Revealing ANXA6 as a Novel Autophagy-related Target for Pre-eclampsia Based on the Machine Learning


Cite item

Full Text

Abstract

Background:Preeclampsia (PE) is a severe pregnancy complication associated with autophagy.

Objective:This research sought to uncover autophagy-related genes in pre-eclampsia through bioinformatics and machine learning.

Methods:GSE75010 from the GEO series was subjected to WGCNA to identify key modular genes in PE. Autophagy genes retrieved from the THANATOS overlapped with the modular genes to yield PErelated autophagy genes. Furthermore, the crucial step involved the utilization of two machine learning algorithms (LASSO and SVM-RFE) for dimensionality reduction. The candidate gene was further verified by quantitative reverse transcription polymerase chain reaction, western blot, and immunohistochemistry. Preliminary experiments were conducted on HTR-8/SVneo cell lines to explore the role of candidate genes in autophagy regulation.

Results:WGCNA identified 291 genes from 5 hubs, and after overlapping with 1087 autophagy-related genes obtained from THANATOS, 42 PE-related ARGs were identified. ANXA6 was recognized as a potential target through SVM-RFE and LASSO analyses. The mRNA and protein expression of ANXA6 were verified in placenta samples. In HTR8/SVneo cells, modulating ANXA6 expression altered autophagy levels. Knocking down ANXA6 resulted in an anti-autophagy effect, which was reversed by treatment with CAL101, an inhibitor of PI3K, Akt, and mTOR.

Conclusion:We observed that ANXA6 may serve as a possible PE action target and that autophagy may be crucial to the pathogenesis of PE.

About the authors

Baoping Zhu

Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University

Email: info@benthamscience.net

Huizhen Geng

Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University

Email: info@benthamscience.net

Fan Yang

Department of Pediatrics, The First Affiliated Hospital of Xiamen University

Email: info@benthamscience.net

Yanxin Wu

Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University

Email: info@benthamscience.net

Tiefeng Cao

Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University

Email: info@benthamscience.net

Dongyu Wang

Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University

Email: info@benthamscience.net

Zilian Wang

Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University

Author for correspondence.
Email: info@benthamscience.net

References

  1. Roberts JM, Taylor RN, Goldfien A. Clinical and biochemical evidence of endothelial cell dysfunction in the pregnancy syndrome preeclampsia. Am J Hypertens 1991; 4(8): 700-8. doi: 10.1093/ajh/4.8.700 PMID: 1930853
  2. Shmueli A, Meiri H, Gonen R. Economic assessment of screening for pre-eclampsia. Prenat Diagn 2012; 32(1): 29-38. doi: 10.1002/pd.2871 PMID: 22234821
  3. Roberts JM, Cooper DW. Pathogenesis and genetics of pre-eclampsia. Lancet 2001; 357(9249): 53-6. doi: 10.1016/S0140-6736(00)03577-7 PMID: 11197372
  4. Westwood M, Cain MA, Salemi JL, Tanner JP, Kirby RS, Salihu HM. Pregnancy as a window to future health: Maternal placental syndromes and short-term cardiovascular outcomes. Nat Rev Endocrinol 2020; 215(4): 484.e1-484.e14.
  5. Steegers EA, von Dadelszen P, Duvekot JJ, Pijnenborg R. Pre-eclampsia. Lancet 2010; 376(9741): 631-44.
  6. Aplin JD, Myers JE, Timms K, Westwood M. Tracking placental development in health and disease. Nat Rev Endocrinol 2020; 16(9): 479-94. doi: 10.1038/s41574-020-0372-6 PMID: 32601352
  7. Mizushima N, Komatsu M. Autophagy: Renovation of cells and tissues. Cell 2011; 147(4): 728-41. doi: 10.1016/j.cell.2011.10.026
  8. Nakashima A, Cheng SB, Ikawa M. Evidence for lysosomal biogenesis proteome defect and impaired autophagy in preeclampsia. Clin Proteomics 2020; 16(10): 1771-85. doi: 10.1080/15548627.2019.1707494
  9. Nakashima A, Yamanaka-Tatematsu M, Fujita N, Koizumi K, Shima T, Yoshida T. Impaired autophagy by soluble endoglin, under physiological hypoxia in early pregnant period, is involved in poor placentation in preeclampsia. Autophagy 2013; 9(3): 303-16. doi: 10.4161/auto.22927
  10. Zhao E, Xie H, Zhang Y. Predicting diagnostic gene biomarkers associated with immune infiltration in patients with acute myocardial infarction. Front Cardiovasc Med 2020; 7: 586871. doi: 10.3389/fcvm.2020.586871 PMID: 33195475
  11. LaValley MP. Logistic regression. Circulation 2008; 117(18): 2395-9. doi: 10.1161/CIRCULATIONAHA.106.682658 PMID: 18458181
  12. Rish I. An empirical study of the naive Bayes classifier. IJCAI 2001 workshop on empirical methods in artificial intelligence; Seattle, USA 2001; p. 41-6.
  13. Song YY, Lu Y. Decision tree methods: applications for classification and prediction. Shanghai Jingshen Yixue 2015; 27(2): 130-5. PMID: 26120265
  14. Belgiu M. Drăguţ L. Random forest in remote sensing: A review of applications and future directions. ISPRS J Photogramm Remote Sens 2016; 114: 24-31. doi: 10.1016/j.isprsjprs.2016.01.011
  15. Hearst MA, Dumais ST, Osuna E, Platt J, Scholkopf B. Support vector machines. IEEE Intell Syst Their Appl 1998; 13(4): 18-28. doi: 10.1109/5254.708428
  16. Zhang Z. Introduction to machine learning: K-nearest neighbors. Ann Transl Med 2016; 4(11): 218. doi: 10.21037/atm.2016.03.37 PMID: 27386492
  17. Abdi H, Williams LJ. Principal component analysis. Wiley Interdiscip Rev Comput Stat 2010; 2(4): 433-59. doi: 10.1002/wics.101
  18. Izenman AJ. Linear discriminant analysis. In: Modern multivariate statistical techniques: regression, classification, and manifold learning. Berlin: Springer 2013; pp. 237-80. doi: 10.1007/978-0-387-78189-1_8
  19. Van der Maaten L, Hinton G. Visualizing data using t-SNE. J Mach Learn Res 2008; 9(11): 2579-605.
  20. Hao L-B, Chen JY, Li Z, et al. Identification of PSMB9 and CXCL13 as immune-related diagnostic markers for rheumatoid arthritis by machine learning. Curr Pharm Des 2022; 28(34): 2842-54. doi: 10.2174/1381612828666220831085608 PMID: 36045515
  21. Su Y, Tian X, Gao R, et al. Colon cancer diagnosis and staging classification based on machine learning and bioinformatics analysis. Comput Biol Med 2022; 145: 105409. doi: 10.1016/j.compbiomed.2022.105409 PMID: 35339846
  22. Chen D, Liu J, Zang L, et al. Integrated machine learning and bioinformatic analyses constructed a novel stemness-related classifier to predict prognosis and immunotherapy responses for hepatocellular carcinoma patients. Int J Biol Sci 2022; 18(1): 360-73. doi: 10.7150/ijbs.66913 PMID: 34975338
  23. Liu C, Zhou Y, Zhou Y, Tang X, Tang L, Wang J. Identification of crucial genes for predicting the risk of atherosclerosis with system lupus erythematosus based on comprehensive bioinformatics analysis and machine learning. Comput Biol Med 2023; 152: 106388. doi: 10.1016/j.compbiomed.2022.106388 PMID: 36470144
  24. Hastie T, Tibshirani R, Wainwright M. Statistical learning with sparsity: the lasso and generalizations. CRC press 2015. doi: 10.1201/b18401
  25. Guyon I, Weston J, Barnhill S, Vapnik V. Gene selection for cancer classification using support vector machines. Mach Learn 2002; 46: 389-422.
  26. Duan KB, Rajapakse JC, Wang H, Azuaje F. Multiple SVM-RFE for gene selection in cancer classification with expression data. IEEE Trans Nanobiosci 2005; 4(3): 228-34. doi: 10.1109/TNB.2005.853657 PMID: 16220686
  27. Tang Y, Zhang YQ, Huang Z. Development of two-stage SVM-RFE gene selection strategy for microarray expression data analysis. IEEE/ACM Trans Comput Biol Bioinform 2007; 4(3): 365-81.
  28. Yuchun Tang, Yan-Qing Zhang, Zhen Huang, Xiaohua Hu, Yichuan Zhao. Recursive fuzzy granulation for gene subsets extraction and cancer classification. IEEE Trans Inf Technol Biomed 2008; 12(6): 723-30. doi: 10.1109/TITB.2008.920787 PMID: 19000951
  29. Graham CH, Hawley TS, Hawley RG, MacDougall JR, Kerbel RS, Khoo N. Establishment and characterization of first trimester human trophoblast cells with extended lifespan. Exp Cell Res 2016; 206(2): 204-11.
  30. Chen Q, Zheng W, Zhu L, Yao D, Wang C, Song Y, et al. ANXA6 contributes to radioresistance by promoting autophagy via inhibiting the PI3K/AKT/mTOR signaling pathway in nasopharyngeal carcinoma. Clin Transl Med 2020; 8: 232.
  31. Redman CW, Sargent IL. Latest advances in understanding preeclampsia. Science 2005; 308(5728): 1592-4. doi: 10.1126/science.1111726
  32. Huang D, Zheng S, Liu Z, Zhu K, Zhi H, Ma G. Machine learning revealed ferroptosis features and a novel ferroptosis-based classification for diagnosis in acute myocardial infarction. Front Genet 2022; 13: 813438. doi: 10.3389/fgene.2022.813438 PMID: 35145551
  33. Xi Y, Ju R, Wang Y. Roles of annexin A protein family in autophagy regulation and therapy. Biomed Pharmacother 2020; 130: 110591. doi: 10.1016/j.biopha.2020.110591
  34. Sun X, Shu Y, Xu M, et al. ANXA6 suppresses the tumorigenesis of cervical cancer through autophagy induction. Clin Transl Med 2020; 10(6): e208. doi: 10.1002/ctm2.208 PMID: 33135350
  35. Grewal T, Hoque M, Conway JRW, et al. Annexin A6—A multifunctional scaffold in cell motility. Cell Adhes Migr 2017; 11(3): 288-304. doi: 10.1080/19336918.2016.1268318 PMID: 28060548
  36. Sakwe AM, Koumangoye R, Guillory B, Ochieng J. Annexin A6 contributes to the invasiveness of breast carcinoma cells by influencing the organization and localization of functional focal adhesions. Exp Cell Res 2011; 317(6): 823-37. doi: 10.1016/j.yexcr.2010.12.008
  37. Wu CY, Taneyhill LA. Annexin a6 modulates chick cranial neural crest cell emigration. PLoS One 2012; 7(9): e44903.
  38. Dinesh US, Bargale A, Sadashiv R, Edachery VS, Khode V, Neravi A. ANXA4 promotes trophoblast invasion via the PI3K/Akt/eNOS pathway in preeclampsia. J Basic Clin Physiol Pharmacol 2021; 316(4): C481-c491.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers