437
  51. Şentürk, R.; Wang, Y.; Schinkel, A.H.; Beijnen, J.H.; Sparidans, R.W. Quantitative bioanalytical assay for the selective RET inhibitors selpercatinib and pralsetinib in mouse plasma and tissue homogenates using liquid chromatography-tandem mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2020, 1147, 122131. doi: 10.1016/j.jchromb.2020.122131 PMID: 32416592
  52. Verheijen, R.B.; Yu, H.; Schellens, J.H.M.; Beijnen, J.H.; Steeghs, N.; Huitema, A.D.R. Practical recommendations for therapeutic drug monitoring of kinase inhibitors in oncology. Clin. Pharmacol. Ther., 2017, 102(5), 765-776. doi: 10.1002/cpt.787 PMID: 28699160
  53. Mueller-Schoell, A.; Groenland, S.L.; Scherf-Clavel, O.; van Dyk, M.; Huisinga, W.; Michelet, R.; Jaehde, U.; Steeghs, N.; Huitema, A.D.R.; Kloft, C. Therapeutic drug monitoring of oral targeted antineoplastic drugs. Eur. J. Clin. Pharmacol., 2021, 77(4), 441-464. doi: 10.1007/s00228-020-03014-8 PMID: 33165648
  54. Brodie, R.R.; Hill, H.M. Validation issues arising from the new FDA guidance for industry on bioanalytical method validation. Chromatographia, 2002, 55(S1), S91-S94. doi: 10.1007/BF02493361
  55. Bevers, L.A.H. van Ewijk - Beneken Kolmer, E.W.J.; Te Brake, H.M.L.; Burger, D.M. Development, validation and clinical implementation of a UPLC-MS/MS bioanalytical method for simultaneous quantification of cabotegravir and rilpivirine E-isomer in human plasma. J. Pharm. Biomed. Anal., 2024, 238, 115832. doi: 10.1016/j.jpba.2023.115832 PMID: 37976991
  56. Qin, C.; Feng, W.; Chu, Y.; Lee, J.B.; Berton, M.; Bettonte, S.; Teo, Y.Y.; Stocks, M.J.; Fischer, P.M.; Gershkovich, P. Development and validation of a cost-effective and sensitive bioanalytical HPLC-UV method for determination of lopinavir in rat and human plasma. Biomed. Chromatogr., 2020, 34(11), e4934. doi: 10.1002/bmc.4934 PMID: 32598032
  57. Wang, H.; Wang, Z.; Zhang, G.; Zhang, M.; Zhang, X.; Li, H.; Zheng, X.; Ma, Z. Driver genes as predictive indicators of brain metastasis in patients with advanced NSCLC: EGFR, ALK, and RET gene mutations. Cancer Med., 2020, 9(2), 487-495. doi: 10.1002/cam4.2706 PMID: 31769228
  58. Evans, E.; Hu, W.; Cao, F.; Hoeflich, K.; Dorsch, M. Pralsetinib (BLU-667) demonstrates robust activity in RET fusion-driven intracranial tumor models. J. Thorac. Oncol., 2019, 14(10), S701.
  59. Passaro, A.; Russo, G.L.; Passiglia, F.; D’Arcangelo, M.; Sbrana, A.; Russano, M.; Bonanno, L.; Giusti, R.; Metro, G.; Bertolini, F.; Grisanti, S.; Carta, A.; Cecere, F.; Montrone, M.; Massa, G.; Perrone, F.; Simionato, F.; Guaitoli, G.; Scotti, V.; Genova, C.; Lugini, A.; Bonomi, L.; Attili, I.; de Marinis, F. Pralsetinib in RET fusion-positive non-small-cell lung cancer: A real-world data (RWD) analysis from the Italian expanded access program (EAP). Lung Cancer, 2022, 174, 118-124. doi: 10.1016/j.lungcan.2022.11.005 PMID: 36379124
  60. Subbiah, V.; Berry, J.; Roxas, M.; Guha-Thakurta, N.; Subbiah, I.M.; Ali, S.M.; McMahon, C.; Miller, V.; Cascone, T.; Pai, S.; Tang, Z.; Heymach, J.V. Systemic and CNS activity of the RET inhibitor vandetanib combined with the mTOR inhibitor everolimus in KIF5B-RET re-arranged non-small cell lung cancer with brain metastases. Lung Cancer, 2015, 89(1), 76-79. doi: 10.1016/j.lungcan.2015.04.004 PMID: 25982012
  61. Subbiah, V.; Gainor, J.F.; Oxnard, G.R.; Tan, D.S.W.; Owen, D.H.; Cho, B.C.; Loong, H.H.; McCoach, C.E.; Weiss, J.; Kim, Y.J.; Bazhenova, L.; Park, K.; Daga, H.; Besse, B.; Gautschi, O.; Rolfo, C.; Zhu, E.Y.; Kherani, J.F.; Huang, X.; Kang, S.; Drilon, A. Intracranial efficacy of selpercatinib in RET fusion-positive non–small cell lung cancers on the LIBRETTO-001 trial. Clin. Cancer Res., 2021, 27(15), 4160-4167. doi: 10.1158/1078-0432.CCR-21-0800 PMID: 34088726
  62. Levin, V.A.; Ellingson, B.M. Understanding brain penetrance of anticancer drugs. Neuro-oncol., 2018, 20(5), 589-596. doi: 10.1093/neuonc/noy018 PMID: 29474640
  63. Angeli, E.; Nguyen, T.T.; Janin, A.; Bousquet, G. How to make anticancer drugs cross the blood–brain barrier to treat brain metastases. Int. J. Mol. Sci., 2019, 21(1), 22. doi: 10.3390/ijms21010022 PMID: 31861465
  64. Lockman, P.R.; Mittapalli, R.K.; Taskar, K.S.; Rudraraju, V.; Gril, B.; Bohn, K.A.; Adkins, C.E.; Roberts, A.; Thorsheim, H.R.; Gaasch, J.A.; Huang, S.; Palmieri, D.; Steeg, P.S.; Smith, Q.R. Heterogeneous blood-tumor barrier permeability determines drug efficacy in experimental brain metastases of breast cancer. Clin. Cancer Res., 2010, 16(23), 5664-5678. doi: 10.1158/1078-0432.CCR-10-1564 PMID: 20829328
  65. Li, W.; Sparidans, R.W.; Wang, Y.; Lebre, M.C.; Beijnen, J.H.; Schinkel, A.H. P-glycoprotein and breast cancer resistance protein restrict brigatinib brain accumulation and toxicity, and, alongside CYP3A, limit its oral availability. Pharmacol. Res., 2018, 137, 47-55. doi: 10.1016/j.phrs.2018.09.020 PMID: 30253203
  66. Wang, Y.; Sparidans, R.W.; Li, W.; Lebre, M.C.; Beijnen, J.H.; Schinkel, A.H. OATP1A/1B, CYP3A, ABCB1, and ABCG2 limit oral availability of the NTRK inhibitor larotrectinib, while ABCB1 and ABCG2 also restrict its brain accumulation. Br. J. Pharmacol., 2020, 177(13), 3060-3074. doi: 10.1111/bph.15034 PMID: 32087611
  67. Perez de Souza, L.; Alseekh, S.; Scossa, F.; Fernie, A.R. Ultra-high-performance liquid chromatography high-resolution mass spectrometry variants for metabolomics research. Nat. Methods, 2021, 18(7), 733-746. doi: 10.1038/s41592-021-01116-4 PMID: 33972782
  68. Liu, G.; Snapp, H.M.; Ji, Q.C.; Arnold, M.E. Strategy of accelerated method development for high-throughput bioanalytical assays using ultra high-performance liquid chromatography coupled with mass spectrometry. Anal. Chem., 2009, 81(22), 9225-9232. doi: 10.1021/ac901316w PMID: 19856950
  69. Jemal, M.; Ouyang, Z.; Xia, Y.Q. Systematic LC-MS/MS bioanalytical method development that incorporates plasma phospholipids risk avoidance, usage of incurred sample and well thought-out chromatography. Biomed. Chromatogr., 2010, 24(1), 2-19. doi: 10.1002/bmc.1373 PMID: 20017121
  70. Forcisi, S.; Moritz, F.; Kanawati, B.; Tziotis, D.; Lehmann, R.; Schmitt-Kopplin, P. Liquid chromatography–mass spectrometry in metabolomics research: Mass analyzers in ultra high pressure liquid chromatography coupling. J. Chromatogr. A, 2013, 1292, 51-65. doi: 10.1016/j.chroma.2013.04.017 PMID: 23631876
  71. Liu, C.C.; Liang, L.H.; Yang, Y.; Yu, H.L.; Yan, L.; Li, X.S.; Chen, B.; Liu, S.L.; Xi, H.L. Direct acetonitrile-assisted trypsin digestion method combined with LC–MS/MS-targeted peptide analysis for unambiguous identification of intact ricin. J. Proteome Res., 2021, 20(1), 369-380. doi: 10.1021/acs.jproteome.0c00458 PMID: 33108200
  72. Ondrej, M.; Rehulka, P.; Rehulkova, H.; Kupcik, R.; Tichy, A. Fractionation of enriched phosphopeptides using pH/Acetonitrile-gradient-reversed-phase microcolumn separation in combination with LC–MS/MS analysis. Int. J. Mol. Sci., 2020, 21(11), 3971. doi: 10.3390/ijms21113971 PMID: 32492839
  73. Zhang, M.; Liu, X.; Chen, Z.; Jiang, S.; Wang, L.; Tao, M.; Miao, L. Method development and validation for simultaneous determination of six tyrosine kinase inhibitors and two active metabolites in human plasma/serum using UPLC–MS/MS for therapeutic drug monitoring. J. Pharm. Biomed. Anal., 2022, 211, 114562. doi: 10.1016/j.jpba.2021.114562 PMID: 35124453
  74. De Jong, L.A.W.; Sparidans, R.W.; van den Heuvel, M.M. Cerebrospinal fluid concentration of the RET inhibitor pralsetinib: A case report. Case Rep. Oncol., 2023, 16(1), 1579-1585. doi: 10.1159/000535172 PMID: 38094038
  75. Sparidans, R.W.; Li, W.; Schinkel, A.H.; Beijnen, J.H. Bioanalytical assay for the novel TRK inhibitor selitrectinib in mouse plasma and tissue homogenates using liquid chromatography-tandem mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2019, 1122-1123, 78-82. doi: 10.1016/j.jchromb.2019.05.026 PMID: 31163324
  76. Dogan-Topal, B.; Li, W.; Schinkel, A.H.; Beijnen, J.H.; Sparidans, R.W. Quantification of FGFR4 inhibitor BLU-554 in mouse plasma and tissue homogenates using liquid chromatography-tandem mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2019, 1110-1111, 116-123. doi: 10.1016/j.jchromb.2019.02.017 PMID: 30802754

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers