Deep Learning for Clustering Single-cell RNA-seq Data


Cite item

Full Text

Abstract

The development of single-cell RNA sequencing (scRNA-seq) technology provides an excellent opportunity to explore cell heterogeneity and diversity. With the growing application of scRNA-seq data, many computational clustering methods have been developed to further uncover cell subgroups, and cell dynamics at the group level. Due to the characteristics of high dimension, high sparsity and high noise of the scRNA-seq data, it is challenging to use traditional clustering methods. Fortunately, deep learning technologies characterize the properties of scRNA-seq data well and provide a new perspective for data analysis. This work reviews the most popular computational clustering methods and tools based on deep learning technologies, involving comparison, data collection, code acquisition, results evaluation, and so on. In general, such a presentation points out some progress and limitations of the existing methods and discusses the challenges and directions for further research, which may give new insight to address a broader range of new challenges in dealing with single-cell sequencing data and downstream analysis.

About the authors

Yuan Zhu

School of Automation, China University of Geosciences

Email: info@benthamscience.net

Litai Bai

School of Automation, China University of Geosciences

Email: info@benthamscience.net

Zilin Ning

School of Mathematics and Physics, China University of Geosciences

Email: info@benthamscience.net

Wenfei Fu

School of Mathematics and Physics, China University of Geosciences

Email: info@benthamscience.net

Jie Liu

School of Mathematics and Physics, China University of Geosciences

Email: info@benthamscience.net

Linfeng Jiang

School of Automation, China University of Geosciences

Email: info@benthamscience.net

Shihuang Fei

School of Automation, China University of Geosciences

Email: info@benthamscience.net

Shiyun Gong

School of Automation, China University of Geosciences

Email: info@benthamscience.net

Lulu Lu

School of Mathematics and Physics, China University of Geosciences

Email: info@benthamscience.net

Minghua Deng

School of Mathematical Sciences, Peking University

Email: info@benthamscience.net

Ming Yi

School of Mathematics and Physics, China University of Geosciences

Author for correspondence.
Email: info@benthamscience.net

References

  1. Regev A, Teichmann SA, Lander ES, et al. Science forum: The human cell atlas. eLife 2017; 6: e27041. doi: 10.7554/eLife.27041 PMID: 29206104
  2. Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 2008; 5(7): 621-8. doi: 10.1038/nmeth.1226 PMID: 18516045
  3. Wang Z, Shen X, Shi Q. New advances in single-cell genome sequencing technology and its application in biomedicine. Genetics 2021; 43(02): 108-17.
  4. Zheng R, Liang Z, Chen X, Tian Y, Cao C, Li M. An adaptive sparse subspace clustering for cell type identification. Front Genet 2020; 11: 407. doi: 10.3389/fgene.2020.00407 PMID: 32425984
  5. Eberwine J, Sul JY, Bartfai T, Kim J. The promise of single-cell sequencing. Nat Methods 2014; 11(1): 25-7. doi: 10.1038/nmeth.2769 PMID: 24524134
  6. Macaulay IC, Voet T. Single cell genomics: Advances and future perspectives. PLoS Genet 2014; 10(1): e1004126. doi: 10.1371/journal.pgen.1004126 PMID: 24497842
  7. Wang Y, Navin NE. Advances and applications of single-cell sequencing technologies. Mol Cell 2015; 58(4): 598-609. doi: 10.1016/j.molcel.2015.05.005 PMID: 26000845
  8. Stegle O, Teichmann SA, Marioni JC. Computational and analytical challenges in single-cell transcriptomics. Nat Rev Genet 2015; 16(3): 133-45. doi: 10.1038/nrg3833 PMID: 25628217
  9. Yuan GC, Cai L, Elowitz M, et al. Challenges and emerging directions in single-cell analysis. Genome Biol 2017; 18(1): 84. doi: 10.1186/s13059-017-1218-y PMID: 28482897
  10. Stuart T, Satija R. Integrative single-cell analysis. Nat Rev Genet 2019; 20(5): 257-72. doi: 10.1038/s41576-019-0093-7 PMID: 30696980
  11. Luecken MD, Theis FJ. Current best practices in single-cell RNA-seq analysis: A tutorial. Mol Syst Biol 2019; 15(6): e8746. doi: 10.15252/msb.20188746 PMID: 31217225
  12. Lee J, Hyeon DY, Hwang D. Single-cell multiomics: technologies and data analysis methods. Exp Mol Med 2020; 52(9): 1428-42. doi: 10.1038/s12276-020-0420-2 PMID: 32929225
  13. Liu CL, Zhu Y, Zhang H. Cellular similarity based imputation for single cell RNA sequencing data. In: 13th International Conference on Bioinformatics and Biomedical Technology. 2021; pp. 65-70.
  14. Shapiro E, Biezuner T, Linnarsson S. Single-cell sequencing-based technologies will revolutionize whole-organism science. Nat Rev Genet 2013; 14(9): 618-30. doi: 10.1038/nrg3542 PMID: 23897237
  15. Menon V. Clustering single cells: A review of approaches on high-and low-depth single-cell RNA-seq data. Brief Funct Genomics 2018; 17(4): 240-5. doi: 10.1093/bfgp/elx044 PMID: 29236955
  16. Lafzi A, Moutinho C, Picelli S, Heyn H. Tutorial: Guidelines for the experimental design of single-cell RNA sequencing studies. Nat Protoc 2018; 13(12): 2742-57. doi: 10.1038/s41596-018-0073-y PMID: 30446749
  17. Kolodziejczyk AA, Kim JK, Svensson V, Marioni JC, Teichmann SA. The technology and biology of single-cell RNA sequencing. Mol Cell 2015; 58(4): 610-20. doi: 10.1016/j.molcel.2015.04.005 PMID: 26000846
  18. Gawad C, Koh W, Quake SR. Single-cell genome sequencing: current state of the science. Nat Rev Genet 2016; 17(3): 175-88. doi: 10.1038/nrg.2015.16 PMID: 26806412
  19. Kelsey G, Stegle O, Reik W. Single-cell epigenomics: Recording the past and predicting the future. Science 2017; 358(6359): 69-75. doi: 10.1126/science.aan6826 PMID: 28983045
  20. Yang Y, Huh R, Culpepper HW, Lin Y, Love MI, Li Y. SAFE-clustering: Single-cell Aggregated (from Ensemble) clustering for single-cell RNA-seq data. Bioinformatics 2019; 35(8): 1269-77. doi: 10.1093/bioinformatics/bty793 PMID: 30202935
  21. Wan S, Kim J, Won KJ. SHARP: hyperfast and accurate processing of single-cell RNA-seq data via ensemble random projection. Genome Res 2020; 30(2): 205-13. doi: 10.1101/gr.254557.119 PMID: 31992615
  22. Li X, Zhang S, Wong KC. Single-cell RNA-seq interpretations using evolutionary multiobjective ensemble pruning. Bioinformatics 2019; 35(16): 2809-17. doi: 10.1093/bioinformatics/bty1056 PMID: 30596898
  23. Tsoucas D, Yuan GC. GiniClust2: a cluster-aware, weighted ensemble clustering method for cell-type detection. Genome Biol 2018; 19(1): 58. doi: 10.1186/s13059-018-1431-3 PMID: 29747686
  24. Weber LM, Robinson MD. Comparison of clustering methods for high-dimensional single-cell flow and mass cytometry data. Cytometry A 2016; 89(12): 1084-96. doi: 10.1002/cyto.a.23030 PMID: 27992111
  25. Guan J, Li R Y, Wang J. GRACE: A graph-based cluster ensemble approach for single-cell RNA-Seq data clustering. IEEE Access 2020; 8: 166730-41.
  26. Zhu Y, Zhang DX, Zhang XF, Yi M, Ou-Yang L, Wu M. EC-PGMGR: Ensemble clustering based on probability graphical model with graph regularization for single-cell RNA-seq data. Front Genet 2020; 11: 572242. doi: 10.3389/fgene.2020.572242 PMID: 33329710
  27. Petegrosso R, Li Z, Kuang R. Machine learning and statistical methods for clustering single-cell RNA-sequencing data. Brief Bioinform 2020; 21(4): 1209-23. doi: 10.1093/bib/bbz063 PMID: 31243426
  28. Ji Y, Lotfollahi M, Wolf FA, Theis FJ. Machine learning for perturbational single-cell omics. Cell Syst 2021; 12(6): 522-37. doi: 10.1016/j.cels.2021.05.016 PMID: 34139164
  29. Oller-Moreno S, Kloiber K, Machart P, Bonn S. Algorithmic advances in machine learning for single-cell expression analysis. Curr Opin Syst Biol 2021; 25: 27-33. doi: 10.1016/j.coisb.2021.02.002
  30. Liu J, Fan Z, Zhao W, Zhou X. Machine intelligence in single-cell data analysis: Advances and new challenges. Front Genet 2021; 12: 655536. doi: 10.3389/fgene.2021.655536 PMID: 34135939
  31. Raimundo F, Meng-Papaxanthos L, Vallot C, Vert J-P. Machine learning for single-cell genomics data analysis. Curr Opin Syst Biol 2021; 26: 64-71. doi: 10.1016/j.coisb.2021.04.006
  32. Konstantinides N, Desplan C. Neuronal differentiation strategies: insights from single-cell sequencing and machine learning. Development 2020; 147(23): dev193631. doi: 10.1242/dev.193631 PMID: 33293292
  33. Zhu TJ, Zhu Y, Zhang CK. Incomplete multi-view clustering for single cell RNA sequencing data. 2021 China Automation Congress (CAC) IEEE. 2021; pp. 1651-5.
  34. Min E, Guo X, Liu Q, et al. A survey of clustering with deep learning: from the perspective of network architecture. IEEE Access 2018; 6: 39501-14. doi: 10.1109/ACCESS.2018.2855437
  35. Karim MR, Beyan O, Zappa A, et al. Deep learning-based clustering approaches for bioinformatics. Brief Bioinform 2021; 22(1): 393-415. doi: 10.1093/bib/bbz170 PMID: 32008043
  36. Flores M, Liu Z, Zhang T, et al. Deep learning tackles single-cell analysis—a survey of deep learning for scRNA-seq analysis. Brief Bioinform 2022; 23(1): bbab531. doi: 10.1093/bib/bbab531 PMID: 34929734
  37. Wang J, Zou Q, Lin C. A comparison of deep learning-based pre-processing and clustering approaches for single-cell RNA sequencing data. Brief Bioinform 2022; 23(1): bbab345. doi: 10.1093/bib/bbab345 PMID: 34472590
  38. Károly AI, Fullér R, Galambos P. Unsupervised clustering for deep learning: A tutorial survey. Acta Polytech Hung 2018; 15(8): 29-53.
  39. Andrews TS, Hemberg M. Identifying cell populations with scRNASeq. Mol Aspects Med 2018; 59: 114-22. doi: 10.1016/j.mam.2017.07.002 PMID: 28712804
  40. Wang Z, Ding H, Zou Q. Identifying cell types to interpret scRNA-seq data: how, why and more possibilities. Brief Funct Genomics 2020; 19(4): 286-91. doi: 10.1093/bfgp/elaa003 PMID: 32232401
  41. Sun X, Lin X, Li Z, Wu H. A comprehensive comparison of supervised and unsupervised methods for cell type identification in single-cell RNA-seq. Brief Bioinform 2022; 23(2): bbab567. doi: 10.1093/bib/bbab567 PMID: 35021202
  42. Song M, Greenbaum J, Luttrell JIV, et al. A review of integrative imputation for multi-omics datasets. Front Genet 2020; 11: 570255. doi: 10.3389/fgene.2020.570255 PMID: 33193667
  43. Patruno L, Maspero D, Craighero F, Angaroni F, Antoniotti M, Graudenzi A. A review of computational strategies for denoising and imputation of single-cell transcriptomic data. Brief Bioinform 2021; 22(4): bbaa222. PMID: 33003202
  44. Baek S, Lee I. Single-cell ATAC sequencing analysis: From data preprocessing to hypothesis generation. Comput Struct Biotechnol J 2020; 18: 1429-39. doi: 10.1016/j.csbj.2020.06.012 PMID: 32637041
  45. Xie J, Girshick R, Farhadi A. Unsupervised deep embedding for clustering analysis. In: International Conference on Machine Learning PMLR. 2016; pp. 478-87.
  46. Yang B, Fu X, Sidiropoulos ND, et al. Towards k-means-friendly spaces: simultaneous deep learning and clustering. International Conference on Machine Learning PMLR . Sydney, Australia 2017; pp. 3861-70.
  47. Huang P, Huang Y, Wang W, et al. Deep embedding network for clustering. In: 22nd International Conference on Pattern Recognition. IEEE 2014; pp. 1532-7.
  48. Li X, Wang K, Lyu Y, et al. Deep learning enables accurate clustering with batch effect removal in single-cell RNA-seq analysis. Nat Commun 2020; 11(1): 2338. doi: 10.1038/s41467-020-15851-3 PMID: 32393754
  49. Yang KD, Belyaeva A, Venkatachalapathy S, et al. Multi-domain translation between single-cell imaging and sequencing data using autoencoders. Nat Commun 2021; 12(1): 31. doi: 10.1038/s41467-020-20249-2 PMID: 33397893
  50. Tangherloni A, Ricciuti F, Besozzi D, Liò P, Cvejic A. Analysis of single-cell RNA sequencing data based on autoencoders. BMC Bioinformatics 2021; 22(1): 309. doi: 10.1186/s12859-021-04150-3 PMID: 34103004
  51. Eraslan G, Simon LM, Mircea M, Mueller NS, Theis FJ. Single-cell RNA-seq denoising using a deep count autoencoder. Nat Commun 2019; 10(1): 390. doi: 10.1038/s41467-018-07931-2 PMID: 30674886
  52. Tian T, Wan J, Song Q, Wei Z. Clustering single-cell RNA-seq data with a model-based deep learning approach. Nat Mach Intell 2019; 1(4): 191-8. doi: 10.1038/s42256-019-0037-0
  53. Peng J, Wang X, Shang X. Combining gene ontology with deep neural networks to enhance the clustering of single cell RNA-Seq data. BMC Bioinformatics 2019; 20(S8) (Suppl. 8): 284. doi: 10.1186/s12859-019-2769-6 PMID: 31182005
  54. Deng Y, Bao F, Dai Q, et al. Massive single-cell RNA- seq analysis and imputation via deep learning. BioRxiv 2018; 315556. doi: 10.1101/315556
  55. Xia J, Wang L, Zhang G, Zuo C, Chen L. RDAClone: deciphering tumor heterozygosity through single-cell genomics data analysis with robust deep autoencoder. Genes (Basel) 2021; 12(12): 1847. doi: 10.3390/genes12121847 PMID: 34946794
  56. Hu H, Li Z, Li X, Yu M, Pan X. ScCAEs: deep clustering of single-cell RNA-seq via convolutional autoencoder embedding and soft K-means. Brief Bioinform 2022; 23(1): bbab321.
  57. Dong J, Zhang Y, Wang F. scSemiAE: a deep model with semi-supervised learning for single-cell transcriptomics. BMC Bioinform 2022; 23: 161.
  58. Srinivasan S, Leshchyk A, Johnson NT, Korkin D. A hybrid deep clustering approach for robust cell type profiling using single-cell RNA-seq data. RNA 2020; 26(10): 1303-19.
  59. Xu L, Xu Y, Xue T, Zhang X, Li J. AdImpute: An imputation method for single-cell RNA-Seq data based on semi-supervised autoencoders. Front Genet 2021; 12: 739677. doi: 10.3389/fgene.2021.739677 PMID: 34567089
  60. Zhao J, Wang N, Wang H, Zheng C, Su Y. SCDRHA: A scRNA- seq data dimensionality reduction algorithm based on hierarchical autoencoder. Front Genet 2021; 12: 733906. doi: 10.3389/fgene.2021.733906 PMID: 34512734
  61. Li H, Brouwer CR, Luo W. A universal deep neural network for in-depth cleaning of single-cell RNA-Seq data. Nat Commun 2022; 13(1): 1901. doi: 10.1038/s41467-022-29576-y PMID: 35393428
  62. Zhang H, Li P, Zhang R, Li X. Embedding graph auto-encoder for graph clustering. IEEE Trans Neural Netw Learn Syst. 2022; pp. 1-11. doi: 10.1109/TNNLS.2022.3158654 PMID: 35333721
  63. Zhang R, Zou Y, Ma J. Hyper-SAGNN: A self-attention based graph neural network for hypergraphs. arXiv preprint 2019.
  64. Wang T, Bai J, Nabavi S. Single-cell classification using graph convolutional networks. BMC Bioinformatics 2021; 22(1): 364. doi: 10.1186/s12859-021-04278-2 PMID: 34238220
  65. Gao W, Li Y, Fang C, et al. SCMAG: A semi-supervised single-cell clustering method based on matrix aggregation graph convolutional neural network. Comput Math Methods Med 2021; 2021: 6842752.
  66. Lall S, Ray S, Bandyopadhyay S. A copula based topology preserving graph convolution network for clustering of single-cell RNA-seq data. PLOS Comput Biol 2022; 18(3): e1009600. doi: 10.1371/journal.pcbi.1009600 PMID: 35271564
  67. Alghamdi N, Chang W, Dang P, et al. A graph neural network model to estimate cell-wise metabolic flux using single-cell RNA-seq data. Genome Res 2021; 31(10): 1867-84. doi: 10.1101/gr.271205.120 PMID: 34301623
  68. Shao X, Yang H, Zhuang X, et al. scDeepSort: a pre-trained cell-type annotation method for single-cell transcriptomics using deep learning with a weighted graph neural network. Nucleic Acids Res 2021; 49(21): e122-2. doi: 10.1093/nar/gkab775 PMID: 34500471
  69. Bo D, Wang X, Shi C, et al. Structural deep clustering network. The Web Conference. Taipei, Taiwan 2020; pp. 1400-0. doi: 10.1145/3366423.3380214
  70. Qin Y, Yu ZL, Wang CD, Gu Z, Li Y. A Novel clustering method based on hybrid K-nearest-neighbor graph. Pattern Recognit 2018; 74: 1-14. doi: 10.1016/j.patcog.2017.09.008
  71. Zeng Y, Zhou X, Rao J, et al. Accurately clustering single-cell RNA-seq data by capturing structural relations between cells through graph convolutional network. In: IEEE International Conference on Bioinformatics and Biomedicine (BIBM) 16-19 December. Seoul, Korea (South); IEEE 2020; pp. 519-22. doi: 10.1109/BIBM49941.2020.9313569
  72. Rao J, Zhou X, Lu Y, Zhao H, Yang Y. Imputing single-cell RNA-seq data by combining graph convolution and autoencoder neural networks. iScience 2021; 24(5): 102393. doi: 10.1016/j.isci.2021.102393 PMID: 33997678
  73. Li J, Jiang W, Han H, Liu J, Liu B, Wang Y. ScGSLC: An unsupervised graph similarity learning framework for single-cell RNA-seq data clustering. Comput Biol Chem 2021; 90: 107415. doi: 10.1016/j.compbiolchem.2020.107415 PMID: 33307360
  74. Bai LT, Zhu Y, Yi M. Clustering single-cell RNA sequencing data by deep learning algorithm. In: 9th International Conference on Bioinformatics and Computational Biology (ICBCB). 2021; pp. 118-24.
  75. Wang J, Ma A, Chang Y, et al. scGNN is a novel graph neural network framework for single-cell RNA-Seq analyses. Nat Commun 2021; 12(1): 1882. doi: 10.1038/s41467-021-22197-x PMID: 33767197
  76. Wang J, Agarwal D, Huang M, et al. Data denoising with transfer learning in single-cell transcriptomics. Nat Methods 2019; 16(9): 875-8. doi: 10.1038/s41592-019-0537-1 PMID: 31471617
  77. Gan Y, Huang X, Zou G, Zhou S, Guan J. Deep structural clustering for single-cell RNA-seq data jointly through autoencoder and graph neural network. Brief Bioinform 2022; 23(2): bbac018. doi: 10.1093/bib/bbac018 PMID: 35172334
  78. Xu C, Lopez R, Mehlman E, Regier J, Jordan MI, Yosef N. Probabilistic harmonization and annotation of single-cell transcriptomics data with deep generative models. Mol Syst Biol 2021; 17(1): e9620. doi: 10.15252/msb.20209620 PMID: 33491336
  79. Hu J, Li X, Hu G, Lyu Y, Susztak K, Li M. Iterative transfer learning with neural network for clustering and cell type classification in single-cell RNA-seq analysis. Nat Mach Intell 2020; 2(10): 607-18. doi: 10.1038/s42256-020-00233-7 PMID: 33817554
  80. Chen L, Zhai Y, He Q, Wang W, Deng M. Integrating deep supervised, self-supervised and unsupervised learning for single-cell RNA-seq clustering and annotation. Genes (Basel) 2020; 11(7): 792. doi: 10.3390/genes11070792 PMID: 32674393
  81. Lotfollahi M, Naghipourfar M, Luecken MD, et al. Mapping single-cell data to reference atlases by transfer learning. Nat Biotechnol 2022; 40(1): 121-30. doi: 10.1038/s41587-021-01001-7 PMID: 34462589
  82. Johnson TS, Yu CY, Huang Z, et al. Diagnostic evidence gauge of single cells (DEGAS): a flexible deep transfer learning framework for prioritizing cells in relation to disease. Genome Med 2022; 14(1): 11. doi: 10.1186/s13073-022-01012-2 PMID: 35105355
  83. Peng M, Li Y, Wamsley B, Wei Y, Roeder K. Integration and transfer learning of single-cell transcriptomes via cFIT. Proc Natl Acad Sci USA 2021; 118(10): e2024383118. doi: 10.1073/pnas.2024383118 PMID: 33658382
  84. Wang YX, Zhang YJ. Nonnegative matrix factorization: A comprehensive review. IEEE Trans Knowl Data Eng 2013; 25(6): 1336-53. doi: 10.1109/TKDE.2012.51
  85. Song Q, Su J, Zhang W. scGCN is a graph convolutional networks algorithm for knowledge transfer in single cell omics. Nat Commun 2021; 12(1): 3826. doi: 10.1038/s41467-021-24172-y PMID: 34158507
  86. Park Y, Hauschild AC, Heider D. Transfer learning compensates limited data, batch effects and technological heterogeneity in single-cell sequencing. NAR Genom Bioinform 2021; 3(4): lqab104. doi: 10.1093/nargab/lqab104 PMID: 34805988
  87. Zeng P, Lin Z. coupleCoC+: An information-theoretic co-clustering-based transfer learning framework for the integrative analysis of single-cell genomic data. PLOS Comput Biol 2021; 17(6): e1009064. doi: 10.1371/journal.pcbi.1009064 PMID: 34077420
  88. Michielsen L, Reinders MJT, Mahfouz A. Hierarchical progressive learning of cell identities in single-cell data. Nat Commun 2021; 12(1): 2799. doi: 10.1038/s41467-021-23196-8 PMID: 33990598
  89. Ding J, Condon A, Shah SP. Interpretable dimensionality reduction of single cell transcriptome data with deep generative models. Nat Commun 2018; 9(1): 2002. doi: 10.1038/s41467-018-04368-5 PMID: 29784946
  90. Wang D, Gu J. VASC: dimension reduction and visualization of single-cell RNA-seq data by deep variational autoencoder. Genom Proteom Bioinform 2018; 16(5): 320-31. doi: 10.1016/j.gpb.2018.08.003 PMID: 30576740
  91. Lopez R, Regier J, Cole MB, Jordan MI, Yosef N. Deep generative modeling for single-cell transcriptomics. Nat Methods 2018; 15(12): 1053-8. doi: 10.1038/s41592-018-0229-2 PMID: 30504886
  92. Kopf A, Fortuin V, Somnath VR, Claassen M. Mixture-of-experts variational autoencoder for clustering and generating from similarity-based representations on single cell data. PLOS Comput Biol 2021; 17(6): e1009086. doi: 10.1371/journal.pcbi.1009086 PMID: 34191792
  93. Seninge L, Anastopoulos I, Ding H, Stuart J. VEGA is an interpretable generative model for inferring biological network activity in single-cell transcriptomics. Nat Commun 2021; 12(1): 5684. doi: 10.1038/s41467-021-26017-0 PMID: 34584103
  94. Ternes L, Dane M, Gross S, et al. A multi-encoder variational autoencoder controls multiple transformational features in single-cell image analysis. Commun Biol 2022; 5(1): 255. doi: 10.1038/s42003-022-03218-x PMID: 35322205
  95. Zuo C, Chen L. Deep-joint-learning analysis model of single cell transcriptome and open chromatin accessibility data. Brief Bioinform 2021; 22(4): bbaa287. doi: 10.1093/bib/bbaa287 PMID: 33200787
  96. Minoura K, Abe K, Nam H, Nishikawa H, Shimamura T. A mixture-of-experts deep generative model for integrated analysis of single-cell multiomics data. Cell Reports Methods 2021; 1(5): 100071. doi: 10.1016/j.crmeth.2021.100071 PMID: 35474667
  97. Mitra R, MacLean AL. RVAgene: generative modeling of gene expression time series data. Bioinformatics 2021; 37(19): 3252-62. doi: 10.1093/bioinformatics/btab260 PMID: 33974008
  98. Ghahramani A, Watt FM, Luscombe NM. Generative adversarial networks uncover epidermal regulators and predict single-cell perturbations. BioRxiv 2018; 262501.
  99. Bahrami M, Maitra M, Nagy C, Turecki G, Rabiee HR, Li Y. Deep feature extraction of single-cell transcriptomes by generative adversarial network. Bioinformatics 2021; 37(10): 1345-51. doi: 10.1093/bioinformatics/btaa976 PMID: 33226074
  100. Amodio M, Krishnaswamy S. MAGAN: Aligning biological manifolds. In: International Conference on Machine Learning. Stockholm, Sweden PMLR; 2018; pp. 215-23.
  101. Yu H, Welch JD. MichiGAN: sampling from disentangled representations of single-cell data using generative adversarial networks. Genome Biol 2021; 22(1): 158. doi: 10.1186/s13059-021-02373-4 PMID: 34016135
  102. Liu Q, Chen S, Jiang R, Wong WH. Simultaneous deep generative modelling and clustering of single-cell genomic data. Nat Mach Intell 2021; 3(6): 536-44. doi: 10.1038/s42256-021-00333-y PMID: 34179690
  103. Wang X, Zhang C, Zhang Y, et al. IMGG: integrating multiple single-cell datasets through connected graphs and generative adversarial networks. Int J Mol Sci 2022; 23(4): 2082. doi: 10.3390/ijms23042082 PMID: 35216199
  104. Song Q, Su J. DSTG: deconvoluting spatial transcriptomics data through graph-based artificial intelligence. Brief Bioinform 2021; 22(5): bbaa 414. doi: 10.1093/bib/bbaa414
  105. Li J, Chen S, Pan X, Yuan Y, Shen H-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nat Comput Sci 2022; 2(6): 399-408. doi: 10.1038/s43588-022-00266-5
  106. Song Q, Zhu X, Jin L, Chen M, Zhang W, Su J. SMGR: A joint statistical method for integrative analysis of single-cell multi-omics data. NAR Genom Bioinform 2022; 4(3): lqac056. doi: 10.1093/nargab/lqac056 PMID: 35910046
  107. Chauvel C, Novoloaca A, Veyre P, Reynier F, Becker J. Evaluation of integrative clustering methods for the analysis of multi-omics data. Brief Bioinform 2020; 21(2): 541-52. doi: 10.1093/bib/bbz015 PMID: 31220206

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers