Tumor-associated Macrophages Mediate Gefitinib Resistance in Lung Cancer through HGF/c-met Signaling Pathway
- Authors: Tang X.1, Chen Y.1, Jiao D.1, Liu X.1, Chen J.1, Liu Y.2, Jiang C.1, Chen Q.1
-
Affiliations:
- Pulmonary and Critical Care Medicine, The 903rd Hospital of PLA
- School of the 1st Clinical Medical Sciences, Wenzhou Medical University
- Issue: Vol 24, No 1 (2024)
- Pages: 30-38
- Section: Oncology
- URL: https://rjsocmed.com/1871-5206/article/view/643673
- DOI: https://doi.org/10.2174/0118715206261966231103043418
- ID: 643673
Cite item
Full Text
Abstract
Background::The biological behavior of cells changes after they develop drug resistance, and the degree of resistance will be affected by the tumor microenvironment. In this study, we aimed to study the effects of M2 macrophages on gefitinib resistance.
Methods:We polarized THP-1 cells into M0 and M2 macrophages, and conducted various experiments to investigate the effects of M2 macrophages on gefitinib resistance in lung cancer.
Results:We found that M2 macrophages promote gefitinib resistance in HCC827 and PC9 cells. In addition, we used ELISA to measure the secretion level of HGF. HGF secretion levels were significantly increased in M2 macrophages. Exogenous HGF remarkably increased the proliferation and invasion in HCC827 and PC9 cells. However, the addition of anti-HGF antibodies abolished the proliferation and invasion of both HCC827 and PC9 cells promoted by M2 macrophages. Furthermore, M2 macrophages or exogenous HGF significantly increased the expression of p-met and p-ERK in HCC827 and PC9 cells, while anti-HGF antibodies diminished the expression of p-met and p-ERK by neutralizing HGF in M2 macrophages.
Conclusion::Our results revealed that M2 macrophages promote gefitinib resistance by activating ERK and HGF/c-met signaling pathways in HCC827 and PC9 cells. Our findings provide a new therapeutic strategy for gefitinib resistance in lung cancer.
About the authors
Xiali Tang
Pulmonary and Critical Care Medicine, The 903rd Hospital of PLA
Email: info@benthamscience.net
Yu Chen
Pulmonary and Critical Care Medicine, The 903rd Hospital of PLA
Email: info@benthamscience.net
Demin Jiao
Pulmonary and Critical Care Medicine, The 903rd Hospital of PLA
Email: info@benthamscience.net
Xiang Liu
Pulmonary and Critical Care Medicine, The 903rd Hospital of PLA
Email: info@benthamscience.net
Jun Chen
Pulmonary and Critical Care Medicine, The 903rd Hospital of PLA
Email: info@benthamscience.net
Yongyang Liu
School of the 1st Clinical Medical Sciences, Wenzhou Medical University
Email: info@benthamscience.net
Chunyan Jiang
Pulmonary and Critical Care Medicine, The 903rd Hospital of PLA
Author for correspondence.
Email: info@benthamscience.net
Qingyong Chen
Pulmonary and Critical Care Medicine, The 903rd Hospital of PLA
Author for correspondence.
Email: info@benthamscience.net
References
- Lee, C.; Kim, M.; Kim, D.W.; Kim, T.M.; Kim, S.; Im, S.W.; Jeon, Y.K.; Keam, B.; Ku, J.L.; Heo, D.S. Acquired resistance mechanism of EGFR kinase domain duplication to EGFR TKIs in non-small cell lung cancer. Cancer Res. Treat., 2022, 54(1), 140-149. doi: 10.4143/crt.2021.385 PMID: 33940786
- Chen, J.; Jiao, D.; Li, Y.; Jiang, C.; Tang, X.; Song, J.; Chen, Q. Mogroside V inhibits hyperglycemia-induced lung cancer cells metastasis through reversing EMT and damaging cytoskeleton. Curr. Cancer Drug Targets, 2019, 19(11), 885-895. doi: 10.2174/1568009619666190619154240 PMID: 31215378
- Wang, Z.; Quan, Y.; Li, S.; Wang, Y.; Liu, G.; Lv, Z. Propofol and sevoflurane alleviate malignant biological behavior and cisplatin resistance of xuanwei lung adenocarcinoma by modulating the Wnt/β-catenin pathway and PI3K/AKT pathway. Anticancer. Agents Med. Chem., 2022, 22(11), 2098-2108. doi: 10.2174/1871520621666211026092405 PMID: 35152870
- Zhang, G.; Xia, P.; Zhao, S.; Yuan, L.; Wang, X.; Li, X.; Li, J. Gefitinib combined with cetuximab for the treatment of lung adenocarcinoma harboring the EGFR intergenic region (SEC61G) fusion and EGFR amplification. Oncologist, 2021, 26(11), e1898-e1902. doi: 10.1002/onco.13921 PMID: 34342091
- Unnisa, A.; Chettupalli, A.K.; Hussain, T.; Kamal, M.A. Recent advances in epidermal growth factor receptor inhibitors (EGFRIs) and their role in the treatment of cancer: A review. Anticancer. Agents Med. Chem., 2022, 22(20), 3370-3381. doi: 10.2174/1871520622666220408090541 PMID: 35400324
- Li, G.; Ma, Y.; Yu, M.; Li, X.; Chen, X.; Gao, Y.; Cheng, P.; Zhang, G.; Wang, X. Identification of hub genes and small molecule drugs associated with acquired resistance to gefitinib in non-small cell lung cancer. J. Cancer, 2021, 12(17), 5286-5295. doi: 10.7150/jca.56506 PMID: 34335945
- Westover, D.; Zugazagoitia, J.; Cho, B.C.; Lovly, C.M.; Paz-Ares, L. Mechanisms of acquired resistance to first- and second-generation EGFR tyrosine kinase inhibitors. Ann. Oncol., 2018, 29(S1), i10-i19. doi: 10.1093/annonc/mdx703 PMID: 29462254
- Kang, X.H.; Xu, Z.Y.; Gong, Y.B.; Wang, L.; Wang, Z.Q.; Xu, L.; Cao, F.; Liao, M. Bufalin reverses HGF-induced resistance to EGFR-TKIs in EGFR mutant lung cancer cells via blockage of Met/PI3k/Akt pathway and induction of apoptosis. Evid. Based Complement. Alternat. Med., 2013, 2013, 1-9. doi: 10.1155/2013/243859 PMID: 23533466
- Morgillo, F.; Della Corte, C.M.; Fasano, M.; Ciardiello, F. Mechanisms of resistance to EGFR-targeted drugs: Lung cancer. ESMO Open, 2016, 1(3), e000060. doi: 10.1136/esmoopen-2016-000060 PMID: 27843613
- Jia, Y.; Yun, C.H.; Park, E.; Ercan, D.; Manuia, M.; Juarez, J.; Xu, C.; Rhee, K.; Chen, T.; Zhang, H.; Palakurthi, S.; Jang, J.; Lelais, G.; DiDonato, M.; Bursulaya, B.; Michellys, P.Y.; Epple, R.; Marsilje, T.H.; McNeill, M.; Lu, W.; Harris, J.; Bender, S.; Wong, K.K.; Jänne, P.A.; Eck, M.J. Overcoming EGFR(T790M) and EGFR(C797S) resistance with mutant-selective allosteric inhibitors. Nature, 2016, 534(7605), 129-132. doi: 10.1038/nature17960 PMID: 27251290
- Lin, Y.T.; Tsai, T.H.; Wu, S.G.; Liu, Y.N.; Yu, C.J.; Shih, J.Y. Complex EGFR mutations with secondary T790M mutation confer shorter osimertinib progression-free survival and overall survival in advanced non-small cell lung cancer. Lung Cancer, 2020, 145, 1-9. doi: 10.1016/j.lungcan.2020.04.022 PMID: 32387812
- Baldacci, S.; Kherrouche, Z.; Cockenpot, V.; Stoven, L.; Copin, M.C.; Werkmeister, E.; Marchand, N.; Kyheng, M.; Tulasne, D.; Cortot, A.B. MET amplification increases the metastatic spread of EGFR-mutated NSCLC. Lung Cancer, 2018, 125, 57-67. doi: 10.1016/j.lungcan.2018.09.008 PMID: 30429039
- Miranda, O.; Farooqui, M.; Siegfried, J. Status of agents targeting the HGF/c-met axis in lung Cancer. Cancers, 2018, 10(9), 280. doi: 10.3390/cancers10090280 PMID: 30134579
- Morgillo, F.; Kim, W.Y.; Kim, E.S.; Ciardiello, F.; Hong, W.K.; Lee, H.Y. Implication of the insulin-like growth factor-IR pathway in the resistance of non-small cell lung cancer cells to treatment with gefitinib. Clin. Cancer Res., 2007, 13(9), 2795-2803. doi: 10.1158/1078-0432.CCR-06-2077 PMID: 17473213
- Song, X.; Tang, W.; Peng, H.; Qi, X.; Li, J. FGFR leads to sustained activation of STAT3 to mediate resistance to EGFR-TKIs treatment. Invest. New Drugs, 2021, 39(5), 1201-1212. doi: 10.1007/s10637-021-01061-1 PMID: 33829354
- Ballas, M.S.; Chachoua, A. Rationale for targeting VEGF, FGF, and PDGF for the treatment of NSCLC. OncoTargets Ther., 2011, 4, 43-58. doi: 10.2147/OTT.S18155 PMID: 21691577
- Liu, X.; Jiang, T.; Li, X.; Zhao, C.; Li, J.; Zhou, F.; Zhang, L.; Zhao, S.; Jia, Y.; Shi, J.; Gao, G.; Li, W.; Zhao, J.; Chen, X.; Su, C.; Ren, S.; Zhou, C. Exosomes transmit T790M mutation-induced resistance in EGFR-mutant NSCLC by activating PI3K/AKT signalling pathway. J. Cell. Mol. Med., 2020, 24(2), 1529-1540. doi: 10.1111/jcmm.14838 PMID: 31894895
- Liu, Z.; Ma, L.; Sun, Y.; Yu, W.; Wang, X. Targeting STAT3 signaling overcomes gefitinib resistance in non-small cell lung cancer. Cell Death Dis., 2021, 12(6), 561. doi: 10.1038/s41419-021-03844-z PMID: 34059647
- Weng, C.H.; Chen, L.Y.; Lin, Y.C.; Shih, J.Y.; Lin, Y.C.; Tseng, R.Y.; Chiu, A.C.; Yeh, Y.H.; Liu, C.; Lin, Y.T.; Fang, J.M.; Chen, C.C. Epithelial-mesenchymal transition (EMT) beyond EGFR mutations per se is a common mechanism for acquired resistance to EGFR TKI. Oncogene, 2019, 38(4), 455-468. doi: 10.1038/s41388-018-0454-2 PMID: 30111817
- Fiore, M.; Trecca, P.; Perrone, G.; Amato, M.; Righi, D.; Trodella, L.; DAngelillo, R.M.; Ramella, S. Histologic transformation to small-cell lung cancer following gefitinib and radiotherapy in a patient with pulmonary adenocarcinoma. Tumori, 2019, 105(6), NP12-NP16. doi: 10.1177/0300891619832261 PMID: 30799776
- Sun, X.; Jia, L.; Wang, T.; Zhang, Y.; Zhao, W.; Wang, X.; Chen, H. Trop2 binding IGF2R induces gefitinib resistance in NSCLC by remodeling the tumor microenvironment. J. Cancer, 2021, 12(17), 5310-5319. doi: 10.7150/jca.57711 PMID: 34335947
- Barkley, D.; Moncada, R.; Pour, M.; Liberman, D.A.; Dryg, I.; Werba, G.; Wang, W.; Baron, M.; Rao, A.; Xia, B.; França, G.S.; Weil, A.; Delair, D.F.; Hajdu, C.; Lund, A.W.; Osman, I.; Yanai, I. Cancer cell states recur across tumor types and form specific interactions with the tumor microenvironment. Nat. Genet., 2022, 54(8), 1192-1201. doi: 10.1038/s41588-022-01141-9 PMID: 35931863
- Limagne, E.; Nuttin, L.; Thibaudin, M.; Jacquin, E.; Aucagne, R.; Bon, M.; Revy, S.; Barnestein, R.; Ballot, E.; Truntzer, C.; Derangère, V.; Fumet, J.D.; Latour, C.; Rébé, C.; Bellaye, P.S.; Kaderbhaï, C.G.; Spill, A.; Collin, B.; Callanan, M.B.; Lagrange, A.; Favier, L.; Coudert, B.; Arnould, L.; Ladoire, S.; Routy, B.; Joubert, P.; Ghiringhelli, F. MEK inhibition overcomes chemoimmunotherapy resistance by inducing CXCL10 in cancer cells. Cancer Cell, 2022, 40(2), 136-152.e12. doi: 10.1016/j.ccell.2021.12.009 PMID: 35051357
- Xiao, F.; Liu, N.; Ma, X.; Qin, J.; Liu, Y.; Wang, X. M2 macrophages reduce the effect of gefitinib by activating AKT / MTOR in gefitinib-resistant cell lines HCC827 / GR. Thorac. Cancer, 2020, 11(11), 3289-3298. doi: 10.1111/1759-7714.13670 PMID: 32956565
- Bullock, B.L.; Kimball, A.K.; Poczobutt, J.M.; Neuwelt, A.J.; Li, H.Y.; Johnson, A.M.; Kwak, J.W.; Kleczko, E.K.; Kaspar, R.E.; Wagner, E.K.; Hopp, K.; Schenk, E.L.; Weiser-Evans, M.C.M.; Clambey, E.T.; Nemenoff, R.A. Tumor-intrinsic response to IFNγ shapes the tumor microenvironment and antiPD-1 response in NSCLC. Life Sci. Alliance, 2019, 2(3), e201900328. doi: 10.26508/lsa.201900328 PMID: 31133614
- Wei, C.; Yang, C.; Wang, S.; Shi, D.; Zhang, C.; Lin, X.; Xiong, B. M2 macrophages confer resistance to 5-fluorouracil in colorectal cancer through the activation of CCL22/PI3K/AKT signaling. OncoTargets Ther., 2019, 12, 3051-3063. doi: 10.2147/OTT.S198126 PMID: 31114248
- Qin, Q.; Ji, H.; Li, D.; Zhang, H.; Zhang, Z.; Zhang, Q. Tumor-associated macrophages increase COX-2 expression promoting endocrine resistance in breast cancer via the PI3K/Akt/mTOR pathway. Neoplasma, 2021, 68(5), 938-946. doi: 10.4149/neo_2021_201226N1404 PMID: 34619972
- Kwon, Y.; Kim, M.; Kim, Y.; Jung, H.S.; Jeoung, D. Exosomal microRNAs as mediators of cellular interactions between cancer cells and macrophages. Front. Immunol., 2020, 11, 1167. doi: 10.3389/fimmu.2020.01167 PMID: 32595638
- Ni, Y.; Zhou, X.; Yang, J.; Shi, H.; Li, H.; Zhao, X.; Ma, X. The role of tumor-stroma interactions in drug resistance within tumor microenvironment. Front. Cell Dev. Biol., 2021, 9, 637675. doi: 10.3389/fcell.2021.637675 PMID: 34095111
- Yan, Y.; Zhang, R.; Zhang, Y.; Zhang, X.; Zhang, A.; Bu, X. Recombinant Newcastle disease virus expressing human IFN-λ1 (rL-hIFN-λ1) inhibits lung cancer migration through repolarizating macrophage from M2 to M1 phenotype. Transl. Cancer Res., 2020, 9(5), 3392-3405. doi: 10.21037/tcr-19-2320 PMID: 35117705
- Guo, Y.; Jiang, F.; Yang, W.; Shi, W.; Wan, J.; Li, J.; Pan, J.; Wang, P.; Qiu, J.; Zhang, Z.; Li, B. Effect of 1α25(OH) 2 D 3 -treated M1 and M2 macrophages on cell proliferation and migration ability in ovarian cancer. Nutr. Cancer, 2022, 74(7), 2632-2643. doi: 10.1080/01635581.2021.2014903 PMID: 34894920
- Yin, X.; Han, S.; Song, C.; Zou, H.; Wei, Z.; Xu, W.; Ran, J.; Tang, C.; Wang, Y.; Cai, Y.; Hu, Q.; Han, W. Metformin enhances gefitinib efficacy by interfering with interactions between tumor-associated macrophages and head and neck squamous cell carcinoma cells. Cell. Oncol., 2019, 42(4), 459-475. doi: 10.1007/s13402-019-00446-y PMID: 31001733
- Tang, X.; Zheng, Y.; Jiao, D.; Chen, J.; Liu, X.; Xiong, S.; Chen, Q. Anlotinib inhibits cell proliferation, migration and invasion via suppression of c-met pathway and activation of ERK1/2 pathway in H446 cells. Anticancer. Agents Med. Chem., 2021, 21(6), 747-755. doi: 10.2174/1871520620666200718235748 PMID: 32682383
- Wang, Z.C.; Yao, Y.; Wang, N.; Liu, J.X.; Ma, J.; Chen, C.L.; Deng, Y.K.; Wang, M.C.; Liu, Y.; Zhang, X.H.; Liu, Z. Deficiency in interleukin-10 production by M2 macrophages in eosinophilic chronic rhinosinusitis with nasal polyps. Int. Forum Allergy Rhinol., 2018, 8(11), 1323-1333. doi: 10.1002/alr.22218 PMID: 30281939
- Liu, L.; Shi, W.; Xiao, X.; Wu, X.; Hu, H.; Yuan, S.; Liu, K.; Liu, Z. BCG immunotherapy inhibits cancer progression by promoting the M1 macrophage differentiation of THP 1 cells via the Rb/E2F1 pathway in cervical carcinoma. Oncol. Rep., 2021, 46(5), 245. doi: 10.3892/or.2021.8196
- Tsai, Y.C.; Tseng, J.T.; Wang, C.Y.; Su, M.T.; Huang, J.Y.; Kuo, P.L. Medroxyprogesterone acetate drives M2 macrophage differentiation toward a phenotype of decidual macrophage. Mol. Cell. Endocrinol., 2017, 452, 74-83. doi: 10.1016/j.mce.2017.05.015 PMID: 28522271
- Li, N.; Liang, X.; Li, J.; Zhang, D.; Li, T.; Guo, Z. C-C motif chemokine ligand 14 inhibited colon cancer cell proliferation and invasion through suppressing M2 polarization of tumor-associated macrophages. Histol. Histopathol., 2021, 36(7), 743-752. PMID: 34096611
- Lv, J.; Liu, C.; Chen, F.K.; Feng, Z.P.; Jia, L.; Liu, P.J.; Yang, Z.X.; Hou, F.; Deng, Z.Y. M2 like tumour associated macrophage secreted IGF promotes thyroid cancer stemness and metastasis by activating the PI3K/AKT/mTOR pathway. Mol. Med. Rep., 2021, 24(2), 611. doi: 10.3892/mmr.2021.12249 PMID: 34184083
- Jiao, D.; Jiang, C.; Zhu, L.; Zheng, J.; Liu, X.; Liu, X.; Chen, J.; Tang, X.; Chen, Q. miR-1/133a and miR-206/133b clusters overcome HGF induced gefitinib resistance in non-small cell lung cancers with EGFR sensitive mutations. J. Drug Target., 2021, 29(10), 1111-1117. doi: 10.1080/1061186X.2021.1927054 PMID: 33955799
- Nishikoba, N.; Kumagai, K.; Kanmura, S.; Nakamura, Y.; Ono, M.; Eguchi, H.; Kamibayashiyama, T.; Oda, K.; Mawatari, S.; Tanoue, S.; Hashimoto, S.; Tsubouchi, H.; Ido, A. HGF-MET signaling shifts M1 macrophages toward an M2-like phenotype through PI3K-mediated induction of arginase-1 expression. Front. Immunol., 2020, 11, 2135. doi: 10.3389/fimmu.2020.02135 PMID: 32983173
- Yi, Y.; Zeng, S.; Wang, Z.; Wu, M.; Ma, Y.; Ye, X.; Zhang, B.; Liu, H. Cancer-associated fibroblasts promote epithelial-mesenchymal transition and EGFR-TKI resistance of non-small cell lung cancers via HGF/IGF-1/ANXA2 signaling. Biochim. Biophys. Acta Mol. Basis Dis., 2018, 1864(3), 793-803. doi: 10.1016/j.bbadis.2017.12.021 PMID: 29253515
- Wang, B.; Liu, W.; Liu, C.; Du, K.; Guo, Z.; Zhang, G.; Huang, Z.; Lin, S.; Cen, B.; Tian, Y.; Yuan, Y.; Bu, J. Cancer-associated fibroblasts promote radioresistance of breast cancer cells via the HGF/c-Met signaling pathway. Int. J. Radiat. Oncol. Biol. Phys., 2023, 116(3), 640-654. doi: 10.1016/j.ijrobp.2022.12.029 PMID: 36586496
- Li, X.Y.; Hu, S.Q.; Xiao, L. The cancer-associated fibroblasts and drug resistance. Eur. Rev. Med. Pharmacol. Sci., 2015, 19(11), 2112-2119. PMID: 26125276
- Dong, N.; Shi, X.; Wang, S.; Gao, Y.; Kuang, Z.; Xie, Q.; Li, Y.; Deng, H.; Wu, Y.; Li, M.; Li, J.L. M2 macrophages mediate sorafenib resistance by secreting HGF in a feed-forward manner in hepatocellular carcinoma. Br. J. Cancer, 2019, 121(1), 22-33. doi: 10.1038/s41416-019-0482-x PMID: 31130723
- Wang, Q.; Yang, S.; Wang, K.; Sun, S.Y. MET inhibitors for targeted therapy of EGFR TKI-resistant lung cancer. J. Hematol. Oncol., 2019, 12(1), 63. doi: 10.1186/s13045-019-0759-9 PMID: 31227004
- Ding, X.; Ji, J.; Jiang, J.; Cai, Q.; Wang, C.; Shi, M.; Yu, Y.; Zhu, Z.; Zhang, J. HGF-mediated crosstalk between cancer-associated fibroblasts and MET-unamplified gastric cancer cells activates coordinated tumorigenesis and metastasis. Cell Death Dis., 2018, 9(9), 867. doi: 10.1038/s41419-018-0922-1 PMID: 30158543
- Wu, X.; Chen, X.; Zhou, Q.; Li, P.; Yu, B.; Li, J.; Qu, Y.; Yan, J.; Yu, Y.; Yan, M.; Zhu, Z.; Liu, B.; Su, L. Hepatocyte growth factor activates tumor stromal fibroblasts to promote tumorigenesis in gastric cancer. Cancer Lett., 2013, 335(1), 128-135. doi: 10.1016/j.canlet.2013.02.002 PMID: 23402812
- Deying, W.; Feng, G.; Shumei, L.; Hui, Z.; Ming, L.; Hongqing, W. CAF-derived HGF promotes cell proliferation and drug resistance by up-regulating the c-Met/PI3K/Akt and GRP78 signalling in ovarian cancer cells. Biosci. Rep., 2017, 37(2), BSR20160470. doi: 10.1042/BSR20160470 PMID: 28258248
- Lecoq, I.; Kopp, K.L.; Chapellier, M.; Mantas, P.; Martinenaite, E.; Perez-Penco, M.; Rønn Olsen, L.; Zocca, M.B.; Wakatsuki Pedersen, A.; Andersen, M.H. CCL22-based peptide vaccines induce anti-cancer immunity by modulating tumor microenvironment. OncoImmunology, 2022, 11(1), 2115655. doi: 10.1080/2162402X.2022.2115655 PMID: 36052217
- Kimura, S.; Nanbu, U.; Noguchi, H.; Harada, Y.; Kumamoto, K.; Sasaguri, Y.; Nakayama, T. Macrophage CCL22 expression in the tumor microenvironment and implications for survival in patients with squamous cell carcinoma of the tongue. J. Oral Pathol. Med., 2019, 48(8), 677-685. doi: 10.1111/jop.12885 PMID: 31134686
- Nishimura, Y.; Takiguchi, S.; Ito, S.; Itoh, K. Evidence that depletion of the sorting nexin 1 by siRNA promotes HGF-induced MET endocytosis and MET phosphorylation in a gefitinib-resistant human lung cancer cell line. Int. J. Oncol., 2014, 44(2), 412-426. doi: 10.3892/ijo.2013.2194 PMID: 24297483
- Zhou, J.Y.; Chen, X.; Zhao, J.; Bao, Z.; Chen, X.; Zhang, P.; Liu, Z.F.; Zhou, J.Y. MicroRNA-34a overcomes HGF-mediated gefitinib resistance in EGFR mutant lung cancer cells partly by targeting MET. Cancer Lett., 2014, 351(2), 265-271. doi: 10.1016/j.canlet.2014.06.010 PMID: 24983493
- Takeuchi, S.; Wang, W.; Li, Q.; Yamada, T.; Kita, K.; Donev, I.S.; Nakamura, T.; Matsumoto, K.; Shimizu, E.; Nishioka, Y.; Sone, S.; Nakagawa, T.; Uenaka, T.; Yano, S. Dual inhibition of Met kinase and angiogenesis to overcome HGF-induced EGFR-TKI resistance in EGFR mutant lung cancer. Am. J. Pathol., 2012, 181(3), 1034-1043. doi: 10.1016/j.ajpath.2012.05.023 PMID: 22789825
- Savoia, P.; Fava, P.; Casoni, F.; Cremona, O. Targeting the ERK signaling pathway in melanoma. Int. J. Mol. Sci., 2019, 20(6), 1483. doi: 10.3390/ijms20061483 PMID: 30934534
- Li, Y.; Zang, H.; Qian, G.; Owonikoko, T.K.; Ramalingam, S.R.; Sun, S.Y. ERK inhibition effectively overcomes acquired resistance of epidermal growth factor receptor-mutant nonsmall cell lung cancer cells to osimertinib. Cancer, 2020, 126(6), 1339-1350. doi: 10.1002/cncr.32655 PMID: 31821539
- Wu, D-W.; Wu, T-C.; Wu, J-Y.; Cheng, Y-W.; Chen, Y-C.; Lee, M-C.; Chen, C-Y.; Lee, H. Phosphorylation of paxillin confers cisplatin resistance in non-small cell lung cancer via activating ERK-mediated Bcl-2 expression. Oncogene, 2014, 33(35), 4385-4395. doi: 10.1038/onc.2013.389 PMID: 24096476
- Meng, J.; Chang, C.; Chen, Y.; Bi, F.; Ji, C.; Liu, W. EGCG overcomes gefitinib resistance by inhibiting autophagy and augmenting cell death through targeting ERK phosphorylation in NSCLC. OncoTargets Ther., 2019, 12, 6033-6043. doi: 10.2147/OTT.S209441 PMID: 31440060
- Mhone, T.G.; Chen, M.C.; Kuo, C.H.; Shih, T.C.; Yeh, C.M.; Wang, T.F.; Chen, R.J.; Chang, Y.C.; Kuo, W.W.; Huang, C.Y. Daidzein synergizes with gefitinib to induce ROS/JNK/c-jun activation and inhibit EGFR-STAT/AKT/ERK pathways to enhance lung adenocarcinoma cells chemosensitivity. Int. J. Biol. Sci., 2022, 18(9), 3636-3652. doi: 10.7150/ijbs.71870 PMID: 35813479
- Xiao, Z.; Ding, N.; Xiao, G.; Wang, S.; Wu, Y.; Tang, L. Reversal of multidrug resistance by gefitinib via RAF1/ERK pathway in pancreatic cancer cell line. Anat. Rec., 2012, 295(12), 2122-2128. doi: 10.1002/ar.22552 PMID: 22907845
- Liu, W.W.; Hu, J.; Wang, R.; Han, Q.; Liu, Y.; Wang, S. Cytoplasmic P120ctn promotes gefitinib resistance in lung cancer cells by activating PAK1 and ERK pathway. Appl. Immunohistochem. Mol. Morphol., 2021, 29(10), 750-758. doi: 10.1097/PAI.0000000000000965 PMID: 34412070
- Ochi, N.; Takigawa, N.; Harada, D.; Yasugi, M.; Ichihara, E.; Hotta, K.; Tabata, M.; Tanimoto, M.; Kiura, K. Src mediates ERK reactivation in gefitinib resistance in non-small cell lung cancer. Exp. Cell Res., 2014, 322(1), 168-177. doi: 10.1016/j.yexcr.2014.01.007 PMID: 24440771
Supplementary files
