NaProGraph: Network Analyzer for Interactions between Nucleic Acids and Proteins


Cite item

Full Text

Abstract

Background:Interactions of RNA and DNA with proteins are crucial for elucidating intracellular processes in living organisms, diagnosing disorders, designing aptamer drugs, and other applications. Therefore, investigating the relationships between these macromolecules is essential to life science research.

Methods:This study proposes an online network provider tool (NaProGraph) that offers an intuitive and user-friendly interface for studying interactions between nucleic acids (NA) and proteins. NaPro- Graph utilizes a comprehensive and curated dataset encompassing nearly all interacting macromolecules in the Research Collaboratory for Structural Bioinformatics (RCSB) Protein Data Bank (PDB).

Results:Researchers can employ this online tool to focus on a specific portion of the PDB, investigate its associated relationships, and visualize and extract pertinent information. This tool provides insights into the frequency of atoms and residues between proteins and nucleic acids (NAs) and the similarity of the macromolecules' primary structures.

Conclusion:Furthermore, the functional similarity of proteins can be inferred using protein families and clans from Pfam.

About the authors

Sajjad Nematzadeh

Department of Computer Engineering, Faculty of Electrical and Electronics, Yildiz Technical University

Author for correspondence.
Email: info@benthamscience.net

Nizamettin Aydin

Computer Engineering, Yıldız Technical University

Email: info@benthamscience.net

Zeyneb Kurt

Department of Computer and Information Sciences, University of Northumbria

Email: info@benthamscience.net

Mahsa Torkamanian-Afshar

Department of Computer Engineering, Faculty of Engineering and Architecture, Nisantasi University,

Email: info@benthamscience.net

References

  1. Alberts B, Heald R, Johnson A, et al. Molecular Biology of the Cell. 7th. W. W. Norton & Company 2022.
  2. Kaplon H, Chenoweth A, Crescioli S, Reichert JM. Antibodies to watch in 2022. MAbs 2022; 14(1): 2014296. doi: 10.1080/19420862.2021.2014296 PMID: 35030985
  3. Davies DR, Metzger H. Structural basis of antibody function. Annu Rev Immunol 2003; 1: 87-117. doi: 10.1146/ANNUREV.IY.01.040183.000511
  4. Davies DR, Metzger H. Three-dimensional structure of immunoglobulins. Annu Rev Biochem 1979; 48: 961-697. 2003
  5. Wilson IA, Stanfield RL. Antibody-antigen interactions: New structures and new conformational changes. Curr Opin Struct Biol 1994; 4(6): 857-67. doi: 10.1016/0959-440X(94)90267-4 PMID: 7536111
  6. Gilliland GL, Luo J, Vafa O, Almagro JC. Leveraging SBDD in protein therapeutic development: Antibody engineering. Methods Mol Biol 2012; 841: 321-49. doi: 10.1007/978-1-61779-520-6_14 PMID: 22222459
  7. Abdelhaleem M. Helicases. Methods Mol Biol 2010; 587: 1-12. doi: 10.1007/978-1-60327-355-8 PMID: 20225138
  8. Wang SP, Deng L, Ho CK, Shuman S. Phylogeny of mRNA capping enzymes. Proc Natl Acad Sci 1997; 94(18): 9573-8. doi: 10.1073/pnas.94.18.9573 PMID: 9275164
  9. Shuman S. Capping enzyme in eukaryotic mRNA synthesis. Prog Nucleic Acid Res Mol Biol 1995; 50: 101-29. doi: 10.1016/S0079-6603(08)60812-0 PMID: 7754031
  10. Cho EJ, Takagi T, Moore CR, Buratowski S. mRNA capping enzyme is recruited to the transcription complex by phosphorylation of the RNA polymerase II carboxy-terminal domain. Genes Dev 1997; 11(24): 3319-26. doi: 10.1101/gad.11.24.3319 PMID: 9407025
  11. Song B, Shiromoto Y, Minakuchi M, Nishikura K. The role of RNA editing enzyme ADAR1 in human disease. Wiley Interdiscip Rev RNA 2022; 13(1): e1665. doi: 10.1002/wrna.1665 PMID: 34105255
  12. Berman HM, Westbrook J, Feng Z, et al. The Protein data bank. Nucleic Acids Res 2000; 28(1): 235-42. doi: 10.1093/nar/28.1.235 PMID: 10592235
  13. Chakrabarty B, Parekh N. NAPS: Network analysis of protein structures. Nucleic Acids Res 2016; 44(W1): W375-82. doi: 10.1093/nar/gkw383 PMID: 27151201
  14. Lanjanian H, Nematzadeh S, Hosseini S, et al. High-throughput analysis of the interactions between viral proteins and host cell RNAs. Comput Biol Med 2021; 135: 104611. doi: 10.1016/j.compbiomed.2021.104611 PMID: 34246161
  15. Torkamanian-Afshar M, Nematzadeh S, Tabarzad M, Najafi A, Lanjanian H, Masoudi-Nejad A. In silico design of novel aptamers utilizing a hybrid method of machine learning and genetic algorithm. Mol Divers 2021; 25(3): 1395-407. doi: 10.1007/s11030-021-10192-9 PMID: 33554306
  16. Teng X, Chen X, Xue H, et al. NPInter v4.0: An integrated database of ncRNA interactions. Nucleic Acids Res 2019; 48(D1): gkz969. doi: 10.1093/nar/gkz969 PMID: 31670377
  17. Chojnowski G. Waleń T, Bujnicki JM. RNA Bricks: A database of RNA 3D motifs and their interactions. Nucleic Acids Res 2014; 42(D1): D123-31. doi: 10.1093/nar/gkt1084 PMID: 24220091
  18. Bergeron D, Paraqindes H, Fafard-Couture E, et al. snoDB 2.0: An enhanced interactive database, specializing in human snoRNAs. Nucleic Acids Res 2022; 51(D1): D291-6. doi: 10.1093/nar/gkac835 PMID: 36165892
  19. Karagkouni D, Paraskevopoulou MD, Chatzopoulos S, et al. DIANA-TarBase v8: A decade-long collection of experimentally supported miRNA–gene interactions. Nucleic Acids Res 2018; 46(D1): D239-45. doi: 10.1093/nar/gkx1141 PMID: 29156006
  20. Kang J, Tang Q, He J, et al. RNAInter v4.0: RNA interactome repository with redefined confidence scoring system and improved accessibility. Nucleic Acids Res 2022; 50(D1): D326-32. doi: 10.1093/nar/gkab997 PMID: 34718726
  21. Zhao W, Zhang S, Zhu Y, et al. POSTAR3: An updated platform for exploring post-transcriptional regulation coordinated by RNA-binding proteins. Nucleic Acids Res 2022; 50(D1): D287-94. doi: 10.1093/nar/gkab702 PMID: 34403477
  22. Blin K, Dieterich C, Wurmus R, Rajewsky N, Landthaler M, Akalin A. DoRiNA 2.0: Upgrading the doRiNA database of RNA interactions in post-transcriptional regulation. Nucleic Acids Res 2015; 43(D1): D160-7. doi: 10.1093/nar/gku1180 PMID: 25416797
  23. Lewis BA, Walia RR, Terribilini M, et al. PRIDB: A protein-RNA interface database. Nucleic Acids Res 2011; 39(Database): D277-82. doi: 10.1093/nar/gkq1108 PMID: 21071426
  24. Cook KB, Kazan H, Zuberi K, Morris Q, Hughes TR. RBPDB: A database of RNA-binding specificities. Nucleic Acids Res 2011; 39(Database): D301-8. doi: 10.1093/nar/gkq1069 PMID: 21036867
  25. Torkamanian-Afshar M, Lanjanian H, Nematzadeh S, et al. RPINBASE: An online toolbox to extract features for predicting RNA-protein interactions. Genomics 2020; 112(3): 2623-32. doi: 10.1016/j.ygeno.2020.02.013 PMID: 32092438
  26. Wodak SJ, Vlasblom J, Turinsky AL, Pu S. Protein–protein interaction networks: The puzzling riches. Curr Opin Struct Biol 2013; 23(6): 941-53. doi: 10.1016/j.sbi.2013.08.002 PMID: 24007795
  27. Szklarczyk D, Gable AL, Nastou KC, et al. The STRING database in 2021: Customizable protein–protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res 2021; 49(D1): D605-12. doi: 10.1093/nar/gkaa1074 PMID: 33237311
  28. Berman HM, Olson WK, Beveridge DL, et al. The nucleic acid database. A comprehensive relational database of three-dimensional structures of nucleic acids. Biophys J 1992; 63(3): 751-9. doi: 10.1016/S0006-3495(92)81649-1 PMID: 1384741
  29. Coimbatore Narayanan B, Westbrook J, Ghosh S, et al. The nucleic acid database: New features and capabilities. Nucleic Acids Res 2014; 42(D1): D114-22. doi: 10.1093/nar/gkt980 PMID: 24185695
  30. Sagendorf JM, Berman HM, Rohs R. DNAproDB: An interactive tool for structural analysis of DNA–protein complexes. Nucleic Acids Res 2017; 45(W1): W89-97. doi: 10.1093/nar/gkx272 PMID: 28431131
  31. El-Gebali S, Mistry J, Bateman A, et al. The Pfam protein families database in 2019. Nucleic Acids Res 2019; 47(D1): D427-32. doi: 10.1093/nar/gky995 PMID: 30357350
  32. NCBI FASTA Format for Nucleotide Sequences. Available from: https://www.ncbi.nlm.nih.gov/genbank/fastaformat/ (Accessed 20 Feb 2023).
  33. Mahmudov KT, Kopylovich MN, Guedes da Silva MFC, Pombeiro AJL. Non-covalent interactions in the synthesis of coordination compounds: Recent advances. Coord Chem Rev 2017; 345: 54-72. doi: 10.1016/j.ccr.2016.09.002
  34. Bijina PV, Suresh CH. Molecular electrostatic potential analysis of non-covalent complexes. J Chem Sci 2016; 128(10): 1677-86. doi: 10.1007/s12039-016-1162-5
  35. Howard JAK, Hoy VJ, O’Hagan D, Smith GT. How good is fluorine as a hydrogen bond acceptor? Tetrahedron 1996; 52(38): 12613-22. doi: 10.1016/0040-4020(96)00749-1
  36. Cock PJA, Antao T, Chang JT, et al. Biopython: Freely available Python tools for computational molecular biology and bioinformatics. Bioinformatics 2009; 25(11): 1422-3. doi: 10.1093/bioinformatics/btp163 PMID: 19304878
  37. Kunzmann P, Hamacher K. Biotite: A unifying open source computational biology framework in Python. BMC Bioinformatics 2018; 19(1): 346. doi: 10.1186/s12859-018-2367-z PMID: 30285630
  38. Hagberg AA, Schult DA, Swart PJ. Exploring network structure, dynamics, and function using NetworkX. Proceedings of the 7th Python in Science Conference (SciPy 2008). 11-6.
  39. Perrone G, Unpingco J, Lu H. Network visualizations with Pyvis and VisJS. Proceedings of the 19th Python in Science Conference 58. 62: 58-62. doi: 10.25080/Majora-342d178e-008
  40. Freeman LC. Centrality in social networks conceptual clarification. Soc Networks 1978; 1(3): 215-39. doi: 10.1016/0378-8733(78)90021-7
  41. Wasserman S, Faust K. Social Network Analysis: Methods and Applications. Cambridge University Press 1994. doi: 10.1017/CBO9780511815478
  42. Brandes U. A faster algorithm for betweenness centrality. J MathemSoc 2010; 25(2): 163-77.
  43. Freeman LC. A set of measures of centrality based on betweenness. Sociometry 1977; 40(1): 35. doi: 10.2307/3033543
  44. Newman M. Networks: An Introduction 1st. Oxford University Press 2010. doi: 10.1093/acprof:oso/9780199206650.001.0001
  45. Bonacich P. Power and centrality: A family of measures. Am J Sociol 1987; 92(5): 1170-82. doi: 10.1086/228631
  46. Shannon P, Markiel A, Ozier O, et al. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res 2003; 13(11): 2498-504. doi: 10.1101/gr.1239303 PMID: 14597658

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers