Tumor-associated Macrophages Mediate Gefitinib Resistance in Lung Cancer through HGF/c-met Signaling Pathway


Cite item

Full Text

Abstract

Background::The biological behavior of cells changes after they develop drug resistance, and the degree of resistance will be affected by the tumor microenvironment. In this study, we aimed to study the effects of M2 macrophages on gefitinib resistance.

Methods:We polarized THP-1 cells into M0 and M2 macrophages, and conducted various experiments to investigate the effects of M2 macrophages on gefitinib resistance in lung cancer.

Results:We found that M2 macrophages promote gefitinib resistance in HCC827 and PC9 cells. In addition, we used ELISA to measure the secretion level of HGF. HGF secretion levels were significantly increased in M2 macrophages. Exogenous HGF remarkably increased the proliferation and invasion in HCC827 and PC9 cells. However, the addition of anti-HGF antibodies abolished the proliferation and invasion of both HCC827 and PC9 cells promoted by M2 macrophages. Furthermore, M2 macrophages or exogenous HGF significantly increased the expression of p-met and p-ERK in HCC827 and PC9 cells, while anti-HGF antibodies diminished the expression of p-met and p-ERK by neutralizing HGF in M2 macrophages.

Conclusion::Our results revealed that M2 macrophages promote gefitinib resistance by activating ERK and HGF/c-met signaling pathways in HCC827 and PC9 cells. Our findings provide a new therapeutic strategy for gefitinib resistance in lung cancer.

About the authors

Xiali Tang

Pulmonary and Critical Care Medicine, The 903rd Hospital of PLA

Email: info@benthamscience.net

Yu Chen

Pulmonary and Critical Care Medicine, The 903rd Hospital of PLA

Email: info@benthamscience.net

Demin Jiao

Pulmonary and Critical Care Medicine, The 903rd Hospital of PLA

Email: info@benthamscience.net

Xiang Liu

Pulmonary and Critical Care Medicine, The 903rd Hospital of PLA

Email: info@benthamscience.net

Jun Chen

Pulmonary and Critical Care Medicine, The 903rd Hospital of PLA

Email: info@benthamscience.net

Yongyang Liu

School of the 1st Clinical Medical Sciences, Wenzhou Medical University

Email: info@benthamscience.net

Chunyan Jiang

Pulmonary and Critical Care Medicine, The 903rd Hospital of PLA

Author for correspondence.
Email: info@benthamscience.net

Qingyong Chen

Pulmonary and Critical Care Medicine, The 903rd Hospital of PLA

Author for correspondence.
Email: info@benthamscience.net

References

  1. Lee, C.; Kim, M.; Kim, D.W.; Kim, T.M.; Kim, S.; Im, S.W.; Jeon, Y.K.; Keam, B.; Ku, J.L.; Heo, D.S. Acquired resistance mechanism of EGFR kinase domain duplication to EGFR TKIs in non-small cell lung cancer. Cancer Res. Treat., 2022, 54(1), 140-149. doi: 10.4143/crt.2021.385 PMID: 33940786
  2. Chen, J.; Jiao, D.; Li, Y.; Jiang, C.; Tang, X.; Song, J.; Chen, Q. Mogroside V inhibits hyperglycemia-induced lung cancer cells metastasis through reversing EMT and damaging cytoskeleton. Curr. Cancer Drug Targets, 2019, 19(11), 885-895. doi: 10.2174/1568009619666190619154240 PMID: 31215378
  3. Wang, Z.; Quan, Y.; Li, S.; Wang, Y.; Liu, G.; Lv, Z. Propofol and sevoflurane alleviate malignant biological behavior and cisplatin resistance of xuanwei lung adenocarcinoma by modulating the Wnt/β-catenin pathway and PI3K/AKT pathway. Anticancer. Agents Med. Chem., 2022, 22(11), 2098-2108. doi: 10.2174/1871520621666211026092405 PMID: 35152870
  4. Zhang, G.; Xia, P.; Zhao, S.; Yuan, L.; Wang, X.; Li, X.; Li, J. Gefitinib combined with cetuximab for the treatment of lung adenocarcinoma harboring the EGFR –intergenic region (SEC61G) fusion and EGFR amplification. Oncologist, 2021, 26(11), e1898-e1902. doi: 10.1002/onco.13921 PMID: 34342091
  5. Unnisa, A.; Chettupalli, A.K.; Hussain, T.; Kamal, M.A. Recent advances in epidermal growth factor receptor inhibitors (EGFRIs) and their role in the treatment of cancer: A review. Anticancer. Agents Med. Chem., 2022, 22(20), 3370-3381. doi: 10.2174/1871520622666220408090541 PMID: 35400324
  6. Li, G.; Ma, Y.; Yu, M.; Li, X.; Chen, X.; Gao, Y.; Cheng, P.; Zhang, G.; Wang, X. Identification of hub genes and small molecule drugs associated with acquired resistance to gefitinib in non-small cell lung cancer. J. Cancer, 2021, 12(17), 5286-5295. doi: 10.7150/jca.56506 PMID: 34335945
  7. Westover, D.; Zugazagoitia, J.; Cho, B.C.; Lovly, C.M.; Paz-Ares, L. Mechanisms of acquired resistance to first- and second-generation EGFR tyrosine kinase inhibitors. Ann. Oncol., 2018, 29(S1), i10-i19. doi: 10.1093/annonc/mdx703 PMID: 29462254
  8. Kang, X.H.; Xu, Z.Y.; Gong, Y.B.; Wang, L.; Wang, Z.Q.; Xu, L.; Cao, F.; Liao, M. Bufalin reverses HGF-induced resistance to EGFR-TKIs in EGFR mutant lung cancer cells via blockage of Met/PI3k/Akt pathway and induction of apoptosis. Evid. Based Complement. Alternat. Med., 2013, 2013, 1-9. doi: 10.1155/2013/243859 PMID: 23533466
  9. Morgillo, F.; Della Corte, C.M.; Fasano, M.; Ciardiello, F. Mechanisms of resistance to EGFR-targeted drugs: Lung cancer. ESMO Open, 2016, 1(3), e000060. doi: 10.1136/esmoopen-2016-000060 PMID: 27843613
  10. Jia, Y.; Yun, C.H.; Park, E.; Ercan, D.; Manuia, M.; Juarez, J.; Xu, C.; Rhee, K.; Chen, T.; Zhang, H.; Palakurthi, S.; Jang, J.; Lelais, G.; DiDonato, M.; Bursulaya, B.; Michellys, P.Y.; Epple, R.; Marsilje, T.H.; McNeill, M.; Lu, W.; Harris, J.; Bender, S.; Wong, K.K.; Jänne, P.A.; Eck, M.J. Overcoming EGFR(T790M) and EGFR(C797S) resistance with mutant-selective allosteric inhibitors. Nature, 2016, 534(7605), 129-132. doi: 10.1038/nature17960 PMID: 27251290
  11. Lin, Y.T.; Tsai, T.H.; Wu, S.G.; Liu, Y.N.; Yu, C.J.; Shih, J.Y. Complex EGFR mutations with secondary T790M mutation confer shorter osimertinib progression-free survival and overall survival in advanced non-small cell lung cancer. Lung Cancer, 2020, 145, 1-9. doi: 10.1016/j.lungcan.2020.04.022 PMID: 32387812
  12. Baldacci, S.; Kherrouche, Z.; Cockenpot, V.; Stoven, L.; Copin, M.C.; Werkmeister, E.; Marchand, N.; Kyheng, M.; Tulasne, D.; Cortot, A.B. MET amplification increases the metastatic spread of EGFR-mutated NSCLC. Lung Cancer, 2018, 125, 57-67. doi: 10.1016/j.lungcan.2018.09.008 PMID: 30429039
  13. Miranda, O.; Farooqui, M.; Siegfried, J. Status of agents targeting the HGF/c-met axis in lung Cancer. Cancers, 2018, 10(9), 280. doi: 10.3390/cancers10090280 PMID: 30134579
  14. Morgillo, F.; Kim, W.Y.; Kim, E.S.; Ciardiello, F.; Hong, W.K.; Lee, H.Y. Implication of the insulin-like growth factor-IR pathway in the resistance of non-small cell lung cancer cells to treatment with gefitinib. Clin. Cancer Res., 2007, 13(9), 2795-2803. doi: 10.1158/1078-0432.CCR-06-2077 PMID: 17473213
  15. Song, X.; Tang, W.; Peng, H.; Qi, X.; Li, J. FGFR leads to sustained activation of STAT3 to mediate resistance to EGFR-TKIs treatment. Invest. New Drugs, 2021, 39(5), 1201-1212. doi: 10.1007/s10637-021-01061-1 PMID: 33829354
  16. Ballas, M.S.; Chachoua, A. Rationale for targeting VEGF, FGF, and PDGF for the treatment of NSCLC. OncoTargets Ther., 2011, 4, 43-58. doi: 10.2147/OTT.S18155 PMID: 21691577
  17. Liu, X.; Jiang, T.; Li, X.; Zhao, C.; Li, J.; Zhou, F.; Zhang, L.; Zhao, S.; Jia, Y.; Shi, J.; Gao, G.; Li, W.; Zhao, J.; Chen, X.; Su, C.; Ren, S.; Zhou, C. Exosomes transmit T790M mutation-induced resistance in EGFR-mutant NSCLC by activating PI3K/AKT signalling pathway. J. Cell. Mol. Med., 2020, 24(2), 1529-1540. doi: 10.1111/jcmm.14838 PMID: 31894895
  18. Liu, Z.; Ma, L.; Sun, Y.; Yu, W.; Wang, X. Targeting STAT3 signaling overcomes gefitinib resistance in non-small cell lung cancer. Cell Death Dis., 2021, 12(6), 561. doi: 10.1038/s41419-021-03844-z PMID: 34059647
  19. Weng, C.H.; Chen, L.Y.; Lin, Y.C.; Shih, J.Y.; Lin, Y.C.; Tseng, R.Y.; Chiu, A.C.; Yeh, Y.H.; Liu, C.; Lin, Y.T.; Fang, J.M.; Chen, C.C. Epithelial-mesenchymal transition (EMT) beyond EGFR mutations per se is a common mechanism for acquired resistance to EGFR TKI. Oncogene, 2019, 38(4), 455-468. doi: 10.1038/s41388-018-0454-2 PMID: 30111817
  20. Fiore, M.; Trecca, P.; Perrone, G.; Amato, M.; Righi, D.; Trodella, L.; D’Angelillo, R.M.; Ramella, S. Histologic transformation to small-cell lung cancer following gefitinib and radiotherapy in a patient with pulmonary adenocarcinoma. Tumori, 2019, 105(6), NP12-NP16. doi: 10.1177/0300891619832261 PMID: 30799776
  21. Sun, X.; Jia, L.; Wang, T.; Zhang, Y.; Zhao, W.; Wang, X.; Chen, H. Trop2 binding IGF2R induces gefitinib resistance in NSCLC by remodeling the tumor microenvironment. J. Cancer, 2021, 12(17), 5310-5319. doi: 10.7150/jca.57711 PMID: 34335947
  22. Barkley, D.; Moncada, R.; Pour, M.; Liberman, D.A.; Dryg, I.; Werba, G.; Wang, W.; Baron, M.; Rao, A.; Xia, B.; França, G.S.; Weil, A.; Delair, D.F.; Hajdu, C.; Lund, A.W.; Osman, I.; Yanai, I. Cancer cell states recur across tumor types and form specific interactions with the tumor microenvironment. Nat. Genet., 2022, 54(8), 1192-1201. doi: 10.1038/s41588-022-01141-9 PMID: 35931863
  23. Limagne, E.; Nuttin, L.; Thibaudin, M.; Jacquin, E.; Aucagne, R.; Bon, M.; Revy, S.; Barnestein, R.; Ballot, E.; Truntzer, C.; Derangère, V.; Fumet, J.D.; Latour, C.; Rébé, C.; Bellaye, P.S.; Kaderbhaï, C.G.; Spill, A.; Collin, B.; Callanan, M.B.; Lagrange, A.; Favier, L.; Coudert, B.; Arnould, L.; Ladoire, S.; Routy, B.; Joubert, P.; Ghiringhelli, F. MEK inhibition overcomes chemoimmunotherapy resistance by inducing CXCL10 in cancer cells. Cancer Cell, 2022, 40(2), 136-152.e12. doi: 10.1016/j.ccell.2021.12.009 PMID: 35051357
  24. Xiao, F.; Liu, N.; Ma, X.; Qin, J.; Liu, Y.; Wang, X. M2 macrophages reduce the effect of gefitinib by activating AKT / MTOR in gefitinib-resistant cell lines HCC827 / GR. Thorac. Cancer, 2020, 11(11), 3289-3298. doi: 10.1111/1759-7714.13670 PMID: 32956565
  25. Bullock, B.L.; Kimball, A.K.; Poczobutt, J.M.; Neuwelt, A.J.; Li, H.Y.; Johnson, A.M.; Kwak, J.W.; Kleczko, E.K.; Kaspar, R.E.; Wagner, E.K.; Hopp, K.; Schenk, E.L.; Weiser-Evans, M.C.M.; Clambey, E.T.; Nemenoff, R.A. Tumor-intrinsic response to IFNγ shapes the tumor microenvironment and anti–PD-1 response in NSCLC. Life Sci. Alliance, 2019, 2(3), e201900328. doi: 10.26508/lsa.201900328 PMID: 31133614
  26. Wei, C.; Yang, C.; Wang, S.; Shi, D.; Zhang, C.; Lin, X.; Xiong, B. M2 macrophages confer resistance to 5-fluorouracil in colorectal cancer through the activation of CCL22/PI3K/AKT signaling. OncoTargets Ther., 2019, 12, 3051-3063. doi: 10.2147/OTT.S198126 PMID: 31114248
  27. Qin, Q.; Ji, H.; Li, D.; Zhang, H.; Zhang, Z.; Zhang, Q. Tumor-associated macrophages increase COX-2 expression promoting endocrine resistance in breast cancer via the PI3K/Akt/mTOR pathway. Neoplasma, 2021, 68(5), 938-946. doi: 10.4149/neo_2021_201226N1404 PMID: 34619972
  28. Kwon, Y.; Kim, M.; Kim, Y.; Jung, H.S.; Jeoung, D. Exosomal microRNAs as mediators of cellular interactions between cancer cells and macrophages. Front. Immunol., 2020, 11, 1167. doi: 10.3389/fimmu.2020.01167 PMID: 32595638
  29. Ni, Y.; Zhou, X.; Yang, J.; Shi, H.; Li, H.; Zhao, X.; Ma, X. The role of tumor-stroma interactions in drug resistance within tumor microenvironment. Front. Cell Dev. Biol., 2021, 9, 637675. doi: 10.3389/fcell.2021.637675 PMID: 34095111
  30. Yan, Y.; Zhang, R.; Zhang, Y.; Zhang, X.; Zhang, A.; Bu, X. Recombinant Newcastle disease virus expressing human IFN-λ1 (rL-hIFN-λ1) inhibits lung cancer migration through repolarizating macrophage from M2 to M1 phenotype. Transl. Cancer Res., 2020, 9(5), 3392-3405. doi: 10.21037/tcr-19-2320 PMID: 35117705
  31. Guo, Y.; Jiang, F.; Yang, W.; Shi, W.; Wan, J.; Li, J.; Pan, J.; Wang, P.; Qiu, J.; Zhang, Z.; Li, B. Effect of 1α25(OH) 2 D 3 -treated M1 and M2 macrophages on cell proliferation and migration ability in ovarian cancer. Nutr. Cancer, 2022, 74(7), 2632-2643. doi: 10.1080/01635581.2021.2014903 PMID: 34894920
  32. Yin, X.; Han, S.; Song, C.; Zou, H.; Wei, Z.; Xu, W.; Ran, J.; Tang, C.; Wang, Y.; Cai, Y.; Hu, Q.; Han, W. Metformin enhances gefitinib efficacy by interfering with interactions between tumor-associated macrophages and head and neck squamous cell carcinoma cells. Cell. Oncol., 2019, 42(4), 459-475. doi: 10.1007/s13402-019-00446-y PMID: 31001733
  33. Tang, X.; Zheng, Y.; Jiao, D.; Chen, J.; Liu, X.; Xiong, S.; Chen, Q. Anlotinib inhibits cell proliferation, migration and invasion via suppression of c-met pathway and activation of ERK1/2 pathway in H446 cells. Anticancer. Agents Med. Chem., 2021, 21(6), 747-755. doi: 10.2174/1871520620666200718235748 PMID: 32682383
  34. Wang, Z.C.; Yao, Y.; Wang, N.; Liu, J.X.; Ma, J.; Chen, C.L.; Deng, Y.K.; Wang, M.C.; Liu, Y.; Zhang, X.H.; Liu, Z. Deficiency in interleukin-10 production by M2 macrophages in eosinophilic chronic rhinosinusitis with nasal polyps. Int. Forum Allergy Rhinol., 2018, 8(11), 1323-1333. doi: 10.1002/alr.22218 PMID: 30281939
  35. Liu, L.; Shi, W.; Xiao, X.; Wu, X.; Hu, H.; Yuan, S.; Liu, K.; Liu, Z. BCG immunotherapy inhibits cancer progression by promoting the M1 macrophage differentiation of THP 1 cells via the Rb/E2F1 pathway in cervical carcinoma. Oncol. Rep., 2021, 46(5), 245. doi: 10.3892/or.2021.8196
  36. Tsai, Y.C.; Tseng, J.T.; Wang, C.Y.; Su, M.T.; Huang, J.Y.; Kuo, P.L. Medroxyprogesterone acetate drives M2 macrophage differentiation toward a phenotype of decidual macrophage. Mol. Cell. Endocrinol., 2017, 452, 74-83. doi: 10.1016/j.mce.2017.05.015 PMID: 28522271
  37. Li, N.; Liang, X.; Li, J.; Zhang, D.; Li, T.; Guo, Z. C-C motif chemokine ligand 14 inhibited colon cancer cell proliferation and invasion through suppressing M2 polarization of tumor-associated macrophages. Histol. Histopathol., 2021, 36(7), 743-752. PMID: 34096611
  38. Lv, J.; Liu, C.; Chen, F.K.; Feng, Z.P.; Jia, L.; Liu, P.J.; Yang, Z.X.; Hou, F.; Deng, Z.Y. M2 like tumour associated macrophage secreted IGF promotes thyroid cancer stemness and metastasis by activating the PI3K/AKT/mTOR pathway. Mol. Med. Rep., 2021, 24(2), 611. doi: 10.3892/mmr.2021.12249 PMID: 34184083
  39. Jiao, D.; Jiang, C.; Zhu, L.; Zheng, J.; Liu, X.; Liu, X.; Chen, J.; Tang, X.; Chen, Q. miR-1/133a and miR-206/133b clusters overcome HGF induced gefitinib resistance in non-small cell lung cancers with EGFR sensitive mutations. J. Drug Target., 2021, 29(10), 1111-1117. doi: 10.1080/1061186X.2021.1927054 PMID: 33955799
  40. Nishikoba, N.; Kumagai, K.; Kanmura, S.; Nakamura, Y.; Ono, M.; Eguchi, H.; Kamibayashiyama, T.; Oda, K.; Mawatari, S.; Tanoue, S.; Hashimoto, S.; Tsubouchi, H.; Ido, A. HGF-MET signaling shifts M1 macrophages toward an M2-like phenotype through PI3K-mediated induction of arginase-1 expression. Front. Immunol., 2020, 11, 2135. doi: 10.3389/fimmu.2020.02135 PMID: 32983173
  41. Yi, Y.; Zeng, S.; Wang, Z.; Wu, M.; Ma, Y.; Ye, X.; Zhang, B.; Liu, H. Cancer-associated fibroblasts promote epithelial-mesenchymal transition and EGFR-TKI resistance of non-small cell lung cancers via HGF/IGF-1/ANXA2 signaling. Biochim. Biophys. Acta Mol. Basis Dis., 2018, 1864(3), 793-803. doi: 10.1016/j.bbadis.2017.12.021 PMID: 29253515
  42. Wang, B.; Liu, W.; Liu, C.; Du, K.; Guo, Z.; Zhang, G.; Huang, Z.; Lin, S.; Cen, B.; Tian, Y.; Yuan, Y.; Bu, J. Cancer-associated fibroblasts promote radioresistance of breast cancer cells via the HGF/c-Met signaling pathway. Int. J. Radiat. Oncol. Biol. Phys., 2023, 116(3), 640-654. doi: 10.1016/j.ijrobp.2022.12.029 PMID: 36586496
  43. Li, X.Y.; Hu, S.Q.; Xiao, L. The cancer-associated fibroblasts and drug resistance. Eur. Rev. Med. Pharmacol. Sci., 2015, 19(11), 2112-2119. PMID: 26125276
  44. Dong, N.; Shi, X.; Wang, S.; Gao, Y.; Kuang, Z.; Xie, Q.; Li, Y.; Deng, H.; Wu, Y.; Li, M.; Li, J.L. M2 macrophages mediate sorafenib resistance by secreting HGF in a feed-forward manner in hepatocellular carcinoma. Br. J. Cancer, 2019, 121(1), 22-33. doi: 10.1038/s41416-019-0482-x PMID: 31130723
  45. Wang, Q.; Yang, S.; Wang, K.; Sun, S.Y. MET inhibitors for targeted therapy of EGFR TKI-resistant lung cancer. J. Hematol. Oncol., 2019, 12(1), 63. doi: 10.1186/s13045-019-0759-9 PMID: 31227004
  46. Ding, X.; Ji, J.; Jiang, J.; Cai, Q.; Wang, C.; Shi, M.; Yu, Y.; Zhu, Z.; Zhang, J. HGF-mediated crosstalk between cancer-associated fibroblasts and MET-unamplified gastric cancer cells activates coordinated tumorigenesis and metastasis. Cell Death Dis., 2018, 9(9), 867. doi: 10.1038/s41419-018-0922-1 PMID: 30158543
  47. Wu, X.; Chen, X.; Zhou, Q.; Li, P.; Yu, B.; Li, J.; Qu, Y.; Yan, J.; Yu, Y.; Yan, M.; Zhu, Z.; Liu, B.; Su, L. Hepatocyte growth factor activates tumor stromal fibroblasts to promote tumorigenesis in gastric cancer. Cancer Lett., 2013, 335(1), 128-135. doi: 10.1016/j.canlet.2013.02.002 PMID: 23402812
  48. Deying, W.; Feng, G.; Shumei, L.; Hui, Z.; Ming, L.; Hongqing, W. CAF-derived HGF promotes cell proliferation and drug resistance by up-regulating the c-Met/PI3K/Akt and GRP78 signalling in ovarian cancer cells. Biosci. Rep., 2017, 37(2), BSR20160470. doi: 10.1042/BSR20160470 PMID: 28258248
  49. Lecoq, I.; Kopp, K.L.; Chapellier, M.; Mantas, P.; Martinenaite, E.; Perez-Penco, M.; Rønn Olsen, L.; Zocca, M.B.; Wakatsuki Pedersen, A.; Andersen, M.H. CCL22-based peptide vaccines induce anti-cancer immunity by modulating tumor microenvironment. OncoImmunology, 2022, 11(1), 2115655. doi: 10.1080/2162402X.2022.2115655 PMID: 36052217
  50. Kimura, S.; Nanbu, U.; Noguchi, H.; Harada, Y.; Kumamoto, K.; Sasaguri, Y.; Nakayama, T. Macrophage CCL22 expression in the tumor microenvironment and implications for survival in patients with squamous cell carcinoma of the tongue. J. Oral Pathol. Med., 2019, 48(8), 677-685. doi: 10.1111/jop.12885 PMID: 31134686
  51. Nishimura, Y.; Takiguchi, S.; Ito, S.; Itoh, K. Evidence that depletion of the sorting nexin 1 by siRNA promotes HGF-induced MET endocytosis and MET phosphorylation in a gefitinib-resistant human lung cancer cell line. Int. J. Oncol., 2014, 44(2), 412-426. doi: 10.3892/ijo.2013.2194 PMID: 24297483
  52. Zhou, J.Y.; Chen, X.; Zhao, J.; Bao, Z.; Chen, X.; Zhang, P.; Liu, Z.F.; Zhou, J.Y. MicroRNA-34a overcomes HGF-mediated gefitinib resistance in EGFR mutant lung cancer cells partly by targeting MET. Cancer Lett., 2014, 351(2), 265-271. doi: 10.1016/j.canlet.2014.06.010 PMID: 24983493
  53. Takeuchi, S.; Wang, W.; Li, Q.; Yamada, T.; Kita, K.; Donev, I.S.; Nakamura, T.; Matsumoto, K.; Shimizu, E.; Nishioka, Y.; Sone, S.; Nakagawa, T.; Uenaka, T.; Yano, S. Dual inhibition of Met kinase and angiogenesis to overcome HGF-induced EGFR-TKI resistance in EGFR mutant lung cancer. Am. J. Pathol., 2012, 181(3), 1034-1043. doi: 10.1016/j.ajpath.2012.05.023 PMID: 22789825
  54. Savoia, P.; Fava, P.; Casoni, F.; Cremona, O. Targeting the ERK signaling pathway in melanoma. Int. J. Mol. Sci., 2019, 20(6), 1483. doi: 10.3390/ijms20061483 PMID: 30934534
  55. Li, Y.; Zang, H.; Qian, G.; Owonikoko, T.K.; Ramalingam, S.R.; Sun, S.Y. ERK inhibition effectively overcomes acquired resistance of epidermal growth factor receptor-mutant non–small cell lung cancer cells to osimertinib. Cancer, 2020, 126(6), 1339-1350. doi: 10.1002/cncr.32655 PMID: 31821539
  56. Wu, D-W.; Wu, T-C.; Wu, J-Y.; Cheng, Y-W.; Chen, Y-C.; Lee, M-C.; Chen, C-Y.; Lee, H. Phosphorylation of paxillin confers cisplatin resistance in non-small cell lung cancer via activating ERK-mediated Bcl-2 expression. Oncogene, 2014, 33(35), 4385-4395. doi: 10.1038/onc.2013.389 PMID: 24096476
  57. Meng, J.; Chang, C.; Chen, Y.; Bi, F.; Ji, C.; Liu, W. EGCG overcomes gefitinib resistance by inhibiting autophagy and augmenting cell death through targeting ERK phosphorylation in NSCLC. OncoTargets Ther., 2019, 12, 6033-6043. doi: 10.2147/OTT.S209441 PMID: 31440060
  58. Mhone, T.G.; Chen, M.C.; Kuo, C.H.; Shih, T.C.; Yeh, C.M.; Wang, T.F.; Chen, R.J.; Chang, Y.C.; Kuo, W.W.; Huang, C.Y. Daidzein synergizes with gefitinib to induce ROS/JNK/c-jun activation and inhibit EGFR-STAT/AKT/ERK pathways to enhance lung adenocarcinoma cells chemosensitivity. Int. J. Biol. Sci., 2022, 18(9), 3636-3652. doi: 10.7150/ijbs.71870 PMID: 35813479
  59. Xiao, Z.; Ding, N.; Xiao, G.; Wang, S.; Wu, Y.; Tang, L. Reversal of multidrug resistance by gefitinib via RAF1/ERK pathway in pancreatic cancer cell line. Anat. Rec., 2012, 295(12), 2122-2128. doi: 10.1002/ar.22552 PMID: 22907845
  60. Liu, W.W.; Hu, J.; Wang, R.; Han, Q.; Liu, Y.; Wang, S. Cytoplasmic P120ctn promotes gefitinib resistance in lung cancer cells by activating PAK1 and ERK pathway. Appl. Immunohistochem. Mol. Morphol., 2021, 29(10), 750-758. doi: 10.1097/PAI.0000000000000965 PMID: 34412070
  61. Ochi, N.; Takigawa, N.; Harada, D.; Yasugi, M.; Ichihara, E.; Hotta, K.; Tabata, M.; Tanimoto, M.; Kiura, K. Src mediates ERK reactivation in gefitinib resistance in non-small cell lung cancer. Exp. Cell Res., 2014, 322(1), 168-177. doi: 10.1016/j.yexcr.2014.01.007 PMID: 24440771

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers