Recent Advances in the Phylogenetic Analysis to Study Rumen Microbiome


Cite item

Full Text

Abstract

Background:Recent rumen microbiome studies are progressive due to the advent of nextgeneration sequencing technologies, computational models, and gene referencing databases. Rumen metagenomics enables the linking of the genetic structure and composition of the rumen microbial community to the functional role it plays in the ecosystem. Systematic investigations of the rumen microbiome, including its composition in cattle, have revealed the importance of microbiota in rumen functions. Various research studies have identified different types of microbiome species that reside within the rumen and their relationships, leading to a greater understanding of their functional contribution.

Objective:The objective of this scoping review was to highlight the role of the phylogenetic and functional composition of the microbiome in cattle functions. It is driven by a natural assumption that closely related microbial genes/operational taxonomical units (OTUs)/amplicon sequence variants (ASVs) by phylogeny are highly correlated and tend to have similar functional traits.

Methods:PRISMA approach has been used to conduct the current scoping review providing state-ofthe- art studies for a comprehensive understanding of microbial genes’ phylogeny in the rumen microbiome and their functional capacity.

Results:44 studies have been included in the review, which has facilitated phylogenetic advancement in studying important cattle functions and identifying key microbiota. Microbial genes and their interrelations have the potential to accurately predict the phenotypes linked to ruminants, such as feed efficiency, milk production, and high/low methane emissions. In this review, a variety of cattle have been considered, ranging from cows, buffaloes, lambs, Angus Bulls, etc. Also, results from the reviewed literature indicate that metabolic pathways in microbiome genomic groupings result in better carbon channeling, thereby affecting methane production by ruminants.

Conclusion:The mechanistic understanding of the phylogeny of the rumen microbiome could lead to a better understanding of ruminant functions. The composition of the rumen microbiome is crucial for the understanding of dynamics within the rumen environment. The integration of biological domain knowledge with functional gene activity, metabolic pathways, and rumen metabolites could lead to a better understanding of the rumen system.

About the authors

Jyotsna Wassan

Department of Computer Science, Maitreyi College, University of Delhi

Email: info@benthamscience.net

Haiying Wang

School of Computing, Ulster University

Email: info@benthamscience.net

Huiru Zheng

School of Computing, Ulster University

Author for correspondence.
Email: info@benthamscience.net

References

  1. Haynes M. Metagenomics In: Maloy S, Haynes M, Eds Brenner's Encyclopedia of Genetics. In: Maloy S, Haynes M, Eds. 2013; pp. 378-81. doi: 10.1016/B978-0-12-374984-0.00933-5
  2. Wallace RJ, Rooke JA, McKain N, et al. The rumen microbial metagenome associated with high methane production in cattle. BMC Genomics 2015; 16(1): 839. doi: 10.1186/s12864-015-2032-0 PMID: 26494241
  3. Werner JJ, Koren O, Hugenholtz P, et al. Impact of training sets on classification of high-throughput bacterial 16s rRNA gene surveys. ISME J 2012; 6(1): 94-103. doi: 10.1038/ismej.2011.82 PMID: 21716311
  4. Pruesse E, Quast C, Knittel K, et al. SILVA: A comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res 2007; 35(21): 7188-96. doi: 10.1093/nar/gkm864 PMID: 17947321
  5. Seedorf H, Kittelmann S, Henderson G, Janssen G. RIM-DB: A taxonomic framework for community structure analysis of methanogenic archaea from the rumen and other intestinal environments. PeerJ 2014; 2: e494. doi: 10.7717/peerj.494 PMID: 25165621
  6. Gharechahi J, Sarikhan S, Han JL, Ding XZ, Salekdeh GH. Functional and phylogenetic analyses of camel rumen microbiota associated with different lignocellulosic substrates. NPJ Biofilms Microbiomes 2022; 8(1): 46. doi: 10.1038/s41522-022-00309-9 PMID: 35676509
  7. Jami E, Mizrahi I. Composition and similarity of bovine rumen microbiota across individual animals. PLoS One 2012; 7(3): e33306. doi: 10.1371/journal.pone.0033306 PMID: 22432013
  8. Bensoussan L, Moraïs S, Dassa B, et al. Broad phylogeny and functionality of cellulosomal components in the bovine rumen microbiome. Environ Microbiol 2017; 19(1): 185-97. doi: 10.1111/1462-2920.13561 PMID: 27712009
  9. Zehavi T, Probst M, Mizrahi I. Insights into culturomics of the rumen microbiome. Front Microbiol 2018; 9(AUG): 1999. doi: 10.3389/fmicb.2018.01999 PMID: 30210474
  10. Li F, Neves ALA, Ghoshal B, Guan LL. Symposium review: Mining metagenomic and metatranscriptomic data for clues about microbial metabolic functions in ruminants. J Dairy Sci 2018; 101(6): 5605-18. doi: 10.3168/jds.2017-13356 PMID: 29274958
  11. Mizrahi I. The role of the rumen microbiota in determining the feed efficiency of dairy cows. In: Gophna U, Rosenberg E, Eds. Beneficial Microorganisms in Multicellular Life Forms. Berlin: Springer 2012; pp. 203-10. doi: 10.1007/978-3-642-21680-0_14
  12. Koskella B, Brockhurst MA. Bacteria–phage coevolution as a driver of ecological and evolutionary processes in microbial communities. FEMS Microbiol Rev 2014; 38(5): 916-31. doi: 10.1111/1574-6976.12072 PMID: 24617569
  13. Namonyo S, Wagacha M, Maina S, Wambua L, Agaba M. A metagenomic study of the rumen virome in domestic caprids. Arch Virol 2018; 163(12): 3415-9. doi: 10.1007/s00705-018-4022-4 PMID: 30220035
  14. Kim M, Park T, Yu Z. Invited review-Metagenomic investigation of gastrointestinal microbiome in cattle. Asian-Australas J Anim Sci 2017; 30(11): 1515-28. doi: 10.5713/ajas.17.0544 PMID: 28830126
  15. Walsh P, Palu C, Kelly B, et al. A metagenomics analysis of rumen microbiome.2017 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). Kansas City, MO, USA. 2017; p. 2017; p. 2077. doi: 10.1109/BIBM.2017.8217980
  16. Hadrich D. Microbiome research is becoming the key to better understanding health and nutrition. Front Genet 2018; 9: 212. doi: 10.3389/fgene.2018.00212 PMID: 29951086
  17. Brulc JM, Antonopoulos DA, Berg Miller ME, et al. Gene-centric metagenomics of the fiber-adherent bovine rumen microbiome reveals forage specific glycoside hydrolases. Proc Natl Acad Sci USA 2009; 106(6): 1948-53. doi: 10.1073/pnas.0806191105 PMID: 19181843
  18. Martiny JBH, Jones SE, Lennon JT, Martiny AC. Microbiomes in light of traits: A phylogenetic perspective. Science 2015; 350(6261): aac9323. doi: 10.1126/science.aac9323 PMID: 26542581
  19. Henderson G, Cox F, Ganesh S, et al. Rumen microbial community composition varies with diet and host, but a core microbiome is found across a wide geographical range. Sci Rep 2015; 5: 14567. doi: 10.1038/srep14567 PMID: 26449758
  20. Crost EH, Le Gall G, Laverde-Gomez JA, Mukhopadhya I, Flint HJ, Juge N. Mechanistic insights into the cross-feeding of Ruminococcus gnavus and Ruminococcus bromii on host and dietary carbohydrates. Front Microbiol 2018; 9(NOV): 2558. doi: 10.3389/fmicb.2018.02558 PMID: 30455672
  21. Malmuthuge N, Guan LL. Understanding host-microbial interactions in rumen: Searching the best opportunity for microbiota manipulation. J Anim Sci Biotechnol 2017; 8: 8. doi: 10.1186/s40104-016-0135-3 PMID: 28116074
  22. Zheng H, Wang H, Dewhurst RJ, Roehe R. Improving the inference of co-occurrence networks in the bovine rumen microbiome. IEEE/ACM Trans Comput Biol Bioinformatics 2020; 17(3): 858-67. doi: 10.1109/TCBB.2018.2879342 PMID: 30403635
  23. Kim M, Morrison M, Yu Z. Status of the phylogenetic diversity census of ruminal microbiomes. FEMS Microbiol Ecol 2011; 76(1): 49-63. doi: 10.1111/j.1574-6941.2010.01029.x PMID: 21223325
  24. Stewart RD, Auffret MD, Warr A, et al. Assembly of 913 microbial genomes from metagenomic sequencing of the cow rumen. Nat Commun 2018; 9(1): 870. doi: 10.1038/s41467-018-03317-6 PMID: 29491419
  25. Seshadri R, Leahy SC, Attwood GT, et al. Cultivation and sequencing of rumen microbiome members from the Hungate1000 Collection. Nat Biotechnol 2018; 36(4): 359-67. doi: 10.1038/nbt.4110 PMID: 29553575
  26. Stewart RD, Auffret MD, Warr A, Walker AW, Roehe R, Watson M. Compendium of 4,941 rumen metagenome-assembled genomes for rumen microbiome biology and enzyme discovery. Nat Biotechnol 2019; 37(8): 953-61. doi: 10.1038/s41587-019-0202-3 PMID: 31375809
  27. Parks DH, Rinke C, Chuvochina M, et al. Recovery of nearly 8,000 metagenome-assembled genomes substantially expands the tree of life. 2017; 2(11): 1533-42. doi: 10.1038/s41564-017-0012-7 PMID: 28894102
  28. Morrison M, Daugherty SC, Nelson WC, Davidsen T, Nelson KE. The FibRumBa database: A resource for biologists with interests in gastrointestinal microbial ecology, plant biomass degradation, and anaerobic microbiology. Microb Ecol 2009; 59(2): 212-3. doi: 10.1007/s00248-009-9562-4 PMID: 19609599
  29. Peters MDJ, Godfrey CM, Khalil H, McInerney P, Parker D, Soares CB. Guidance for conducting systematic scoping reviews. Int J Evid-Based Healthc 2015; 13(3): 141-6. doi: 10.1097/XEB.0000000000000050 PMID: 26134548
  30. Page MJ, Moher D. Evaluations of the uptake and impact of the preferred reporting items for systematic reviews and meta-analyses (PRISMA) statement and extensions: A scoping review. Syst Rev 2017; 6(1): 263. doi: 10.1186/s13643-017-0663-8 PMID: 29258593
  31. Ncobela CN, Kanengoni AT, Hlatini VA, Thomas RS, Chimonyo M. A review of the utility of potato by-products as a feed resource for smallholder pig production. Anim Feed Sci Technol 2017; 227: 107-17. doi: 10.1016/j.anifeedsci.2017.02.008
  32. Peter CM, Faulkner DB, Merchen NR, Parrett DF, Nash TG, Dahlquist JM. The effects of corn milling coproducts on growth performance and diet digestibility by beef cattle. J Anim Sci 2000; 78(1): 1-6. doi: 10.2527/2000.7811 PMID: 10682795
  33. Sikora A. Błaszczyk M, Jurkowski M, Zielenkiewicz U. Lactic acid bacteria in hydrogen-producing consortia: On purpose or by coincidence? In: Kongo JM, Ed. Lactic Acid Bacteria-R and D for Food, Health and Livestock Purposes. London: IntechOpen 2013. doi: 10.5772/50364
  34. Liu Y, Whitman WB. Metabolic, phylogenetic, and ecological diversity of the methanogenic archaea. Ann N Y Acad Sci 2008; 1125(1): 171-89. doi: 10.1196/annals.1419.019 PMID: 18378594
  35. Kruger Ben Shabat S, Sasson G, Doron-Faigenboim A, et al. Specific microbiome-dependent mechanisms underlie the energy harvest efficiency of ruminants. ISME J 2016; 10(12): 2958-72. doi: 10.1038/ismej.2016.62 PMID: 27152936
  36. Myer PR, Smith TPL, Wells JE, Kuehn LA, Freetly HC. Rumen microbiome from steers differing in feed efficiency. PLoS One 2015; 10(6): e0129174. doi: 10.1371/journal.pone.0129174 PMID: 26030887
  37. Mota-Rojas D, Napolitano F, Braghieri A, et al. Thermal biology in river buffalo in the humid tropics: Neurophysiological and behavioral responses assessed by infrared thermography. J Anim Behav Biometeorol 2021; 9(1): 2103.
  38. Ryu EP, Davenport ER. Host genetic determinants of the microbiome across animals: From Caenorhabditis elegans to cattle. Annu Rev Anim Biosci 2022; 10: 203-26. doi: 10.1146/annurev-animal-020420-032054 PMID: 35167316
  39. Sasson G, Kruger Ben-Shabat S, Seroussi E, et al. Heritable bovine rumen bacteria are phylogenetically related and correlated with the cow’s capacity to harvest energy from its feed. MBio 2017; 8(4): e00703-17. doi: 10.1128/mBio.00703-17 PMID: 28811339
  40. Mccann JC, Wickersham TA, Loor JJ. High-throughput methods redefine the rumen microbiome and its relationship with nutrition and metabolism. Bioinform Biol Insights 2014; 8: 109-25. doi: 10.4137/BBI.S15389 PMID: 24940050
  41. Das KC, Qin W. Isolation and characterization of superior rumen bacteria of cattle (Bos taurus) and potential application in animal feedstuff. Open J Anim Sci 2012; 2(4): 224-8. doi: 10.4236/ojas.2012.24031
  42. Zhou M, O’hara E, Tang S, et al. Accessing dietary effects on the rumen microbiome: Different sequencing methods tell different stories. Vet Sci 2021; 8(7): 138. doi: 10.3390/vetsci8070138 PMID: 34357930
  43. Lopes LD, de Souza Lima AO, Taketani RG, et al. Exploring the sheep rumen microbiome for carbohydrate-active enzymes. Antonie Van Leeuwenhoek 2015; 108(1): 15-30. doi: 10.1007/s10482-015-0459-6 PMID: 25900454
  44. McGovern E, McGee M, Byrne CJ, Kenny DA, Kelly AK, Waters SM. Investigation into the effect of divergent feed efficiency phenotype on the bovine rumen microbiota across diet and breed. Sci Rep 2020; 10(1): 15317. doi: 10.1038/s41598-020-71458-0 PMID: 32948787
  45. Li F, Li C, Chen Y, et al. Host genetics influence the rumen microbiota and heritable rumen microbial features associate with feed efficiency in cattle. Microbiome 2019; 7(1): 92. doi: 10.1186/s40168-019-0699-1 PMID: 31196178
  46. La Reau AJ, Meier-Kolthoff JP, Suen G. Sequence-based analysis of the genus Ruminococcus resolves its phylogeny and reveals strong host association. Microb Genom 2016; 2(12): e000099. doi: 10.1099/mgen.0.000099 PMID: 28348838
  47. Pitta DW, Indugu N, Kumar S, et al. Metagenomic assessment of the functional potential of the rumen microbiome in Holstein dairy cows. Anaerobe 2016; 38: 50-60. doi: 10.1016/j.anaerobe.2015.12.003 PMID: 26700882
  48. Whitford MF, Teather RM, Forster RJ. Phylogenetic analysis of methanogens from the bovine rumen. BMC Microbiol 2001; 1(1): 5. doi: 10.1186/1471-2180-1-5 PMID: 11384509
  49. Patra A, Park T, Kim M, Yu Z. Rumen methanogens and mitigation of methane emission by anti-methanogenic compounds and substances. J Anim Sci Biotechnol 2017; 8: 13. doi: 10.1186/s40104-017-0145-9 PMID: 28149512
  50. Pérez-Barbería FJ. Scaling methane emissions in ruminants and global estimates in wild populations. Sci Total Environ 2017; 579: 1572-80. doi: 10.1016/j.scitotenv.2016.11.175 PMID: 27923575
  51. Difford GF, Plichta DR, Løvendahl P, et al. Host genetics and the rumen microbiome jointly associate with methane emissions in dairy cows. PLoS Genet 2018; 14(10): e1007580. doi: 10.1371/journal.pgen.1007580 PMID: 30312316
  52. Deusch S, Camarinha-Silva A, Conrad J, Beifuss U, Rodehutscord M, Seifert J. A structural and functional elucidation of the rumen microbiome influenced by various diets and microenvironments. Front Microbiol 2017; 8(AUG): 1605. doi: 10.3389/fmicb.2017.01605 PMID: 28883813
  53. King EE, Smith RP, St-Pierre B, Wright ADG. Differences in the rumen methanogen populations of lactating Jersey and Holstein dairy cows under the same diet regimen. Appl Environ Microbiol 2011; 77(16): 5682-7. doi: 10.1128/AEM.05130-11 PMID: 21705541
  54. Wallace RJ, Sasson G, Garnsworthy PC, et al. A heritable subset of the core rumen microbiome dictates dairy cow productivity and emissions. Sci Adv 2019; 5(7): eaav8391. doi: 10.1126/sciadv.aav8391 PMID: 31281883
  55. Shi W, Moon CD, Leahy SC, et al. Methane yield phenotypes linked to differential gene expression in the sheep rumen microbiome. Genome Res 2014; 24(9): 1517-25. doi: 10.1101/gr.168245.113 PMID: 24907284
  56. Min BR, Pinchak WE, Hume ME, Anderson RC. Effects of condensed tannins supplementation on animal performance, phylogenetic microbial changes, and in vitro methane emissions in steers grazing winter wheat. Animals (Basel) 2021; 11(8): 2391. doi: 10.3390/ani11082391 PMID: 34438848
  57. Berlanga M, Berlanga Herranz M,. Molecular Phylogeny of Microorganisms. Poole UK: In: Caister Academic 2010.
  58. Nguyen TH, Chevaleyre Y, Prifti E, Sokolovska N, Zucker J-D. Deep learning for metagenomic data: Using 2D embeddings and convolutional neural networks. arXiv preprint arXiv: 1712.00244.
  59. Alom MZ, Taha TM, Yakopcic C, et al. A state-of-the-art survey on deep learning theory and architectures. Electronics 2019; 8(3): 292. doi: 10.3390/electronics8030292
  60. Langille MGI, Zaneveld J, Caporaso JG, et al. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat Biotechnol 2013; 31(9): 814-21. doi: 10.1038/nbt.2676 PMID: 23975157
  61. Tanaseichuk O, Borneman J, Jiang T. Phylogeny-based classification of microbial communities. Bioinformatics 2014; 30(4): 449-56. doi: 10.1093/bioinformatics/btt700 PMID: 24369151
  62. Friedman J, Hastie T, Tibshirani R. Regularization paths for generalized linear models via coordinate descent. J Stat Softw 2010; 33(1): 1-22. doi: 10.18637/jss.v033.i01 PMID: 20808728
  63. Albanese D, De Filippo C, Cavalieri D, Donati C. Explaining diversity in metagenomic datasets by phylogenetic-based feature weighting. PLOS Comput Biol 2015; 11(3): e1004186. doi: 10.1371/journal.pcbi.1004186 PMID: 25815895
  64. Urbanowicz RJ, Meeker M, La Cava W, Olson RS, Moore JH. Relief-based feature selection: Introduction and review. J Biomed Inform 2018; 85: 189-203. doi: 10.1016/j.jbi.2018.07.014 PMID: 30031057
  65. Silverman J. Phylogenetic partitioning based ILR transform for metagenomics data https://elifesciences.org/content/6/e21887 doi: 10.7554/eLife.21887
  66. Wassan JT, Wang H, Browne F, Zheng H. PAAM-ML: A novel phylogeny and abundance aware machine learning modelling approach for microbiome classification. 2018; pp. IEEE International Conference on Bioinformatics and Biomedicine (BIBM). Madrid, Spain. 2018; pp. 2018; 44-9. doi: 10.1109/BIBM.2018.8621382
  67. Wassan JT, Wang H, Browne F, Zheng H. Phy-PMRFI: Phylogeny-aware prediction of metagenomic functions using random forest feature importance. IEEE Trans Nanobiosci 2019; 18(3): 273-82. doi: 10.1109/TNB.2019.2912824 PMID: 31021803
  68. Wu C, Chen J, Kim J, Pan W. An adaptive association test for microbiome data. Genome Med 2016; 8(1): 56. doi: 10.1186/s13073-016-0302-3 PMID: 27198579
  69. Wassan JT, Zheng H, Browne F, et al. An integrative framework for functional analysis of cattle rumen microbiomes. IEEE International Conference on Bioinformatics and Biomedicine (BIBM); Madrid, Spain 2018 , pp 1854-1860. doi: 10.1109/BIBM.2018.8621104
  70. Wang H, Zheng H, Browne F, et al. Analysis of rumen microbial community in cattle through the integration of metagenomic and network-based approaches. 2016 IEEE International Conference on Bioinformatics and Biomedicine (BIBM); Shenzhen, China 2017; pp. 198-203. doi: 10.1109/BIBM.2016.7822518
  71. Tapio I, Fischer D, Blasco L, et al. Taxon abundance, diversity, co-occurrence and network analysis of the ruminal microbiota in response to dietary changes in dairy cows. PLoS One 2017; 12(7): e0180260. doi: 10.1371/journal.pone.0180260 PMID: 28704445
  72. Martínez-Álvaro M, Auffret MD, Duthie CA, et al. Bovine host genome acts on rumen microbiome function linked to methane emissions. Commun Biol 2022; 5(1): 350. doi: 10.1038/s42003-022-03293-0 PMID: 35414107
  73. Reiman D, Metwally AA, Dai Y. PopPhy-CNN: A phylogenetic tree embedded architecture for convolution neural networks for metagenomic data. bioRxiv 2018; 257931. doi: 10.1101/257931
  74. Fioravanti D, Giarratano Y, Maggio V, et al. Phylogenetic convolutional neural networks in metagenomics. BMC Bioinformatics 2018; 19(S2) (Suppl. 2): 49. doi: 10.1186/s12859-018-2033-5 PMID: 29536822
  75. Zhu Q, Zhu Q, Pan M, Jiang X, Hu X, He T. The phylogenetic tree based deep forest for metagenomic data classification. 2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM); Madrid, Spain 2019; pp. 279-82. doi: 10.1109/BIBM.2018.8621463
  76. Meale SJ, Li SC, Azevedo P, et al. Weaning age influences the severity of gastrointestinal microbiome shifts in dairy calves. Sci Rep 2017; 7(1): 198. doi: 10.1038/s41598-017-00223-7 PMID: 28298634
  77. Barelli C, Albanese D, Donati C, et al. Habitat fragmentation is associated to gut microbiota diversity of an endangered primate: implications for conservation. Sci Rep 2015; 5(1): 14862. doi: 10.1038/srep14862 PMID: 26445280
  78. Wassan JT, Wang H, Browne F, Zheng H. Microbial abundance analysis and phylogenetic adoption in functional metagenomics. 2017 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB); Manchester, UK 2017; pp. 1-8. doi: 10.1109/CIBCB.2017.8058557
  79. Manning T, Wassan JT, Palu C, et al. Phylogeny-aware deep 1- dimensional convolutional neural network for the classification of metagenomes. 2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM);. Madrid, Spain 2019; p. 1826. doi: 10.1109/BIBM.2018.8621543
  80. Wang H, Zheng H, Browne F, et al. Integrated metagenomic analysis of the rumen microbiome of cattle reveals key biological mechanisms associated with methane traits. Methods 2017; 124: 108-19. doi: 10.1016/j.ymeth.2017.05.029 PMID: 28602995
  81. Wang L, Zhang K, Zhang C, et al. Dynamics and stabilization of the rumen microbiome in yearling Tibetan sheep. Sci Rep 2019; 9(1): 19620. doi: 10.1038/s41598-019-56206-3 PMID: 31873173
  82. Grandl F, Furger M, Kreuzer M, Zehetmeier M. Impact of longevity on greenhouse gas emissions and profitability of individual dairy cows analysed with different system boundaries. Animal 2019; 13(1): 198-208. doi: 10.1017/S175173111800112X PMID: 29807552
  83. Anderson CL, Fernando SC. Insights into rumen microbial biosynthetic gene cluster diversity through genome-resolved metagenomics. Commun Biol 2021; 4(1): 818. doi: 10.1038/s42003-021-02331-7 PMID: 34188189
  84. Li F, Guan LL. Metatranscriptomic profiling reveals linkages between the active rumen microbiome and feed efficiency in beef cattle. Appl Environ Microbiol 2017; 83(9): e00061-17. doi: 10.1128/AEM.00061-17 PMID: 28235871
  85. Lim SJ, Bordenstein SR. An introduction to phylosymbiosis. Proc R Soc Lond, B 1922; 2020: 287. doi: 10.1098/rspb.2019.2900 PMID: 32126958
  86. Li Z, Wang X, Alberdi A, et al. Comparative microbiome analysis reveals the ecological relationships between rumen methanogens, acetogens, and their hosts. Front Microbiol 2020; 11: 1311. doi: 10.3389/fmicb.2020.01311 PMID: 32714292
  87. Matthews C, Crispie F, Lewis E, Reid M, O’Toole PW, Cotter PD. The rumen microbiome: A crucial consideration when optimising milk and meat production and nitrogen utilisation efficiency. Gut Microbes 2019; 10(2): 115-32. doi: 10.1080/19490976.2018.1505176 PMID: 30207838
  88. Hernandez-Sanabria E, Goonewardene LA, Wang Z, Durunna ON, Moore SS, Guan LL. Impact of feed efficiency and diet on adaptive variations in the bacterial community in the rumen fluid of cattle. Appl Environ Microbiol 2012; 78(4): 1203-14. doi: 10.1128/AEM.05114-11 PMID: 22156428
  89. Maddison DR, Schulz KS, Maddison WP. The tree of life web project. Zootaxa 2007; 1668(1): 19-40. doi: 10.11646/zootaxa.1668.1.4
  90. Rasheed Z. Data mining framework for metagenome analysis. PhD thesis Fairfax, VA: George Mason University 2013.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers