Research Progress on the Effect of Autophagy and Exosomes on Liver Fibrosis


Cite item

Full Text

Abstract

Chronic liver disease is a known risk factor for the development of liver cancer, and the development of microRNA (miRNA) liver therapies has been hampered by the difficulty of delivering miRNA to damaged tissues. In recent years, numerous studies have shown that hepatic stellate cell (HSC) autophagy and exosomes play an important role in maintaining liver homeostasis and ameliorating liver fibrosis. In addition, the interaction between HSC autophagy and exosomes also affects the progression of liver fibrosis. In this paper, we review the research progress of mesenchymal stem cell-derived exosomes (MSC-EVs) loaded with specific miRNA and autophagy, and their related signaling pathways in liver fibrosis, which will provide a more reliable basis for the use of MSC-EVs for therapeutic delivery of miRNAs targeting the chronic liver disease.

About the authors

Yikuan Du

Central Laboratory, Affiliated Dongguan Hospital,, Southern Medical University,

Email: info@benthamscience.net

Silin Zhu

Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, Guangdong Medical University,

Email: info@benthamscience.net

Haojie Zeng

Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, Guangdong Medical University,

Email: info@benthamscience.net

Zhenjie Wang

Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering,, Guangdong Medical University

Email: info@benthamscience.net

Yixing Huang

Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, Guangdong Medical University,

Email: info@benthamscience.net

Yuqi Zhou

Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, Guangdong Medical University,

Email: info@benthamscience.net

Weichui Zhang

Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, Guangdong Medical University,

Email: info@benthamscience.net

Jinfeng Zhu

Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, Guangdong Medical University

Email: info@benthamscience.net

Chun Yang

Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, Guangdong Medical University,

Author for correspondence.
Email: info@benthamscience.net

References

  1. Baghaei K, Mazhari S, Tokhanbigli S, et al. Therapeutic potential of targeting regulatory mechanisms of hepatic stellate cell activation in liver fibrosis. Drug Discov Today 2022; 27(4): 1044-61. doi: 10.1016/j.drudis.2021.12.012 PMID: 34952225
  2. Lucantoni F, Benedicto AM, Gruevska A, et al. Implication of autophagy in the antifibrogenic effect of Rilpivirine: when more is less. Cell Death Dis 2022; 13(4): 385. doi: 10.1038/s41419-022-04789-7 PMID: 35443746
  3. Chen S, He Z, Xie W, et al. Ginsenoside Rh2 attenuates CDAHFD-induced liver fibrosis in mice by improving intestinal microbial composition and regulating LPS-mediated autophagy. Phytomedicine 2022; 101: 154121. doi: 10.1016/j.phymed.2022.154121 PMID: 35489327
  4. Rong X, Liu J, Yao X, Jiang T, Wang Y, Xie F. Human bone marrow mesenchymal stem cells-derived exosomes alleviate liver fibrosis through the Wnt/β-catenin pathway. Stem Cell Res Ther 2019; 10(1): 98. doi: 10.1186/s13287-019-1204-2 PMID: 30885249
  5. Ma L, Wei J, Zeng Y, et al. Mesenchymal stem cell-originated exosomal circDIDO1 suppresses hepatic stellate cell activation by miR-141-3p/PTEN/AKT pathway in human liver fibrosis. Drug Deliv 2022; 29(1): 440-53. doi: 10.1080/10717544.2022.2030428 PMID: 35099348
  6. Lin Y, Yan M, Bai Z, et al. Huc-MSC-derived exosomes modified with the targeting peptide of aHSCs for liver fibrosis therapy. J Nanobiotechnology 2022; 20(1): 432. doi: 10.1186/s12951-022-01636-x PMID: 36183106
  7. Sakamoto T, Morishita A, Nomura T, et al. Identification of microRNA profiles associated with refractory primary biliary cirrhosis. Mol Med Rep 2016; 14(4): 3350-6. doi: 10.3892/mmr.2016.5606 PMID: 27511723
  8. Friedman SL. Liver fibrosis – from bench to bedside. J Hepatol 2003; 38 (Suppl. 1): 38-53. doi: 10.1016/S0168-8278(02)00429-4 PMID: 12591185
  9. Tsuchida T, Friedman SL. Mechanisms of hepatic stellate cell activation. Nat Rev Gastroenterol Hepatol 2017; 14(7): 397-411. doi: 10.1038/nrgastro.2017.38 PMID: 28487545
  10. Cai X, Li Z, Zhang Q, et al. CXCL 6‐ EGFR ‐induced Kupffer cells secrete TGF ‐β1 promoting hepatic stellate cell activation via the SMAD 2/BRD 4/C‐ MYC/EZH 2 pathway in liver fibrosis. J Cell Mol Med 2018; 22(10): 5050-61. doi: 10.1111/jcmm.13787 PMID: 30106235
  11. Pradere JP, Kluwe J, De Minicis S, et al. Hepatic macrophages but not dendritic cells contribute to liver fibrosis by promoting the survival of activated hepatic stellate cells in mice. Hepatology 2013; 58(4): 1461-73. doi: 10.1002/hep.26429 PMID: 23553591
  12. Sung S, Kim J, Jung Y. Liver-Derived Exosomes and Their Implications in Liver Pathobiology. Int J Mol Sci 2018; 19(12): 3715. doi: 10.3390/ijms19123715 PMID: 30469540
  13. Hu YB, Ye XT, Zhou QQ, et al. Sestrin 2 Attenuates Rat Hepatic Stellate Cell (HSC) Activation and Liver Fibrosis via an mTOR/AMPK-Dependent Mechanism. Mechanism. Cell Physiol Biochem 2018; 51(5): 2111-22. doi: 10.1159/000495829 PMID: 30522100
  14. Lucantoni F, Martínez-Cerezuela A, Gruevska A, et al. Understanding the implication of autophagy in the activation of hepatic stellate cells in liver fibrosis: Are we there yet? J Pathol 2021; 254(3): 216-28. doi: 10.1002/path.5678 PMID: 33834482
  15. Zaafan MA, Abdelhamid AM. Dasatinib ameliorates thioacetamide-induced liver fibrosis: Modulation of miR-378 and miR-17 and their linked Wnt/β-catenin and TGF-β/smads pathways. J Enzyme Inhib Med Chem 2022; 37(1): 118-24. doi: 10.1080/14756366.2021.1995379 PMID: 34894966
  16. Wang X, He Y, Mackowiak B, Gao B. MicroRNAs as regulators, biomarkers and therapeutic targets in liver diseases. Gut 2021; 70(4): 784-95. doi: 10.1136/gutjnl-2020-322526 PMID: 33127832
  17. Zhao Z, Lin CY, Cheng K. siRNA- and miRNA-based therapeutics for liver fibrosis. Transl Res 2019; 214: 17-29. doi: 10.1016/j.trsl.2019.07.007 PMID: 31476281
  18. Wang L, Wang Y, Quan J. Exosomal miR-223 derived from natural killer cells inhibits hepatic stellate cell activation by suppressing autophagy. Mol Med 2020; 26(1): 81. doi: 10.1186/s10020-020-00207-w PMID: 32873229
  19. Wang A, Bu F, Li J, et al. MicroRNA-195-3p promotes hepatic stellate cell activation and liver fibrosis by suppressing PTEN expression. Toxicol Lett 2022; 355: 88-99. doi: 10.1016/j.toxlet.2021.11.014 PMID: 34838997
  20. Wu SM, Li TH, Yun H, Ai HW, Zhang KH. MiR-140-3p knockdown suppresses cell proliferation and fibrogenesis in hepatic stellate cells via PTEN-Mediated AKT/mTOR Signaling. Yonsei Med J 2019; 60(6): 561-9. doi: 10.3349/ymj.2019.60.6.561 PMID: 31124340
  21. Zheng J, Wu C, Xu Z, et al. Hepatic stellate cell is activated by microRNA-181b via PTEN/Akt pathway. Mol Cell Biochem 2015; 398(1-2): 1-9. doi: 10.1007/s11010-014-2199-8 PMID: 25148875
  22. Fang B, Wen S, Li Y, et al. Prediction and verification of target of helenalin against hepatic stellate cell activation based on miR-200a-mediated PI3K/Akt and NF-κB pathways. Int Immunopharmacol 2021; 92: 107208. doi: 10.1016/j.intimp.2020.107208 PMID: 33444919
  23. Huang YH, Yang YL, Wang FS. The role of miR-29a in the regulation, function, and signaling of liver fibrosis. Int J Mol Sci 2018; 19(7): 1889. doi: 10.3390/ijms19071889 PMID: 29954104
  24. Ye M, Wang S, Sun P, Qie J. Integrated microRNA expression profile reveals dysregulated miR-20a-5p and miR-200a-3p in liver fibrosis. BioMed Res Int 2021; 2021: 1-10. doi: 10.1155/2021/9583932 PMID: 34235224
  25. Kouroumalis E, Voumvouraki A, Augoustaki A, Samonakis DN. Autophagy in liver diseases. World J Hepatol 2021; 13(1): 6-65. doi: 10.4254/wjh.v13.i1.6 PMID: 33584986
  26. Mastoridou EM, Goussia AC, Glantzounis GK, Kanavaros P, Charchanti AV. Autophagy and exosomes: Cross-regulated pathways playing major roles in hepatic stellate cells activation and liver fibrosis. Front Physiol 2022; 12: 801340. doi: 10.3389/fphys.2021.801340 PMID: 35185602
  27. Seo HY, Lee SH, Han E, Hwang JS, Kim MK, Jang BK. Increased levels of phosphorylated ERK Induce CTGF expression in autophagy-deficient mouse hepatocytes. Cells 2022; 11(17): 2704. doi: 10.3390/cells11172704 PMID: 36078110
  28. Ruart M, Chavarria L, Campreciós G, et al. Impaired endothelial autophagy promotes liver fibrosis by aggravating the oxidative stress response during acute liver injury. J Hepatol 2019; 70(3): 458-69. doi: 10.1016/j.jhep.2018.10.015 PMID: 30367898
  29. Wu H, Chen G, Wang J, Deng M, Yuan F, Gong J. TIM‐4 interference in Kupffer cells against CCL4‐induced liver fibrosis by mediating Akt1/Mitophagy signalling pathway. Cell Prolif 2020; 3(1): e12731. doi: 10.1111/cpr.12731 PMID: 31755616
  30. Friedman SL. Molecular regulation of hepatic fibrosis, an integrated cellular response to tissue injury. J Biol Chem 2000; 275(4): 2247-50. doi: 10.1074/jbc.275.4.2247 PMID: 10644669
  31. Hernández-Gea V, Ghiassi-Nejad Z, Rozenfeld R, et al. Autophagy releases lipid that promotes fibrogenesis by activated hepatic stellate cells in mice and in human tissues. Gastroenterology 2012; 142(4): 938-46. doi: 10.1053/j.gastro.2011.12.044 PMID: 22240484
  32. Zhang Z, Zhao S, Yao Z, et al. Autophagy regulates turnover of lipid droplets via ROS-dependent Rab25 activation in hepatic stellate cell. Redox Biol 2017; 11: 322-34. doi: 10.1016/j.redox.2016.12.021 PMID: 28038427
  33. Hu Z, Su H, Zeng Y, et al. Tetramethylpyrazine ameliorates hepatic fibrosis through autophagy-mediated inflammation. Biochem Cell Biol 2020; 98(3): 327-37. doi: 10.1139/bcb-2019-0059 PMID: 32383631
  34. Zhang Z, Guo M, Li Y, et al. RNA-binding protein ZFP36/TTP protects against ferroptosis by regulating autophagy signaling pathway in hepatic stellate cells. Autophagy 2020; 16(8): 1482-505. doi: 10.1080/15548627.2019.1687985 PMID: 31679460
  35. Dixon SJ, Lemberg KM, Lamprecht MR, et al. Ferroptosis: An iron-dependent form of nonapoptotic cell death. Cell 2012; 149(5): 1060-72. doi: 10.1016/j.cell.2012.03.042
  36. Wang Y, Wang M, Liu Y, et al. Integrated regulation of stress responses, autophagy and survival by altered intracellular iron stores. Redox Biol 2022; 55: 102407. doi: 10.1016/j.redox.2022.102407 PMID: 35853304
  37. Yi J, Wu S, Tan S, et al. Berberine alleviates liver fibrosis through inducing ferrous redox to activate ROS-mediated hepatic stellate cells ferroptosis. Cell Death Discov 2021; 7(1): 374. doi: 10.1038/s41420-021-00768-7 PMID: 34864819
  38. Shen M, Li Y, Wang Y, et al. N6-methyladenosine modification regulates ferroptosis through autophagy signaling pathway in hepatic stellate cells. Redox Biol 2021; 47: 102151. doi: 10.1016/j.redox.2021.102151 PMID: 34607160
  39. Cho SS, Yang JH, Lee JH, et al. Ferroptosis contribute to hepatic stellate cell activation and liver fibrogenesis. Free Radic Biol Med 2022; 193(Pt 2): 620-37. doi: 10.1016/j.freeradbiomed.2022.11.011 PMID: 36370962
  40. Zhang J, Ping J, Jiang N, Xu L. Resveratrol inhibits hepatic stellate cell activation by regulating autophagy and apoptosis through the SIRT1 and JNK signaling pathways. J Food Biochem 2022; 6(12): e14463. doi: 10.1111/jfbc.14463 PMID: 36314441
  41. Zhang J, Jiang N, Ping J, Xu L. TGF β1 induced autophagy activates hepatic stellate cells via the ERK and JNK signaling pathways. Int J Mol Med 2020; 47(1): 256-66. doi: 10.3892/ijmm.2020.4778 PMID: 33236148
  42. Yu Q, Cheng P, Wu J, Guo C. PPARγ/NF‐κB and TGF‐β1/Smad pathway are involved in the anti‐fibrotic effects of levo‐tetrahydropalmatine on liver fibrosis. J Cell Mol Med 2021; 25(3): 1645-60. doi: 10.1111/jcmm.16267 PMID: 33438347
  43. Liu N, Feng J, Lu X, et al. Isorhamnetin inhibits liver fibrosis by reducing autophagy and inhibiting extracellular matrix formation via the TGF-β1/Smad3 and TGF-β1/p38 MAPK Pathways. Mediators Inflamm 2019; 2019: 6175091. doi: 10.1155/2019/6175091 PMID: 31467486
  44. Zhang XL, Chen ZN, Huang QF, et al. Methyl helicterate inhibits hepatic stellate cell activation through modulation of apoptosis and autophagy. Cell Physiol Biochem 2018; 51(2): 897-908. doi: 10.1159/000495390 PMID: 30466104
  45. Lee SW, Kim SM, Hur W, et al. Tenofovir disoproxil fumarate directly ameliorates liver fibrosis by inducing hepatic stellate cell apoptosis via downregulation of PI3K/Akt/mTOR signaling pathway. PLoS One 2021; 16(12): e0261067. doi: 10.1371/journal.pone.0261067 PMID: 34879114
  46. Wu X, Liu X, Liu Z N, et al. CD73 aggravates alcohol-related liver fibrosis by promoting autophagy mediated activation of hepatic stellate cells through AMPK/AKT/mTOR signaling pathway. Int Immunopharmacol 2022; 113(Pt A): 109229.
  47. Chen D, Chen J, Chen Y, Chen F, Wang X, Huang Y. Interleukin-10 regulates starvation-induced autophagy through the STAT3-mTOR-p70s6k axis in hepatic stellate cells. Exp Biol Med (Maywood) 2022; 247(10): 832-41. doi: 10.1177/15353702221080435 PMID: 35196893
  48. Zhou L. Study of the pathogenic role and targeted therapy of PI3K/Akt/mTOR signaling pathway in hepatocellular carcinoma PhD dissertation 2010.
  49. Wang H, Liu Y, Wang D, et al. The upstream pathway of mTOR-mediated autophagy in liver diseases. Cells 2019; 8(12): 1597. doi: 10.3390/cells8121597 PMID: 31835352
  50. Li J, Deng X, Wang S, Jiang Q, Xu K. Resolvin D1 attenuates CCl4 induced liver fibrosis by inhibiting autophagy-mediated HSC activation via AKT/mTOR pathway. Front Pharmacol 2021; 12: 792414. doi: 10.3389/fphar.2021.792414 PMID: 34987404
  51. Xiu AY, Ding Q, Li Z, Zhang CQ. Doxazosin attenuates liver fibrosis by inhibiting autophagy in hepatic stellate cells via activation of the PI3K/Akt/mTOR signaling pathway. Drug Des Devel Ther 2021; 15: 3643-59. doi: 10.2147/DDDT.S317701 PMID: 34456560
  52. Shen Y, Malik SA, Amir M, et al. Decreased hepatocyte autophagy leads to synergistic IL-1β and TNF mouse liver injury and inflammation. Hepatology 2020; 72(2): 595-608. doi: 10.1002/hep.31209 PMID: 32108953
  53. Li Q, Tan Y, Chen S, et al. Irisin alleviates LPS-induced liver injury and inflammation through inhibition of NLRP3 inflammasome and NF-κB signaling. J Recept Signal Transduct Res 2021; 41(3): 294-303. doi: 10.1080/10799893.2020.1808675 PMID: 32814473
  54. Barnabei L, Laplantine E, Mbongo W, Rieux-Laucat F, Weil R. NF- κB: At the borders of autoimmunity and inflammation. Front Immunol 2021; 12: 716469. doi: 10.3389/fimmu.2021.716469 PMID: 34434197
  55. Urtasun R, Lopategi A, George J, et al. Osteopontin, an oxidant stress sensitive cytokine, up-regulates collagen-I via integrin αVβ3 engagement and PI3K/pAkt/NFκB signaling. Hepatology 2012; 55(2): 594-608. doi: 10.1002/hep.24701 PMID: 21953216
  56. Liu X, Mi X, Wang Z, Zhang M, et al. Ginsenoside Rg3 promotes regression from hepatic fibrosis through reducing inflammation-mediated autophagy signaling pathway. Cell Death Dis 2020 Jun 12; 11(6): 454. doi: 10.1038/s41419-020-2597-7 PMID: 32532964
  57. Jiang M, Wu YL, Li X, et al. Oligomeric proanthocyanidin derived from grape seeds inhibited NF-κB signaling in activated HSC: Involvement of JNK/ERK MAPK and PI3K/Akt pathways. Biomed Pharmacother 2017; 93: 674-80. doi: 10.1016/j.biopha.2017.06.105 PMID: 28692939
  58. Fishman P, Cohen S, Itzhak I, et al. The A3 adenosine receptor agonist, namodenoson, ameliorates non alcoholic steatohepatitis in mice. Int J Mol Med 2019; 44(6): 2256-64. doi: 10.3892/ijmm.2019.4364 PMID: 31638172
  59. Lu L, Guo Q, Zhao L. Overview of Oroxylin A: A promising flavonoid compound. Phytother Res 2016; 30(11): 1765-74. doi: 10.1002/ptr.5694 PMID: 27539056
  60. Shen M, Guo M, Wang Z, et al. ROS-dependent inhibition of the PI3K/Akt/mTOR signaling is required for Oroxylin A to exert anti-inflammatory activity in liver fibrosis. Int Immunopharmacol 2020; 85: 106637. doi: 10.1016/j.intimp.2020.106637 PMID: 32512269
  61. Zhang Z-L, Chen F-S, Tong X-Y, Fang B, Wang D, Li X-Q. The roles of microRNAs in spinal cord ischemia-reperfusion injury. Neural Regen Res 2022; 17(12): 2593-9. doi: 10.4103/1673-5374.339471 PMID: 35662187
  62. Tekirdag KA, Korkmaz G, Ozturk DG, Agami R, Gozuacik D. MIR181A regulates starvation- and rapamycin-induced autophagy through targeting of ATG5. Autophagy 2013; 9(3): 374-85. doi: 10.4161/auto.23117 PMID: 23322078
  63. Shao W, Wang S, Wang X, et al. miRNA-29a inhibits atherosclerotic plaque formation by mediating macrophage autophagy via PI3K/AKT/mTOR pathway. Aging (Albany NY) 2022; 14(5): 2418-31. doi: 10.18632/aging.203951 PMID: 35288486
  64. Qu Y, Zhang Q, Cai X, et al. Exosomes derived from miR-181-5p-modified adipose-derived mesenchymal stem cells prevent liver fibrosis via autophagy activation. J Cell Mol Med 2017; 21(10): 2491-502. doi: 10.1111/jcmm.13170 PMID: 28382720
  65. Liu X, Ma H, Wu R, et al. Identification of liver fibrosis-related microRNAs in human primary hepatic stellate cells using high-throughput sequencing. Genes (Basel) 2022; 13(12): 2201. doi: 10.3390/genes13122201 PMID: 36553468
  66. Hyun J, Jung Y. MicroRNAs in liver fibrosis: Focusing on the interaction with hedgehog signaling. World J Gastroenterol 2016; 22(29): 6652-62. doi: 10.3748/wjg.v22.i29.6652 PMID: 27547008
  67. Yari H, Mikhailova MV, Mardasi M, et al. Emerging role of mesenchymal stromal cells (MSCs)-derived exosome in neurodegeneration-associated conditions: A groundbreaking cell-free approach. Stem Cell Res Ther 2022; 13(1): 423. doi: 10.1186/s13287-022-03122-5 PMID: 35986375
  68. Hu G, Drescher KM, Chen XM. Exosomal miRNAs: Biological Properties and Therapeutic Potential. Front Genet 2012; 3: 56. doi: 10.3389/fgene.2012.00056 PMID: 22529849
  69. You M, Liu GY, Cheng J, Li YJ, Yu H. Adipose stem cells and their derived exosomes alleviate liver fibrosis in rats by reducing apoptosis. Chin J Comp Med 2020; 30(07): 30-7.
  70. Liu C, Bu SZ. Relationship of autophagy and exosome. Chem Life 2020; 40(02): 173-9.
  71. Luo Y, Chen Q, Lyu T QU PQ, Cao Z, Duan X. Role of exosomes in the development, progression, diagnosis, and treatment of liver fibrosis. Chin Med J 2021; 37(12): 2919-23.
  72. Willms E, Johansson HJ, Mäger I, et al. Cells release subpopulations of exosomes with distinct molecular and biological properties. Sci Rep 2016; 6(1): 22519. doi: 10.1038/srep22519 PMID: 26931825
  73. Lou G, Song X, Yang F, et al. Exosomes derived from miR-122-modified adipose tissue-derived MSCs increase chemosensitivity of hepatocellular carcinoma. J Hematol Oncol 2015; 8(1): 122. doi: 10.1186/s13045-015-0220-7 PMID: 26514126
  74. Zhang X, Chen Y, Xu K, Li Y, Mao D, Hu Z. Research progress of exosomes in liver diseases. Weichangbingxue He Ganbingxue Zazhi 2022; 31(05): 583-9.
  75. Ma J, Li Y, Chen M, et al. hMSCs-derived exosome circCDK13 inhibits liver fibrosis by regulating the expression of MFGE8 through miR-17-5p/KAT2B. Cell Biol Toxicol 2022; 2022: 10565. doi: 10.1007/s10565-022-09714-4 PMID: 35484432
  76. Wang N, Li X, Zhong Z, et al. 3D hESC exosomes enriched with miR-6766-3p ameliorates liver fibrosis by attenuating activated stellate cells through targeting the TGFβRII-SMADS pathway. J Nanobiotechnology 2021; 19(1): 437. doi: 10.1186/s12951-021-01138-2 PMID: 34930304
  77. Wei S, Zhang Z, Yan L, et al. miR-20a Overexpression in Adipose-Derived Mesenchymal Stem Cells Promotes Therapeutic Efficacy in Murine Lupus Nephritis by Regulating Autophagy. Stem Cells Int 2021; 2021: 3746335. doi: 10.1155/2021/3746335 PMID: 34721589
  78. Tan Y, Huang Y, Mei R, et al. HucMSC-derived exosomes delivered BECN1 induces ferroptosis of hepatic stellate cells via regulating the xCT/GPX4 axis. Cell Death Dis 2022; 13(4): 319. doi: 10.1038/s41419-022-04764-2 PMID: 35395830
  79. Feng Y, Li Y, Xu M, et al. Bone marrow mesenchymal stem cells inhibit hepatic fibrosis via the AABR07028795.2/rno-miR-667-5p axis. Stem Cell Res Ther 2022; 13(1): 375. doi: 10.1186/s13287-022-03069-7 PMID: 35902883
  80. Liu Z, Zhou S, Zhang Y, Zhao M. Rat bone marrow mesenchymal stem cells (BMSCs) inhibit liver fibrosis by activating GSK3β and inhibiting the Wnt3a/β-catenin pathway. Infect Agent Cancer 2022; 17(1): 17. doi: 10.1186/s13027-022-00432-4 PMID: 35440002
  81. Sun XE, Zhang XQ, Liu MM. Effect of bone marrow mesenchymal stem cells on the TGF-β1/Smad signaling pathway of hepatic stellate. Genet Mol Res 2015; 14(3): 8744-54. doi: 10.4238/2015.July.31.23 PMID: 26345806
  82. Gharbia S, Nazarie SR, Dinescu S, et al. Adipose-derived stem cells (ADSCs) supplemented with hepatocyte growth factor (HGF) attenuate hepatic stellate cell activation and liver fibrosis by inhibiting the TGF-β/Smad signaling pathway in chemical-induced liver fibrosis associated with diabetes. Cells 2022; 11(21): 3338. doi: 10.3390/cells11213338 PMID: 36359733
  83. Zhang LT, Peng XB, Fang XQ, Li JF, Chen H, Mao XR. Human umbilical cord mesenchymal stem cells inhibit proliferation of hepatic stellate cells in vitro. Int J Mol Med 2018; 41(5): 2545-52. doi: 10.3892/ijmm.2018.3500 PMID: 29484382
  84. Zhao W, Ren G, Zhang L, et al. Efficacy of mesenchymal stem cells derived from human adipose tissue in inhibition of hepatocellular carcinoma cells in vitro. Cancer Biother Radiopharm 2012; 27(9): 606-13. doi: 10.1089/cbr.2011.1150 PMID: 22917212
  85. Zhang L, Song Y, Chen L, et al. MiR‐20a‐containing exosomes from umbilical cord mesenchymal stem cells alleviates liver ischemia/reperfusion injury. J Cell Physiol 2020; 235(4): 3698-710. doi: 10.1002/jcp.29264 PMID: 31566731
  86. Lai P, Chen X, Guo L, et al. A potent immunomodulatory role of exosomes derived from mesenchymal stromal cells in preventing cGVHD. J Hematol Oncol 2018; 11(1): 135. doi: 10.1186/s13045-018-0680-7 PMID: 30526632
  87. Chen L, Lu F, Chen D, et al. BMSCs-derived miR-223-containing exosomes contribute to liver protection in experimental autoimmune hepatitis. Mol Immunol 2018; 93: 38-46. doi: 10.1016/j.molimm.2017.11.008 PMID: 29145157
  88. Chiabotto G, Ceccotti E, Tapparo M, Camussi G, Bruno S. Human Liver Stem Cell-Derived Extracellular Vesicles Target Hepatic Stellate Cells and Attenuate Their Pro-fibrotic Phenotype. Front Cell Dev Biol 2021; 9777462. doi: 10.3389/fcell.2021.777462 PMID: 34796180
  89. Li ZJ, Wang LQ, Li YZ, et al. Application of adipose-derived stem cells in treating fibrosis. World J Stem Cells 2021; 13(11): 1747-61. doi: 10.4252/wjsc.v13.i11.1747 PMID: 34909121
  90. Du Z, Wu T, Liu L, Luo B, Wei C. Extracellular vesicles‐derived miR‐150‐5p secreted by adipose‐derived mesenchymal stem cells inhibits CXCL1 expression to attenuate hepatic fibrosis. J Cell Mol Med 2021; 25(2): 701-15. doi: 10.1111/jcmm.16119 PMID: 33342075
  91. Li D, Qu J, Yuan X, et al. Mesenchymal stem cells alleviate renal fibrosis and inhibit autophagy via Exosome Transfer of miRNA-122a. Stem Cells Int 2022; 2022: 1981798. doi: 10.1155/2022/1981798 PMID: 35859725
  92. Ebrahim N, Ahmed I, Hussien N, et al. Mesenchymal Stem Cell-Derived Exosomes Ameliorated Diabetic Nephropathy by Autophagy Induction through the mTOR Signaling Pathway. Cells 2018; 7(12): 226. doi: 10.3390/cells7120226 PMID: 30467302
  93. Kuse N, Kamio K, Azuma A, et al. Exosome-derived microRNA-22 ameliorates pulmonary fibrosis by regulating fibroblast-to-myofibroblast differentiation in vitro and in vivo. J Nippon Med Sch 2020; 87(3): 118-28. doi: 10.1272/jnms.JNMS.2020_87-302 PMID: 31776321
  94. Kadota T, Fujita Y, Yoshioka Y, Araya J, Kuwano K, Ochiya T. Emerging role of extracellular vesicles as a senescence-associated secretory phenotype: Insights into the pathophysiology of lung diseases. Mol Aspects Med 2018; 60: 92-103. doi: 10.1016/j.mam.2017.11.005 PMID: 29146100
  95. Chen L, Yang Y, Yue R, Peng X, Yu H, Huang X. Exosomes derived from hypoxia-induced alveolar epithelial cells stimulate interstitial pulmonary fibrosis through a HOTAIRM1-dependent mechanism. Lab Invest 2022; 102(9): 935-44. doi: 10.1038/s41374-022-00782-y
  96. Ren W, Yang L, Deng T, et al. Calcitonin gene related peptide regulates FOSL2 expression and cell proliferation of BMSCs via mmu_circRNA_003795. Mol Med Rep 2019; 19(5): 3732-42. doi: 10.3892/mmr.2019.10038 PMID: 30896827
  97. Yang H, Wang J, Zhang Z, et al. Sp1-Induced lncRNA Rmrp Promotes Mesangial Cell Proliferation and Fibrosis in Diabetic Nephropathy by Modulating the miR-1a-3p/JunD Pathway. Front Endocrinol 2021; 12: 690784. doi: 10.3389/fendo.2021.690784 PMID: 34512545
  98. Zhu M, Liu X, Li W, Wang L. Exosomes derived from mmu_circ_0000623-modified ADSCs prevent liver fibrosis via activating autophagy. Hum Exp Toxicol 2020; 39(12): 1619-27. doi: 10.1177/0960327120931152 PMID: 32633558
  99. Zhou S, Zhu Y, Li Z, Zhu Y, He Z, Zhang C. Exosome‐derived long non‐coding RNA ADAMTS9‐AS2 suppresses progression of oral submucous fibrosis via AKT signalling pathway. J Cell Mol Med 2021; 25(4): 2262-73. doi: 10.1111/jcmm.16219 PMID: 33345447
  100. Liu L, Jin X, Hu CF, Li R, Zhou Z, Shen CX. Exosomes derived from mesenchymal stem cells rescue myocardial ischaemia/reperfusion injury by inducing cardiomyocyte autophagy via AMPK and Akt pathways. Cell Physiol Biochem 2017; 43(1): 52-68. doi: 10.1159/000480317 PMID: 28848091
  101. Cho HJ, Baek GO, Seo CW, et al. Exosomal microRNA‐4661‐5p–based serum panel as a potential diagnostic biomarker for earlystage hepatocellular carcinoma. Cancer Med 2020; 9(15): 5459-72. doi: 10.1002/cam4.3230 PMID: 32537885

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers