Determination of Pralsetinib in Human Plasma and Cerebrospinal Fluid for Therapeutic Drug Monitoring by Ultra-performance Liquid Chromatography-Tandem Mass Spectrometry (UPLC-MS/MS)
- Authors: Zhao Z.1, Pu Q.2, Sun T.1, Huang Q.1, Tong L.3, Fan T.1, Kang J.1, Chen Y.1, Zhang Y.1
-
Affiliations:
- Lung Cancer Center, West China Hospital, Sichuan University
- Research Core Facility, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University
- Lung Cancer Center, West China Hospital, Sichuan University, West China Hospital of Sichuan University
- Issue: Vol 24, No 11 (2024)
- Pages: 867-877
- Section: Oncology
- URL: https://rjsocmed.com/1871-5206/article/view/643755
- DOI: https://doi.org/10.2174/0118715206290110240326071909
- ID: 643755
Cite item
Full Text
Abstract
Background:Ultra-performance Liquid Chromatography-tandem Mass Spectrometry (UPLC-MS/MS) is widely used for concentration detection of many Tyrosine Kinase Inhibitors (TKIs), including afatinib, crizotinib, and osimertinib. In order to analyze whether pralsetinib takes effect in Rearranged during Transfection (RET)-positive patients with central nervous system metastasis, we aimed to develop a method for the detection of pralsetinib concentrations in human plasma and Cerebrospinal Fluid (CSF) by UPLC-MS/MS.
Methods:The method was developed using the external standard method, and method validation included precision, accuracy, stability, extraction recovery, and matrix effect. Working solutions were all obtained based on stock solutions of pralsetinib of 1mg/mL. The plasma/CSF samples were precipitated by acetonitrile for protein precipitation and then separated on an ACQUITY UPLC HSS T3 column (2.1×100 mm, 1.8 µm) with a gradient elution using 0.1% formic acid (solution A) and acetonitrile (solution B) as mobile phases at a flow rate of 0.4 mL/min. The tandem mass spectrometry was performed by a triple quadrupole linear ion trap mass spectrometry system (QTRAPTM 6500+) with an electrospray ion (ESI) source and Analyst 1.7.2 data acquisition system. Data were collected in Multiple Reaction Monitoring (MRM) and positive ionization mode.
Results:A good linear relationship of pralsetinib in both plasma and CSF was successfully established, and the calibration ranges were found to be 1.0-64.0 µg/mL and 50.0ng/mL-12.8 µg/mL for pralsetinib in the plasma and CSF, respectively. Validation was performed, including calibration assessment, selectivity, precision, accuracy, matrix effect, extraction recovery, and stability, and all results have been found to be acceptable. The method has been successfully applied to pralsetinib concentration detection in a clinical sample, and the concentrations have been found to be 475 ng/mL and 61.55 µg/mL in the CSF and plasma, respectively.
Conclusion:We have developed a quick and effective method for concentration detection in both plasma and CSF, and it can be applied for drug monitoring in clinical practice. The method can also provide a reference for further optimization.
About the authors
Zichen Zhao
Lung Cancer Center, West China Hospital, Sichuan University
Email: info@benthamscience.net
Qianlun Pu
Research Core Facility, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University
Email: info@benthamscience.net
Tonglin Sun
Lung Cancer Center, West China Hospital, Sichuan University
Email: info@benthamscience.net
Qian Huang
Lung Cancer Center, West China Hospital, Sichuan University
Email: info@benthamscience.net
Liping Tong
Lung Cancer Center, West China Hospital, Sichuan University, West China Hospital of Sichuan University
Email: info@benthamscience.net
Ting Fan
Lung Cancer Center, West China Hospital, Sichuan University
Email: info@benthamscience.net
Jingyue Kang
Lung Cancer Center, West China Hospital, Sichuan University
Email: info@benthamscience.net
Yuhong Chen
Lung Cancer Center, West China Hospital, Sichuan University
Email: info@benthamscience.net
Yan Zhang
Lung Cancer Center, West China Hospital, Sichuan University
Author for correspondence.
Email: info@benthamscience.net
References
- Hirsch, F.R.; Scagliotti, G.V.; Mulshine, J.L.; Kwon, R.; Curran, W.J., Jr; Wu, Y.L.; Paz-Ares, L. Lung cancer: Current therapies and new targeted treatments. Lancet, 2017, 389(10066), 299-311. doi: 10.1016/S0140-6736(16)30958-8 PMID: 27574741
- Herbst, R.S.; Morgensztern, D.; Boshoff, C. The biology and management of non-small cell lung cancer. Nature, 2018, 553(7689), 446-454. doi: 10.1038/nature25183 PMID: 29364287
- Nicholson, A.G.; Tsao, M.S.; Beasley, M.B.; Borczuk, A.C.; Brambilla, E.; Cooper, W.A.; Dacic, S.; Jain, D.; Kerr, K.M.; Lantuejoul, S.; Noguchi, M.; Papotti, M.; Rekhtman, N.; Scagliotti, G.; van Schil, P.; Sholl, L.; Yatabe, Y.; Yoshida, A.; Travis, W.D. The 2021 WHO classification of lung tumors: Impact of advances since 2015. J. Thorac. Oncol., 2022, 17(3), 362-387. doi: 10.1016/j.jtho.2021.11.003 PMID: 34808341
- Wang, M.; Herbst, R.S.; Boshoff, C. Toward personalized treatment approaches for non-small-cell lung cancer. Nat. Med., 2021, 27(8), 1345-1356. doi: 10.1038/s41591-021-01450-2 PMID: 34385702
- Mok, T.S.; Wu, Y.L.; Ahn, M.J.; Garassino, M.C.; Kim, H.R.; Ramalingam, S.S.; Shepherd, F.A.; He, Y.; Akamatsu, H.; Theelen, W.S.M.E.; Lee, C.K.; Sebastian, M.; Templeton, A.; Mann, H.; Marotti, M.; Ghiorghiu, S.; Papadimitrakopoulou, V.A. Osimertinib or platinumpemetrexed in EGFR T790Mpositive lung cancer. N. Engl. J. Med., 2017, 376(7), 629-640. doi: 10.1056/NEJMoa1612674 PMID: 27959700
- Remon, J.; Steuer, C.E.; Ramalingam, S.S.; Felip, E. Osimertinib and other third-generation EGFR TKI in EGFR-mutant NSCLC patients. Ann. Oncol., 2018, 29(Suppl. 1), i20-i27. doi: 10.1093/annonc/mdx704 PMID: 29462255
- Mok, T.S.; Wu, Y.L.; Thongprasert, S.; Yang, C.H.; Chu, D.T.; Saijo, N.; Sunpaweravong, P.; Han, B.; Margono, B.; Ichinose, Y.; Nishiwaki, Y.; Ohe, Y.; Yang, J.J.; Chewaskulyong, B.; Jiang, H.; Duffield, E.L.; Watkins, C.L.; Armour, A.A.; Fukuoka, M. Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma. N. Engl. J. Med., 2009, 361(10), 947-957. doi: 10.1056/NEJMoa0810699 PMID: 19692680
- Felip, E.; Shaw, A.T.; Bearz, A.; Camidge, D.R.; Solomon, B.J.; Bauman, J.R.; Bauer, T.M.; Peters, S.; Toffalorio, F.; Abbattista, A.; Thurm, H.; Peltz, G.; Wiltshire, R.; Besse, B. Intracranial and extracranial efficacy of lorlatinib in patients with ALK-positive non-small-cell lung cancer previously treated with second-generation ALK TKIs. Ann. Oncol., 2021, 32(5), 620-630. doi: 10.1016/j.annonc.2021.02.012 PMID: 33639216
- Song, Z.; Lv, D.; Chen, S.Q.; Huang, J.; Li, Y.; Ying, S.; Wu, X.; Hua, F.; Wang, W.; Xu, C.; Bei, T.; Gao, C.; Sun, Z.; Zhang, Y.; Lu, S. Pyrotinib in patients with HER2-amplified advanced nonsmall cell lung cancer: A Prospective, Multicenter, Single-Arm Trial. Clin. Cancer Res., 2022, 28(3), 461-467. doi: 10.1158/1078-0432.CCR-21-2936 PMID: 34753778
- Rochette, L.; Zeller, M.; Cottin, Y.; Vergely, C. Insights into mechanisms of GDF15 and receptor GFRAL: Therapeutic targets. Trends Endocrinol. Metab., 2020, 31(12), 939-951. doi: 10.1016/j.tem.2020.10.004 PMID: 33172749
- Engelmann, D.; Koczan, D.; Ricken, P.; Rimpler, U.; Pahnke, J.; Li, Z.; Pützer, B.M. Transcriptome analysis in mouse tumors induced by Ret-MEN2/FMTC mutations reveals subtype-specific role in survival and interference with immune surveillance. Endocr. Relat. Cancer, 2009, 16(1), 211-224. doi: 10.1677/ERC-08-0158 PMID: 18984779
- Li, A.Y.; McCusker, M.G.; Russo, A.; Scilla, K.A.; Gittens, A.; Arensmeyer, K.; Mehra, R.; Adamo, V.; Rolfo, C. RET fusions in solid tumors. Cancer Treat. Rev., 2019, 81, 101911. doi: 10.1016/j.ctrv.2019.101911 PMID: 31715421
- Servetto, A.; Esposito, D.; Ferrara, R.; Signorelli, D.; Belli, S.; Napolitano, F.; Santaniello, A.; Ciciola, P.; Formisano, L.; Bianco, R. RET rearrangements in non-small cell lung cancer: Evolving treatment landscape and future challenges. Biochim. Biophys. Acta Rev. Cancer, 2022, 1877(6), 188810. doi: 10.1016/j.bbcan.2022.188810 PMID: 36202311
- Wang, R.; Hu, H.; Pan, Y.; Li, Y.; Ye, T.; Li, C.; Luo, X.; Wang, L.; Li, H.; Zhang, Y.; Li, F.; Lu, Y.; Lu, Q.; Xu, J.; Garfield, D.; Shen, L.; Ji, H.; Pao, W.; Sun, Y.; Chen, H. RET fusions define a unique molecular and clinicopathologic subtype of non-small-cell lung cancer. J. Clin. Oncol., 2012, 30(35), 4352-4359. doi: 10.1200/JCO.2012.44.1477 PMID: 23150706
- Drilon, A.; Lin, J.J.; Filleron, T.; Ni, A.; Milia, J.; Bergagnini, I.; Hatzoglou, V.; Velcheti, V.; Offin, M.; Li, B.; Carbone, D.P.; Besse, B.; Mok, T.; Awad, M.M.; Wolf, J.; Owen, D.; Camidge, D.R.; Riely, G.J.; Peled, N.; Kris, M.G.; Mazieres, J.; Gainor, J.F.; Gautschi, O. Frequency of brain metastases and multikinase inhibitor outcomes in patients with RETrearranged lung cancers. J. Thorac. Oncol., 2018, 13(10), 1595-1601. doi: 10.1016/j.jtho.2018.07.004 PMID: 30017832
- Subbiah, V.; Gainor, J.F.; Rahal, R.; Brubaker, J.D.; Kim, J.L.; Maynard, M.; Hu, W.; Cao, Q.; Sheets, M.P.; Wilson, D.; Wilson, K.J.; DiPietro, L.; Fleming, P.; Palmer, M.; Hu, M.I.; Wirth, L.; Brose, M.S.; Ou, S.H.I.; Taylor, M.; Garralda, E.; Miller, S.; Wolf, B.; Lengauer, C.; Guzi, T.; Evans, E.K. Precision targeted therapy with BLU-667 for RET -driven cancers. Cancer Discov., 2018, 8(7), 836-849. doi: 10.1158/2159-8290.CD-18-0338 PMID: 29657135
- Gainor, J.F.; Curigliano, G.; Kim, D.W.; Lee, D.H.; Besse, B.; Baik, C.S.; Doebele, R.C.; Cassier, P.A.; Lopes, G.; Tan, D.S.W.; Garralda, E.; Paz-Ares, L.G.; Cho, B.C.; Gadgeel, S.M.; Thomas, M.; Liu, S.V.; Taylor, M.H.; Mansfield, A.S.; Zhu, V.W.; Clifford, C.; Zhang, H.; Palmer, M.; Green, J.; Turner, C.D.; Subbiah, V. Pralsetinib for RET fusion-positive non-small-cell lung cancer (ARROW): A multi-cohort, open-label, phase 1/2 study. Lancet Oncol., 2021, 22(7), 959-969. doi: 10.1016/S1470-2045(21)00247-3 PMID: 34118197
- Griesinger, F.; Curigliano, G.; Thomas, M.; Subbiah, V.; Baik, C.S.; Tan, D.S.W.; Lee, D.H.; Misch, D.; Garralda, E.; Kim, D.W.; van der Wekken, A.J.; Gainor, J.F.; Paz-Ares, L.; Liu, S.V.; Kalemkerian, G.P.; Houvras, Y.; Bowles, D.W.; Mansfield, A.S.; Lin, J.J.; Smoljanovic, V.; Rahman, A.; Kong, S.; Zalutskaya, A.; Louie-Gao, M.; Boral, A.L.; Mazières, J. Safety and efficacy of pralsetinib in RET fusionpositive non-small-cell lung cancer including as first-line therapy: Update from the ARROW trial. Ann. Oncol., 2022, 33(11), 1168-1178. doi: 10.1016/j.annonc.2022.08.002 PMID: 35973665
- Subbiah, V.; Hu, M.I.; Wirth, L.J.; Schuler, M.; Mansfield, A.S.; Curigliano, G.; Brose, M.S.; Zhu, V.W.; Leboulleux, S.; Bowles, D.W.; Baik, C.S.; Adkins, D.; Keam, B.; Matos, I.; Garralda, E.; Gainor, J.F.; Lopes, G.; Lin, C.C.; Godbert, Y.; Sarker, D.; Miller, S.G.; Clifford, C.; Zhang, H.; Turner, C.D.; Taylor, M.H. Pralsetinib for patients with advanced or metastatic RET-altered thyroid cancer (ARROW): A multi-cohort, open-label, registrational, phase 1/2 study. Lancet Diabetes Endocrinol., 2021, 9(8), 491-501. doi: 10.1016/S2213-8587(21)00120-0 PMID: 34118198
- Subbiah, V.; Hu, M.I.; Mansfield, A.S.; Taylor, M.H.; Schuler, M.; Zhu, V.W.; Hadoux, J.; Curigliano, G.; Wirth, L.; Gainor, J.F.; Alonso, G.; Adkins, D.; Godbert, Y.; Ahn, M.J.; Cassier, P.A.; Cho, B.C.; Lin, C.C.; Zalutskaya, A.; Barata, T.; Trask, P.; Scalori, A.; Bordogna, W.; Heinzmann, S.; Brose, M.S. Pralsetinib in Patients with advanced/metastatic Rearranged During Transfection (RET)-altered thyroid cancer: Updated efficacy and safety data from the ARROW study. Thyroid, 2024, 34(1), 26-40. doi: 10.1089/thy.2023.0363 PMID: 38009200
- Russo, G.L.; Bironzo, P.; Bennati, C.; Bonanno, L.; Catino, A.; Metro, G.; Petrini, I.; Russano, M.; Passaro, A. Clinical evidence and adverse event management update of patients with RET- rearranged advanced non-small-cell lung cancer (NSCLC) treated with pralsetinib. Crit. Rev. Oncol. Hematol., 2024, 194, 104243. doi: 10.1016/j.critrevonc.2023.104243 PMID: 38135019
- Reis, R.; Labat, L.; Allard, M.; Boudou-Rouquette, P.; Chapron, J.; Bellesoeur, A.; Thomas-Schoemann, A.; Arrondeau, J.; Giraud, F.; Alexandre, J.; Vidal, M.; Goldwasser, F.; Blanchet, B. Liquid chromatography-tandem mass spectrometric assay for therapeutic drug monitoring of the EGFR inhibitors afatinib, erlotinib and osimertinib, the ALK inhibitor crizotinib and the VEGFR inhibitor nintedanib in human plasma from non-small cell lung cancer patients. J. Pharm. Biomed. Anal., 2018, 158, 174-183. doi: 10.1016/j.jpba.2018.05.052 PMID: 29883880
- Sparidans, R.W.; Rosing, H.; Rood, J.J.M.; Schellens, J.H.M.; Beijnen, J.H. Liquid chromatography-tandem mass spectrometric assay for therapeutic drug monitoring of the B-Raf inhibitor encorafenib, the EGFR inhibitors afatinib, erlotinib and gefitinib and the O-desmethyl metabolites of erlotinib and gefitinib in human plasma. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2016, 1033-1034, 390-398. doi: 10.1016/j.jchromb.2016.09.012 PMID: 27639128
- Bustillo, M.; Zabala, A.; Querejeta, I.; Carton, J.I.; Mentxaka, O.; González-Pinto, A.; García, S.; Meana, J.J.; Eguiluz, J.I.; Segarra, R. Therapeutic drug monitoring of second-generation antipsychotics for the estimation of early drug effect in first-episode psychosis: A cross-sectional assessment. Ther. Drug Monit., 2018, 40(2), 257-267. doi: 10.1097/FTD.0000000000000480 PMID: 29369974
- Haouala, A.; Zanolari, B.; Rochat, B.; Montemurro, M.; Zaman, K.; Duchosal, M.A.; Ris, H.B.; Leyvraz, S.; Widmer, N.; Decosterd, L.A. Therapeutic Drug Monitoring of the new targeted anticancer agents imatinib, nilotinib, dasatinib, sunitinib, sorafenib and lapatinib by LC tandem mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2009, 877(22), 1982-1996. doi: 10.1016/j.jchromb.2009.04.045 PMID: 19505856
- Huang, R.S.; Ratain, M.J. Pharmacogenetics and pharmacogenomics of anticancer agents. CA Cancer J. Clin., 2009, 59(1), 42-55. doi: 10.3322/caac.20002 PMID: 19147868
- Yan, S.; Yang, L.; Lu, L.; Guo, Q.; Hu, X.; Yuan, Y.; Li, Y.; Wu, M.; Zhang, J. Improved pharmacokinetic characteristics and bioactive effects of anticancer enzyme delivery systems. Expert Opin. Drug Metab. Toxicol., 2018, 14(9), 951-960. doi: 10.1080/17425255.2018.1505863 PMID: 30058385
- Widmer, N.; Bardin, C.; Chatelut, E.; Paci, A.; Beijnen, J.; Levêque, D.; Veal, G.; Astier, A. Review of therapeutic drug monitoring of anticancer drugs part two Targeted therapies. Eur. J. Cancer, 2014, 50(12), 2020-2036. doi: 10.1016/j.ejca.2014.04.015 PMID: 24928190
- Panda, S.S. Bioanalysis of anticancer agents: Evaluating LC-MS/MS procedures with greenness metrics. Trac-Trend. Anal. Chem., 2023, 169, 117394.
- Li, Y.; Meng, L.; Ma, Y.; Li, Y.; Xing, X.; Guo, C.; Dong, Z. Determination of osimertinib, aumolertinib, and furmonertinib in human plasma for therapeutic drug monitoring by UPLC-MS/MS. Molecules, 2022, 27(14), 4474. doi: 10.3390/molecules27144474 PMID: 35889345
- Seyfinejad, B.; Jouyban, A. Overview of therapeutic drug monitoring of immunosuppressive drugs: Analytical and clinical practices. J. Pharm. Biomed. Anal., 2021, 205, 114315. doi: 10.1016/j.jpba.2021.114315 PMID: 34399192
- Pieri, M.; Miraglia, N.; Polichetti, G.; Tarantino, G.; Acampora, A.; Capone, D. Analytical and pharmacological aspects of therapeutic drug monitoring of mTOR inhibitors. Curr. Drug Metab., 2011, 12(3), 253-267. doi: 10.2174/138920011795101868 PMID: 21342112
- Pardi, J.; Ford, S.; Cooper, G. Validation of an analytical method for quantitation of metonitazene and isotonitazene in plasma, blood, urine, liver and brain and application to authentic postmortem casework in New York City. J. Anal. Toxicol., 2023, 47(8), 648-655. doi: 10.1093/jat/bkad062 PMID: 37638699
- Qi, Y.; Liu, G. Ultra-performance liquid chromatography-tandem mass spectrometry for simultaneous determination of antipsychotic drugs in human plasma and its application in therapeutic drug monitoring. Drug Des. Devel. Ther., 2021, 15, 463-479. doi: 10.2147/DDDT.S290963 PMID: 33613026
- Li, G.; Zhao, M.; Zhao, L. Ultra-performance liquid chromatography-tandem mass spectrometry for simultaneous determination of 12 anti-tumor drugs in human plasma and its application in therapeutic drug monitoring. J. Pharm. Biomed. Anal., 2021, 206, 114380. doi: 10.1016/j.jpba.2021.114380 PMID: 34607204
- Lu, S.; Zhao, M.; Zhao, L.; Li, G. Development of a UPLCMS/MS method for simultaneous therapeutic drug monitoring of anti-hepatocellular carcinoma drugs and analgesics in human plasma. Front. Pharmacol., 2023, 14, 1136735. doi: 10.3389/fphar.2023.1136735 PMID: 37324468
- Ye, Z.; Wu, L.; Zhang, X.; Hu, Y.; Zheng, L. Quantification of sorafenib, lenvatinib, and apatinib in human plasma for therapeutic drug monitoring by UPLC-MS/MS. J. Pharm. Biomed. Anal., 2021, 202, 114161. doi: 10.1016/j.jpba.2021.114161 PMID: 34052550
- Gu, E.M.; Liu, Y.N.; Pan, L.; Hu, Y.; Ye, X.; Luo, P. A high throughput method for Monitoring of Sorafenib, regorafenib, cabozantinib and their metabolites with UPLC-MS/MS in rat plasma. Front. Pharmacol., 2022, 13, 955263. doi: 10.3389/fphar.2022.955263 PMID: 36160432
- Yu, M.; Liu, A.; Liu, S.; Wu, X.; Zhang, X.; Li, H.; Wang, H. Development and validation of a UPLCMS/MS method for determination of SYHA1807 in a first-in-human study. Bioanalysis, 2023, 15(24), 1489-1501. doi: 10.4155/bio-2023-0143 PMID: 37991204
- Veerman, G.D.M.; Lam, M.H.; Mathijssen, R.H.J.; Koolen, S.L.W.; de Bruijn, P. Quantification of afatinib, alectinib, crizotinib and osimertinib in human plasma by liquid chromatography/triple-quadrupole mass spectrometry; focusing on the stability of osimertinib. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2019, 1113, 37-44. doi: 10.1016/j.jchromb.2019.03.011 PMID: 30889498
- Roberts, M.S.; Turner, D.C.; Broniscer, A.; Stewart, C.F. Determination of crizotinib in human and mouse plasma by liquid chromatography electrospray ionizationtandem mass spectrometry (LC-ESIMS/MS). J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2014, 960, 151-157. doi: 10.1016/j.jchromb.2014.04.035 PMID: 24811158
- Rood, J.J.M.; van Bussel, M.T.J.; Schellens, J.H.M.; Beijnen, J.H.; Sparidans, R.W. Liquid chromatographytandem mass spectrometric assay for the T790M mutant EGFR inhibitor osimertinib (AZD9291) in human plasma. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2016, 1031, 80-85. doi: 10.1016/j.jchromb.2016.07.037 PMID: 27469903
- Heinig, K.; Miya, K.; Kamei, T.; Guerini, E.; Fraier, D.; Yu, L.; Bansal, S.; Morcos, P.N. Bioanalysis of alectinib and metabolite M4 in human plasma, cross-validation and impact on PK assessment. Bioanalysis, 2016, 8(14), 1465-1479. doi: 10.4155/bio-2016-0068 PMID: 27329641
- Nave, O.P. Modification of semi-analytical method applied system of ODE. Mod. Appl. Sci., 2020, 14(6), 75. doi: 10.5539/mas.v14n6p75
- Rood, J.J.M.; Schellens, J.H.M.; Beijnen, J.H.; Sparidans, R.W. Recent developments in the chromatographic bioanalysis of approved kinase inhibitor drugs in oncology. J. Pharm. Biomed. Anal., 2016, 130, 244-263. doi: 10.1016/j.jpba.2016.06.037 PMID: 27460293
- Wang, Y.; Sparidans, R.W.; Potters, S.; Lebre, M.C.; Beijnen, J.H.; Schinkel, A.H. ABCB1 and ABCG2, but not CYP3A4 limit oral availability and brain accumulation of the RET inhibitor pralsetinib. Pharmacol. Res., 2021, 172, 105850. doi: 10.1016/j.phrs.2021.105850 PMID: 34450308
- Zhao, Z.; Su, C.; Xiu, W.; Wang, W.; Zeng, S.; Huang, M.; Gong, Y.; Lu, Y.; Zhang, Y. Response to Pralsetinib Observed in Meningeal-Metastatic EGFR-Mutant NSCLC With Acquired RET Fusion: A Brief Report. JTO Clinical and Research Reports, 2022, 3(6), 100343. doi: 10.1016/j.jtocrr.2022.100343 PMID: 35711719
- Pan, K.; Concannon, K.; Li, J.; Zhang, J.; Heymach, J.V.; Le, X. Emerging therapeutics and evolving assessment criteria for intracranial metastases in patients with oncogene-driven non-small-cell lung cancer. Nat. Rev. Clin. Oncol., 2023, 20(10), 716-732. doi: 10.1038/s41571-023-00808-4 PMID: 37592034
- Li, D.; Song, Z.; Dong, B.; Song, W. cheng, C.; Zhang, Y.; Zhang, W. Advances in targeted therapy in non-small cell lung cancer with actionable mutations and leptomeningeal metastasis. J. Clin. Pharm. Ther., 2022, 47(1), 24-32. doi: 10.1111/jcpt.13489 PMID: 34309914
- Ozcan, G.; Singh, M.; Vredenburgh, J.J. Leptomeningeal metastasis from nonsmall cell lung cancer and current landscape of treatments. Clin. Cancer Res., 2023, 29(1), 11-29. doi: 10.1158/1078-0432.CCR-22-1585 PMID: 35972437
- Şentürk, R.; Wang, Y.; Schinkel, A.H.; Beijnen, J.H.; Sparidans, R.W. Quantitative bioanalytical assay for the selective RET inhibitors selpercatinib and pralsetinib in mouse plasma and tissue homogenates using liquid chromatography-tandem mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2020, 1147, 122131. doi: 10.1016/j.jchromb.2020.122131 PMID: 32416592
- Verheijen, R.B.; Yu, H.; Schellens, J.H.M.; Beijnen, J.H.; Steeghs, N.; Huitema, A.D.R. Practical recommendations for therapeutic drug monitoring of kinase inhibitors in oncology. Clin. Pharmacol. Ther., 2017, 102(5), 765-776. doi: 10.1002/cpt.787 PMID: 28699160
- Mueller-Schoell, A.; Groenland, S.L.; Scherf-Clavel, O.; van Dyk, M.; Huisinga, W.; Michelet, R.; Jaehde, U.; Steeghs, N.; Huitema, A.D.R.; Kloft, C. Therapeutic drug monitoring of oral targeted antineoplastic drugs. Eur. J. Clin. Pharmacol., 2021, 77(4), 441-464. doi: 10.1007/s00228-020-03014-8 PMID: 33165648
- Brodie, R.R.; Hill, H.M. Validation issues arising from the new FDA guidance for industry on bioanalytical method validation. Chromatographia, 2002, 55(S1), S91-S94. doi: 10.1007/BF02493361
- Bevers, L.A.H. van Ewijk - Beneken Kolmer, E.W.J.; Te Brake, H.M.L.; Burger, D.M. Development, validation and clinical implementation of a UPLC-MS/MS bioanalytical method for simultaneous quantification of cabotegravir and rilpivirine E-isomer in human plasma. J. Pharm. Biomed. Anal., 2024, 238, 115832. doi: 10.1016/j.jpba.2023.115832 PMID: 37976991
- Qin, C.; Feng, W.; Chu, Y.; Lee, J.B.; Berton, M.; Bettonte, S.; Teo, Y.Y.; Stocks, M.J.; Fischer, P.M.; Gershkovich, P. Development and validation of a cost-effective and sensitive bioanalytical HPLC-UV method for determination of lopinavir in rat and human plasma. Biomed. Chromatogr., 2020, 34(11), e4934. doi: 10.1002/bmc.4934 PMID: 32598032
- Wang, H.; Wang, Z.; Zhang, G.; Zhang, M.; Zhang, X.; Li, H.; Zheng, X.; Ma, Z. Driver genes as predictive indicators of brain metastasis in patients with advanced NSCLC: EGFR, ALK, and RET gene mutations. Cancer Med., 2020, 9(2), 487-495. doi: 10.1002/cam4.2706 PMID: 31769228
- Evans, E.; Hu, W.; Cao, F.; Hoeflich, K.; Dorsch, M. Pralsetinib (BLU-667) demonstrates robust activity in RET fusion-driven intracranial tumor models. J. Thorac. Oncol., 2019, 14(10), S701.
- Passaro, A.; Russo, G.L.; Passiglia, F.; DArcangelo, M.; Sbrana, A.; Russano, M.; Bonanno, L.; Giusti, R.; Metro, G.; Bertolini, F.; Grisanti, S.; Carta, A.; Cecere, F.; Montrone, M.; Massa, G.; Perrone, F.; Simionato, F.; Guaitoli, G.; Scotti, V.; Genova, C.; Lugini, A.; Bonomi, L.; Attili, I.; de Marinis, F. Pralsetinib in RET fusion-positive non-small-cell lung cancer: A real-world data (RWD) analysis from the Italian expanded access program (EAP). Lung Cancer, 2022, 174, 118-124. doi: 10.1016/j.lungcan.2022.11.005 PMID: 36379124
- Subbiah, V.; Berry, J.; Roxas, M.; Guha-Thakurta, N.; Subbiah, I.M.; Ali, S.M.; McMahon, C.; Miller, V.; Cascone, T.; Pai, S.; Tang, Z.; Heymach, J.V. Systemic and CNS activity of the RET inhibitor vandetanib combined with the mTOR inhibitor everolimus in KIF5B-RET re-arranged non-small cell lung cancer with brain metastases. Lung Cancer, 2015, 89(1), 76-79. doi: 10.1016/j.lungcan.2015.04.004 PMID: 25982012
- Subbiah, V.; Gainor, J.F.; Oxnard, G.R.; Tan, D.S.W.; Owen, D.H.; Cho, B.C.; Loong, H.H.; McCoach, C.E.; Weiss, J.; Kim, Y.J.; Bazhenova, L.; Park, K.; Daga, H.; Besse, B.; Gautschi, O.; Rolfo, C.; Zhu, E.Y.; Kherani, J.F.; Huang, X.; Kang, S.; Drilon, A. Intracranial efficacy of selpercatinib in RET fusion-positive nonsmall cell lung cancers on the LIBRETTO-001 trial. Clin. Cancer Res., 2021, 27(15), 4160-4167. doi: 10.1158/1078-0432.CCR-21-0800 PMID: 34088726
- Levin, V.A.; Ellingson, B.M. Understanding brain penetrance of anticancer drugs. Neuro-oncol., 2018, 20(5), 589-596. doi: 10.1093/neuonc/noy018 PMID: 29474640
- Angeli, E.; Nguyen, T.T.; Janin, A.; Bousquet, G. How to make anticancer drugs cross the bloodbrain barrier to treat brain metastases. Int. J. Mol. Sci., 2019, 21(1), 22. doi: 10.3390/ijms21010022 PMID: 31861465
- Lockman, P.R.; Mittapalli, R.K.; Taskar, K.S.; Rudraraju, V.; Gril, B.; Bohn, K.A.; Adkins, C.E.; Roberts, A.; Thorsheim, H.R.; Gaasch, J.A.; Huang, S.; Palmieri, D.; Steeg, P.S.; Smith, Q.R. Heterogeneous blood-tumor barrier permeability determines drug efficacy in experimental brain metastases of breast cancer. Clin. Cancer Res., 2010, 16(23), 5664-5678. doi: 10.1158/1078-0432.CCR-10-1564 PMID: 20829328
- Li, W.; Sparidans, R.W.; Wang, Y.; Lebre, M.C.; Beijnen, J.H.; Schinkel, A.H. P-glycoprotein and breast cancer resistance protein restrict brigatinib brain accumulation and toxicity, and, alongside CYP3A, limit its oral availability. Pharmacol. Res., 2018, 137, 47-55. doi: 10.1016/j.phrs.2018.09.020 PMID: 30253203
- Wang, Y.; Sparidans, R.W.; Li, W.; Lebre, M.C.; Beijnen, J.H.; Schinkel, A.H. OATP1A/1B, CYP3A, ABCB1, and ABCG2 limit oral availability of the NTRK inhibitor larotrectinib, while ABCB1 and ABCG2 also restrict its brain accumulation. Br. J. Pharmacol., 2020, 177(13), 3060-3074. doi: 10.1111/bph.15034 PMID: 32087611
- Perez de Souza, L.; Alseekh, S.; Scossa, F.; Fernie, A.R. Ultra-high-performance liquid chromatography high-resolution mass spectrometry variants for metabolomics research. Nat. Methods, 2021, 18(7), 733-746. doi: 10.1038/s41592-021-01116-4 PMID: 33972782
- Liu, G.; Snapp, H.M.; Ji, Q.C.; Arnold, M.E. Strategy of accelerated method development for high-throughput bioanalytical assays using ultra high-performance liquid chromatography coupled with mass spectrometry. Anal. Chem., 2009, 81(22), 9225-9232. doi: 10.1021/ac901316w PMID: 19856950
- Jemal, M.; Ouyang, Z.; Xia, Y.Q. Systematic LC-MS/MS bioanalytical method development that incorporates plasma phospholipids risk avoidance, usage of incurred sample and well thought-out chromatography. Biomed. Chromatogr., 2010, 24(1), 2-19. doi: 10.1002/bmc.1373 PMID: 20017121
- Forcisi, S.; Moritz, F.; Kanawati, B.; Tziotis, D.; Lehmann, R.; Schmitt-Kopplin, P. Liquid chromatographymass spectrometry in metabolomics research: Mass analyzers in ultra high pressure liquid chromatography coupling. J. Chromatogr. A, 2013, 1292, 51-65. doi: 10.1016/j.chroma.2013.04.017 PMID: 23631876
- Liu, C.C.; Liang, L.H.; Yang, Y.; Yu, H.L.; Yan, L.; Li, X.S.; Chen, B.; Liu, S.L.; Xi, H.L. Direct acetonitrile-assisted trypsin digestion method combined with LCMS/MS-targeted peptide analysis for unambiguous identification of intact ricin. J. Proteome Res., 2021, 20(1), 369-380. doi: 10.1021/acs.jproteome.0c00458 PMID: 33108200
- Ondrej, M.; Rehulka, P.; Rehulkova, H.; Kupcik, R.; Tichy, A. Fractionation of enriched phosphopeptides using pH/Acetonitrile-gradient-reversed-phase microcolumn separation in combination with LCMS/MS analysis. Int. J. Mol. Sci., 2020, 21(11), 3971. doi: 10.3390/ijms21113971 PMID: 32492839
- Zhang, M.; Liu, X.; Chen, Z.; Jiang, S.; Wang, L.; Tao, M.; Miao, L. Method development and validation for simultaneous determination of six tyrosine kinase inhibitors and two active metabolites in human plasma/serum using UPLCMS/MS for therapeutic drug monitoring. J. Pharm. Biomed. Anal., 2022, 211, 114562. doi: 10.1016/j.jpba.2021.114562 PMID: 35124453
- De Jong, L.A.W.; Sparidans, R.W.; van den Heuvel, M.M. Cerebrospinal fluid concentration of the RET inhibitor pralsetinib: A case report. Case Rep. Oncol., 2023, 16(1), 1579-1585. doi: 10.1159/000535172 PMID: 38094038
- Sparidans, R.W.; Li, W.; Schinkel, A.H.; Beijnen, J.H. Bioanalytical assay for the novel TRK inhibitor selitrectinib in mouse plasma and tissue homogenates using liquid chromatography-tandem mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2019, 1122-1123, 78-82. doi: 10.1016/j.jchromb.2019.05.026 PMID: 31163324
- Dogan-Topal, B.; Li, W.; Schinkel, A.H.; Beijnen, J.H.; Sparidans, R.W. Quantification of FGFR4 inhibitor BLU-554 in mouse plasma and tissue homogenates using liquid chromatography-tandem mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2019, 1110-1111, 116-123. doi: 10.1016/j.jchromb.2019.02.017 PMID: 30802754
Supplementary files
