Current Trends, Advances, and Challenges of Tissue Engineering-Based Approaches of Tooth Regeneration: A Review of the Literature


Cite item

Full Text

Abstract

Introduction:Tooth loss is a significant health issue. Currently, this situation is often treated with the use of synthetic materials such as implants and prostheses. However, these treatment modalities do not fully meet patients' biological and mechanical needs and have limited longevity. Regenerative medicine focuses on the restoration of patients' natural tissues via tissue engineering techniques instead of rehabilitating with artificial appliances. Therefore, a tissue-engineered tooth regeneration strategy seems like a promising option to treat tooth loss.

Objective:This review aims to demonstrate recent advances in tooth regeneration strategies and discoveries about underlying mechanisms and pathways of tooth formation

Results and Discussion:Whole tooth regeneration, tooth root formation, and dentin-pulp organoid generation have been achieved by using different seed cells and various materials for scaffold production. Bioactive agents are critical elements for the induction of cells into odontoblast or ameloblast lineage. Some substantial pathways enrolled in tooth development have been figured out, helping researchers design their experiments more effectively and aligned with the natural process of tooth formation.

Conclusion:According to current knowledge, tooth regeneration is possible in case of proper selection of stem cells, appropriate design and manufacturing of a biocompatible scaffold, and meticulous application of bioactive agents for odontogenic induction. Understanding innate odontogenesis pathways play a crucial role in accurately planning regenerative therapeutic interventions in order to reproduce teeth.

About the authors

Parham Hazrati

School of Dentistry, Shahid Beheshti University of Medical Sciences,

Email: info@benthamscience.net

Mohammad Mirtaleb

School of Dentistry,, Shahid Beheshti University of Medical Sciences,

Email: info@benthamscience.net

Helia Boroojeni

Oral and Maxillofacial Surgery Department, School of Dentistry,, Shahid Beheshti University of Medical Sciences

Email: info@benthamscience.net

Amir Koma

School of Dentistry, Shahid Beheshti University of Medical Sciences

Email: info@benthamscience.net

Hanieh Nokhbatolfoghahaei

Dental Research Center, Research Institute of Dental Sciences, School of Dentistry,, Shahid Beheshti University of Medical Sciences

Author for correspondence.
Email: info@benthamscience.net

References

  1. Petersen PE, Bourgeois D, Ogawa H, Estupinan-Day S, Ndiaye C. The global burden of oral diseases and risks to oral health. Bull World Health Organ 2005; 83(9): 661-9. PMID: 16211157
  2. Gerritsen AE, Allen PF, Witter DJ, Bronkhorst EM, Creugers NHJ. Tooth loss and oral health-related quality of life: A systematic review and meta-analysis. Health Qual Life Outcomes 2010; 8: 126. doi: 10.1186/1477-7525-8-126 PMID: 21050499
  3. Henry PJ. Tooth loss and implant replacement. Aust Dent J 2000; 45(3): 150-72. doi: 10.1111/j.1834-7819.2000.tb00552.x PMID: 11062933
  4. McCord F, Smales R. Oral diagnosis and treatment planning: Part 7. Treatment planning for missing teeth. Br Dent J 2012; 213(7): 341-51. doi: 10.1038/sj.bdj.2012.889 PMID: 23059670
  5. Zlatarić DK, Celebić A. Factors related to patients’ general satisfaction with removable partial dentures: A stepwise multiple regression analysis. Int J Prosthodont 2008; 21(1): 86-8. PMID: 18350954
  6. Yu J, Shi J, Jin Y. Current approaches and challenges in making a bio-tooth. Tissue Eng Part B Rev 2008; 14(3): 307-19. doi: 10.1089/ten.teb.2008.0165 PMID: 18665759
  7. Mina M, Kollar EJ. The induction of odontogenesis in non-dental mesenchyme combined with early murine mandibular arch epithelium. Arch Oral Biol 1987; 32(2): 123-7. doi: 10.1016/0003-9969(87)90055-0 PMID: 3478009
  8. Peterkova R, Hovorakova M, Peterka M, Lesot H. Three-dimensional analysis of the early development of the dentition. Aust Dent J 2014; 59(1): 55-80. doi: 10.1111/adj.12130
  9. Hu B, Liu Y, Wang S. Tooth tissue engineering: From cells to organ, an odyssey far from finished. Shanghai Journal of Stomatology 2005; 14(2): 99-102.
  10. Yang B, Chen G, Li J, et al. Tooth root regeneration using dental follicle cell sheets in combination with a dentin matrix - based scaffold. Biomaterials 2012; 33(8): 2449-61. doi: 10.1016/j.biomaterials.2011.11.074 PMID: 22192537
  11. Yuan Z, Nie H, Wang S, et al. Biomaterial selection for tooth regeneration. Tissue Eng Part B Rev 2011; 17(5): 373-88. doi: 10.1089/ten.teb.2011.0041 PMID: 21699433
  12. Alghutaimel H, Yang X, Drummond B, Nazzal H, Duggal M, Raïf E. Investigating the vascularization capacity of a decellularized dental pulp matrix seeded with human dental pulp stem cells: In vitro and preliminary in vivo evaluations. Int Endod J 2021; 54(8): 1300-16. doi: 10.1111/iej.13510 PMID: 33709438
  13. Nakahara T. Potential feasibility of dental stem cells for regenerative therapies: Stem cell transplantation and whole-tooth engineering. Odontology 2011; 99(2): 105-11. doi: 10.1007/s10266-011-0037-y PMID: 21805289
  14. Jazayeri HE, Lee S-M, Kuhn L, Fahimipour F, Tahriri M, Tayebi L. Polymeric scaffolds for dental pulp tissue engineering: A review. Dent Mater 2020; 36(2): e47-58. doi: 10.1016/j.dental.2019.11.005 PMID: 31791734
  15. Mao JJ, Prockop DJ. Stem cells in the face: Tooth regeneration and beyond. Cell Stem Cell 2012; 11(3): 291-301. doi: 10.1016/j.stem.2012.08.010 PMID: 22958928
  16. Li Q, Zhang S, Sui Y, Fu X, Li Y, Wei S. Sequential stimulation with different concentrations of BMP4 promotes the differentiation of human embryonic stem cells into dental epithelium with potential for tooth formation. Stem Cell Res Ther 2019; 10(1): 276. doi: 10.1186/s13287-019-1378-7 PMID: 31464646
  17. Otsu K, Kishigami R, Oikawa-Sasaki A, et al. Differentiation of induced pluripotent stem cells into dental mesenchymal cells. Stem Cells Dev 2012; 21(7): 1156-64. doi: 10.1089/scd.2011.0210 PMID: 22085204
  18. Zheng C, Chen J, Liu S, Jin Y. Stem cell-based bone and dental regeneration: A view of microenvironmental modulation. Int J Oral Sci 2019; 11(3): 23. doi: 10.1038/s41368-019-0060-3 PMID: 31423011
  19. Lei M, Li K, Li B, Gao L-N, Chen F-M, Jin Y. Mesenchymal stem cell characteristics of dental pulp and periodontal ligament stem cells after in vivo transplantation. Biomaterials 2014; 35(24): 6332-43. doi: 10.1016/j.biomaterials.2014.04.071 PMID: 24824581
  20. Nada OA, El Backly RM. Stem cells from the apical papilla (SCAP) as a tool for endogenous tissue regeneration. Front Bioeng Biotechnol 2018; 6: 103. doi: 10.3389/fbioe.2018.00103 PMID: 30087893
  21. Li X, Zhang S, Zhang Z, Guo W, Chen G, Tian W. Development of immortalized Hertwig’s epithelial root sheath cell lines for cementum and dentin regeneration. Stem Cell Res Ther 2019; 10(1): 3. doi: 10.1186/s13287-018-1106-8 PMID: 30606270
  22. Zhou T, Pan J, Wu P, et al. Dental follicle cells: Roles in development and beyond. Stem Cells Int 2019; 2019: 9159605. doi: 10.1155/2019/9159605 PMID: 31636679
  23. Fraser GJ, Hamed SS, Martin KJ, Hunter KD. Shark tooth regeneration reveals common stem cell characters in both human rested lamina and ameloblastoma. Sci Rep 2019; 9(1): 15956. doi: 10.1038/s41598-019-52406-z PMID: 31685919
  24. Hu X, Lin C, Shen B, et al. Conserved odontogenic potential in embryonic dental tissues. J Dent Res 2014; 93(5): 490-5. doi: 10.1177/0022034514523988 PMID: 24554539
  25. Biggs LC, Mikkola ML. Early inductive events in ectodermal appendage morphogenesis. Semin Cell Dev Biol 2014; 25-26: 11-21. doi: 10.1016/j.semcdb.2014.01.007 PMID: 24487243
  26. Chai Y, Jiang X, Ito Y, et al. Fate of the mammalian cranial neural crest during tooth and mandibular morphogenesis. Development 2000; 127(8): 1671-9. doi: 10.1242/dev.127.8.1671 PMID: 10725243
  27. Zhang Q, Nguyen PD, Shi S, et al. Neural crest stem-like cells non-genetically induced from human gingiva-derived mesenchymal stem cells promote facial nerve regeneration in rats. Mol Neurobiol 2018; 55(8): 6965-83. doi: 10.1007/s12035-018-0913-3 PMID: 29372546
  28. Niibe K, Zhang M, Nakazawa K, et al. The potential of enriched mesenchymal stem cells with neural crest cell phenotypes as a cell source for regenerative dentistry. Jpn Dent Sci Rev 2017; 53(2): 25-33. doi: 10.1016/j.jdsr.2016.09.001 PMID: 28479933
  29. Ibarretxe G, Crende O, Aurrekoetxea M, García-Murga V, Etxaniz J, Unda F. Neural crest stem cells from dental tissues: A new hope for dental and neural regeneration. Stem Cells Int 2012; 2012: 103503. doi: 10.1155/2012/103503 PMID: 23093977
  30. Takahashi K, Tanabe K, Ohnuki M, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 2007; 131(5): 861-72. doi: 10.1016/j.cell.2007.11.019 PMID: 18035408
  31. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006; 126(4): 663-76. doi: 10.1016/j.cell.2006.07.024 PMID: 16904174
  32. Lee G, Kim H, Elkabetz Y, et al. Isolation and directed differentiation of neural crest stem cells derived from human embryonic stem cells. Nat Biotechnol 2007; 25(12): 1468-75. doi: 10.1038/nbt1365 PMID: 18037878
  33. Liu Q, Spusta SC, Mi R, et al. Human neural crest stem cells derived from human ESCs and induced pluripotent stem cells: Induction, maintenance, and differentiation into functional schwann cells. Stem Cells Transl Med 2012; 1(4): 266-78. doi: 10.5966/sctm.2011-0042 PMID: 23197806
  34. Arakaki M, Ishikawa M, Nakamura T, et al. Role of epithelial-stem cell interactions during dental cell differentiation. J Biol Chem 2012; 287(13): 10590-601. doi: 10.1074/jbc.M111.285874 PMID: 22298769
  35. Abdullah AN, Miyauchi S, Onishi A, Tanimoto K, Kato K. Differentiation of mouse-induced pluripotent stem cells into dental epithelial- like cells in the absence of added serum. in vitro Cell Dev Biol Anim. 2019; 55(2): 130-7. doi: 10.1007/s11626-019-00320-z PMID: 30659476
  36. Liu L, Liu Y-F, Zhang J, Duan Y-Z, Jin Y. Ameloblasts serum-free conditioned medium: Bone morphogenic protein 4-induced odontogenic differentiation of mouse induced pluripotent stem cells. J Tissue Eng Regen Med 2016; 10(6): 466-74. doi: 10.1002/term.1742 PMID: 23606575
  37. Seki D, Takeshita N, Oyanagi T, et al. Differentiation of odontoblast-like cells from mouse induced pluripotent stem cells by Pax9 and Bmp4 transfection. Stem Cells Transl Med 2015; 4(9): 993-7. doi: 10.5966/sctm.2014-0292 PMID: 26136503
  38. Kawai R, Ozeki N, Yamaguchi H, et al. Mouse ES cells have a potential to differentiate into odontoblast-like cells using hanging drop method. Oral Dis 2014; 20(4): 395-403. doi: 10.1111/odi.12134 PMID: 23731055
  39. Zhang M, Zhang X, Luo J, et al. Investigate the odontogenic differentiation and dentin-pulp tissue regeneration potential of neural crest cells. Front Bioeng Biotechnol 2020; 8: 475. doi: 10.3389/fbioe.2020.00475 PMID: 32582651
  40. Kidwai FK, Movahednia MM, Iqbal K, Jokhun DS, Cao T, Fawzy AS. Human embryonic stem cell differentiation into odontoblastic lineage: An in vitro study. Int Endod J 2014; 47(4): 346-55. doi: 10.1111/iej.12150 PMID: 24033427
  41. Gronthos S, Mankani M, Brahim J, Robey PG, Shi S. Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci USA 2000; 97(25): 13625-30. doi: 10.1073/pnas.240309797 PMID: 11087820
  42. Tsutsui TW. Dental pulp stem cells: Advances to applications. Stem Cells Cloning 2020; 13: 33-42. doi: 10.2147/SCCAA.S166759 PMID: 32104005
  43. Liu S, Sun J, Yuan S, et al. Treated dentin matrix induces odontogenic differentiation of dental pulp stem cells via regulation of Wnt/β-catenin signaling. Bioact Mater 2021; 7: 85-97. doi: 10.1016/j.bioactmat.2021.05.026 PMID: 34466719
  44. Chang C-C, Lin T-A, Wu S-Y, Lin C-P, Chang H-H. Regeneration of tooth with allogenous, autoclaved treated dentin matrix with dental pulpal stem cells: An in vivo study. J Endod 2020; 46(9): 1256-64. doi: 10.1016/j.joen.2020.05.016 PMID: 32505637
  45. Young KJ, Yang L, Phillips MJ, Zhang L. Donor-lymphocyte infusion induces transplantation tolerance by activating systemic and graft-infiltrating double-negative regulatory T cells. Blood 2002; 100(9): 3408-14. doi: 10.1182/blood-2002-01-0235 PMID: 12384444
  46. Zheng L, Yang F, Shen H, et al. The effect of composition of calcium phosphate composite scaffolds on the formation of tooth tissue from human dental pulp stem cells. Biomaterials 2011; 32(29): 7053-9. doi: 10.1016/j.biomaterials.2011.06.004 PMID: 21722953
  47. Nakashima M, Akamine A. The application of tissue engineering to regeneration of pulp and dentin in endodontics. J Endod 2005; 31(10): 711-8. doi: 10.1097/01.don.0000164138.49923.e5 PMID: 16186748
  48. Jeong SY, Lee S, Choi WH, Jee JH, Kim H-R, Yoo J. Fabrication of dentin-pulp-like organoids using dental-pulp stem cells. Cells 2020; 9(3): E642. doi: 10.3390/cells9030642 PMID: 32155898
  49. Li X, Wang L, Su Q, et al. Highly proliferative immortalized human dental pulp cells retain the odontogenic phenotype when combined with a beta-tricalcium phosphate scaffold and BMP2. Stem Cells Int 2020; 2020: 4534128. doi: 10.1155/2020/4534128 PMID: 32148517
  50. Yang K-C, Kitamura Y, Wu C-C, Chang H-H, Ling T-Y, Kuo T-F. Tooth germ-like construct transplantation for whole-tooth regeneration: An in vivo study in the miniature pig. Artif Organs 2016; 40(4): E39-50. doi: 10.1111/aor.12630 PMID: 26582651
  51. Wang L, Cheng L, Wang H, et al. Glycometabolic reprogramming associated with the initiation of human dental pulp stem cell differentiation. Cell Biol Int 2016; 40(3): 308-17. doi: 10.1002/cbin.10568 PMID: 26634800
  52. Jeon SM, Lim JS, Kim H-R, Lee J-H. PFK activation is essential for the odontogenic differentiation of human dental pulp stem cells. Biochem Biophys Res Commun 2021; 544: 52-9. doi: 10.1016/j.bbrc.2021.01.059 PMID: 33516882
  53. Wang J, Qi G, Qu X, Ling X, Zhang Z, Jin Y. Molecular profiling of dental pulp stem cells during cell differentiation by surface enhanced raman spectroscopy. Anal Chem 2020; 92(5): 3735-41. doi: 10.1021/acs.analchem.9b05026 PMID: 32011124
  54. Duailibi MT, Duailibi SE, Young CS, Bartlett JD, Vacanti JP, Yelick PC. Bioengineered teeth from cultured rat tooth bud cells. J Dent Res 2004; 83(7): 523-8. doi: 10.1177/154405910408300703 PMID: 15218040
  55. Yelick PC, Vacanti JP. Bioengineered teeth from tooth bud cells. Dent Clin North Am 2006; 50(2): 191-203. viii. doi: 10.1016/j.cden.2005.11.005 PMID: 16530057
  56. Yang K-C, Wang C-H, Chang H-H, Chan WP, Chi C-H, Kuo T-F. Fibrin glue mixed with platelet-rich fibrin as a scaffold seeded with dental bud cells for tooth regeneration. J Tissue Eng Regen Med 2012; 6(10): 777-85. doi: 10.1002/term.483 PMID: 22034398
  57. Oh JE, Yi J-K. Isolation and characterization of dental follicle-derived Hertwig’s epithelial root sheath cells. Clin Oral Investig 2021; 25(4): 1787-96. doi: 10.1007/s00784-020-03481-4 PMID: 32749551
  58. Duan Y, Li X, Zhang S, et al. Therapeutic potential of HERS spheroids in tooth regeneration. Theranostics 2020; 10(16): 7409-21. doi: 10.7150/thno.44782 PMID: 32642002
  59. Huang X, Bringas P Jr, Slavkin HC, Chai Y. Fate of HERS during tooth root development. Dev Biol 2009; 334(1): 22-30. doi: 10.1016/j.ydbio.2009.06.034 PMID: 19576204
  60. Li J, Parada C, Chai Y. Cellular and molecular mechanisms of tooth root development. Development 2017; 144(3): 374-84. doi: 10.1242/dev.137216 PMID: 28143844
  61. Sonoyama W, Seo B-M, Yamaza T, Shi S. Human Hertwig’s epithelial root sheath cells play crucial roles in cementum formation. J Dent Res 2007; 86(7): 594-9. doi: 10.1177/154405910708600703 PMID: 17586703
  62. Chen J, Chen G, Yan Z, et al. TGF-β1 and FGF2 stimulate the epithelial-mesenchymal transition of HERS cells through a MEK-dependent mechanism. J Cell Physiol 2014; 229(11): 1647-59. doi: 10.1002/jcp.24610 PMID: 24610459
  63. Huang X, Xu X, Bringas PJ, Hung YP, Chai Y. Smad4-Shh-Nfic signaling cascade-mediated epithelial-mesenchymal interaction is crucial in regulating tooth root development. J bone Miner Res Off J Am Soc Bone Miner Res 2010; 25(5): 1167-78.
  64. Zhai Q, Dong Z, Wang W, Li B, Jin Y. Dental stem cell and dental tissue regeneration. Front Med 2019; 13(2): 152-9. doi: 10.1007/s11684-018-0628-x PMID: 29971640
  65. Hu L, Liu Y, Wang S. Stem cell-based tooth and periodontal regeneration. Oral Dis 2018; 24(5): 696-705. doi: 10.1111/odi.12703 PMID: 28636235
  66. Cheng N-C, Wang S, Young T-H. The influence of spheroid formation of human adipose-derived stem cells on chitosan films on stemness and differentiation capabilities. Biomaterials 2012; 33(6): 1748-58. doi: 10.1016/j.biomaterials.2011.11.049 PMID: 22153870
  67. Li Y, Guo G, Li L, et al. Three-dimensional spheroid culture of human umbilical cord mesenchymal stem cells promotes cell yield and stemness maintenance. Cell Tissue Res 2015; 360(2): 297-307. doi: 10.1007/s00441-014-2055-x PMID: 25749992
  68. Yamamoto T, Domon T, Takahashi S, Anjuman KAY, Fukushima C, Wakita M. Mineralization process during acellular cementogenesis in rat molars: A histochemical and immunohistochemical study using fresh-frozen sections. Histochem Cell Biol 2007; 127(3): 303-11. doi: 10.1007/s00418-006-0242-x PMID: 17043865
  69. Yamamoto T, Yamada T, Yamamoto T, et al. Hertwig’s epithelial root sheath fate during initial cellular cementogenesis in rat molars. Acta Histochem Cytochem 2015; 48(3): 95-101. doi: 10.1267/ahc.15006 PMID: 26160988
  70. Yamamoto T, Takahashi S. Hertwig’s epithelial root sheath cells do not transform into cementoblasts in rat molar cementogenesis. Ann Anat Gesellschaft 2009; 191(6): 547-55. doi: 10.1016/j.aanat.2009.07.004
  71. Diekwisch TG. The developmental biology of cementum. Int J Dev Biol 2001; 45(5-6): 695-706. PMID: 11669371
  72. Xiong H, Chen K. Multipotent stem cells from apical pulp of human deciduous teeth with immature apex. Tissue Cell 2021; 71: 101556. doi: 10.1016/j.tice.2021.101556 PMID: 34082260
  73. Saraswathi P, Saravanakumar S. A simple method of tooth regeneration by bone marrow mesenchymal stem cells in albino rats. Eur J Anat 2010; 14(3): 121-6. Available from https://www.scopus.com/inward/record.uri?eid=2-s2.0-84856066166partnerID=40md5=365b2987d7eee294719e6ec1cc839e9e
  74. Valenzuela MJ, Dean SK, Sachdev P, Tuch BE, Sidhu KS. Neural precursors from canine skin: A new direction for testing autologous cell replacement in the brain. Stem Cells Dev 2008; 17(6): 1087-94. doi: 10.1089/scd.2008.0008 PMID: 18513165
  75. Crigler L, Kazhanie A, Yoon T-J, et al. Isolation of a mesenchymal cell population from murine dermis that contains progenitors of multiple cell lineages. FASEB J 2007; 21(9): 2050-63. doi: 10.1096/fj.06-5880com PMID: 17384147
  76. Chen FG, Zhang WJ, Bi D, et al. Clonal analysis of nestin(-) vimentin(+) multipotent fibroblasts isolated from human dermis. J Cell Sci 2007; 120(Pt 16): 2875-83. doi: 10.1242/jcs.03478 PMID: 17652163
  77. Pispa J, Thesleff I. Mechanisms of ectodermal organogenesis. Dev Biol 2003; 262(2): 195-205. doi: 10.1016/S0012-1606(03)00325-7 PMID: 14550785
  78. Liu Y, Jiang M, Hao W, et al. Skin epithelial cells as possible substitutes for ameloblasts during tooth regeneration. J Tissue Eng Regen Med 2013; 7(12): 934-43. doi: 10.1002/term.1485 PMID: 22700316
  79. Huo N, Tang L, Yang Z, et al. Differentiation of dermal multipotent cells into odontogenic lineage induced by embryonic and neonatal tooth germ cell-conditioned medium. Stem Cells Dev 2010; 19(1): 93-104. doi: 10.1089/scd.2009.0048 PMID: 19469666
  80. Can A, Karahuseyinoglu S. Concise review: Human umbilical cord stroma with regard to the source of fetus-derived stem cells. Stem Cells 2007; 25(11): 2886-95. doi: 10.1634/stemcells.2007-0417 PMID: 17690177
  81. Hsieh J-Y, Fu Y-S, Chang S-J, Tsuang Y-H, Wang H-W. Functional module analysis reveals differential osteogenic and stemness potentials in human mesenchymal stem cells from bone marrow and Wharton’s jelly of umbilical cord. Stem Cells Dev 2010; 19(12): 1895-910. doi: 10.1089/scd.2009.0485 PMID: 20367285
  82. Karahuseyinoglu S, Cinar O, Kilic E, et al. Biology of stem cells in human umbilical cord stroma: In situ and in vitro surveys. Stem Cells 2007; 25(2): 319-31. doi: 10.1634/stemcells.2006-0286 PMID: 17053211
  83. Gong W, Han Z, Zhao H, et al. Banking human umbilical cord-derived mesenchymal stromal cells for clinical use. Cell Transplant 2012; 21(1): 207-16. doi: 10.3727/096368911X586756 PMID: 21929848
  84. Butler MG, Menitove JE. Umbilical cord blood banking: An update. J Assist Reprod Genet 2011; 28(8): 669-76. doi: 10.1007/s10815-011-9577-x PMID: 21617932
  85. Forraz N, McGuckin CP. The umbilical cord: A rich and ethical stem cell source to advance regenerative medicine. Cell Prolif 2011; 44(1): 60-9. doi: 10.1111/j.1365-2184.2010.00729.x
  86. Li TX, Yuan J, Chen Y, et al. Differentiation of mesenchymal stem cells from human umbilical cord tissue into odontoblast-like cells using the conditioned medium of tooth germ cells in vitro. BioMed Res Int 2013; 2013: 218543. doi: 10.1155/2013/218543 PMID: 23762828
  87. Chen Y, Yu Y, Chen L, et al. Human umbilical cord mesenchymal stem cells: A new therapeutic option for tooth regeneration. Stem Cells Int 2015; 2015: 549432. doi: 10.1155/2015/549432 PMID: 26136785
  88. Buchtová M, Stembírek J, Glocová K, Matalová E, Tucker AS. Early regression of the dental lamina underlies the development of diphyodont dentitions. J Dent Res 2012; 91(5): 491-8. doi: 10.1177/0022034512442896 PMID: 22442052
  89. Hauschild J, Petersen B, Santiago Y, et al. Efficient generation of a biallelic knockout in pigs using zinc-finger nucleases. Proc Natl Acad Sci USA 2011; 108(29): 12013-7. doi: 10.1073/pnas.1106422108 PMID: 21730124
  90. Groenen MA, Archibald AL, Uenishi H, et al. Analyses of pig genomes provide insight into porcine demography and evolution. Nature 2012; 491(7424): 393-8. doi: 10.1038/nature11622 PMID: 23151582
  91. Ekser B, Ezzelarab M, Hara H, et al. Clinical xenotransplantation: The next medical revolution? Lancet 2012; 379(9816): 672-83. doi: 10.1016/S0140-6736(11)61091-X PMID: 22019026
  92. Wang F, Xiao J, Cong W, et al. Morphology and chronology of diphyodont dentition in miniature pigs. Sus Scrofa Oral Dis 2014; 20(4): 367-79. doi: 10.1111/odi.12126 PMID: 23679230
  93. Wang F, Xiao J, Cong W, et al. Stage-specific differential gene expression profiling and functional network analysis during morphogenesis of diphyodont dentition in miniature pigs, Sus Scrofa. BMC Genomics 2014; 15: 103. doi: 10.1186/1471-2164-15-103 PMID: 24498892
  94. Wu Z, Wang F, Fan Z, et al. Whole-tooth regeneration by allogeneic cell reassociation in pig jawbone. Tissue Eng Part A 2019; 25(17-18): 1202-12. doi: 10.1089/ten.tea.2018.0243 PMID: 30648470
  95. Morrison SJ, Spradling AC. Stem cells and niches: Mechanisms that promote stem cell maintenance throughout life. Cell 2008; 132(4): 598-611. doi: 10.1016/j.cell.2008.01.038 PMID: 18295578
  96. Belinsky GS, Antic SD. Mild hypothermia inhibits differentiation of human embryonic and induced pluripotent stem cells. Biotechniques 2013; 55(2): 79-82. doi: 10.2144/000114065 PMID: 23931596
  97. Saito K, Fukuda N, Matsumoto T, et al. Moderate low temperature preserves the stemness of neural stem cells and suppresses apoptosis of the cells via activation of the cold-inducible RNA binding protein. Brain Res 2010; 1358: 20-9. doi: 10.1016/j.brainres.2010.08.048 PMID: 20735994
  98. Song Y, Wang B, Li H, et al. Low temperature culture enhances ameloblastic differentiation of human keratinocyte stem cells. J Mol Histol 2019; 50(5): 417-25. doi: 10.1007/s10735-019-09837-9 PMID: 31278616
  99. Hu X, Lee J-W, Zheng X, et al. Efficient induction of functional ameloblasts from human keratinocyte stem cells. Stem Cell Res Ther 2018; 9(1): 126. doi: 10.1186/s13287-018-0822-4 PMID: 29720250
  100. Hu B, Nadiri A, Kuchler-Bopp S, Perrin-Schmitt F, Peters H, Lesot H. Tissue engineering of tooth crown, root, and periodontium. Tissue Eng 2006; 12(8): 2069-75. doi: 10.1089/ten.2006.12.2069 PMID: 16968149
  101. Yu J-H, Shi J-N, Deng Z-H, et al. Cell pellets from dental papillae can reexhibit dental morphogenesis and dentinogenesis. Biochem Biophys Res Commun 2006; 346(1): 116-24. doi: 10.1016/j.bbrc.2006.05.096 PMID: 16750168
  102. Nakao K, Morita R, Saji Y, et al. The development of a bioengineered organ germ method. Nat Methods 2007; 4(3): 227-30. doi: 10.1038/nmeth1012 PMID: 17322892
  103. Yu J, Wang Y, Deng Z, et al. Odontogenic capability: Bone marrow stromal stem cells versus dental pulp stem cells. Biol Cell 2007; 99(8): 465-74. doi: 10.1042/BC20070013 PMID: 17371295
  104. Young CS, Terada S, Vacanti JP, Honda M, Bartlett JD, Yelick PC. Tissue engineering of complex tooth structures on biodegradable polymer scaffolds. J Dent Res 2002; 81(10): 695-700. doi: 10.1177/154405910208101008 PMID: 12351668
  105. Young CS, Abukawa H, Asrican R, et al. Tissue-engineered hybrid tooth and bone. Tissue Eng 2005; 11(9-10): 1599-610. doi: 10.1089/ten.2005.11.1599 PMID: 16259613
  106. Du C, Moradian-Oldak J. Tooth regeneration: Challenges and opportunities for biomedical material research. Biomed Mater 2006; 1(1): R10-7. doi: 10.1088/1748-6041/1/1/R02 PMID: 18458377
  107. Goldberg M, Septier D, Bourd K, Menashi S. Role of matrix proteins in signalling and in dentin and enamel mineralisation. C R Palevol 2004; 3(6): 573-81. doi: 10.1016/j.crpv.2004.07.005
  108. Albrektsson T, Johansson C. Osteoinduction, osteoconduction and osseointegration Eur spine J Off Publ Eur Spine Soc Eur Spinal Deform Soc Eur Sect Cerv Spine Res Soc 2001; 10(2): 96-101.
  109. Kretlow JD, Klouda L, Mikos AG. Injectable matrices and scaffolds for drug delivery in tissue engineering. Adv Drug Deliv Rev 2007; 59(4-5): 263-73. doi: 10.1016/j.addr.2007.03.013 PMID: 17507111
  110. Zhang W, Vazquez B, Oreadi D, Yelick PC. Decellularized tooth bud scaffolds for tooth regeneration. J Dent Res 2017; 96(5): 516-23. doi: 10.1177/0022034516689082 PMID: 28118552
  111. Kim I-H, Jeon M, Cheon K, Kim SH, Jung H-S, Shin Y. In vivo evaluation of decellularized human tooth scaffold for dental tissue regeneration. Appl Sci (Basel) 2021; 11(18) doi: 10.3390/app11188472
  112. Guo H, Li B, Wu M, et al. Odontogenesis-related developmental microenvironment facilitates deciduous dental pulp stem cell aggregates to revitalize an avulsed tooth. Biomaterials 2021; 279: 121223. doi: 10.1016/j.biomaterials.2021.121223 PMID: 34736149
  113. Li X, Yuan Y, Liu L, Leung Y-S, Chen Y, Guo Y. 3D printing of hydroxyapatite/tricalcium phosphate scaffold with hierarchical porous structure for bone regeneration. Biodes Manuf 2020; 3(1): 15-29. Available from. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85077594727&doi=10.1007%2Fs42242-019-00056-5&partnerID=40&md5=732dba386f1aea504b593cfd639af790
  114. Ma PX. Biomimetic materials for tissue engineering. Adv Drug Deliv Rev 2008; 60(2): 184-98. doi: 10.1016/j.addr.2007.08.041 PMID: 18045729
  115. Nichol JW, Koshy ST, Bae H, Hwang CM, Yamanlar S, Khademhosseini A. Cell-laden microengineered gelatin methacrylate hydrogels. Biomaterials 2010; 31(21): 5536-44. doi: 10.1016/j.biomaterials.2010.03.064 PMID: 20417964
  116. Catón J, Tucker AS. Current knowledge of tooth development: Patterning and mineralization of the murine dentition. J Anat 2009; 214(4): 502-15. doi: 10.1111/j.1469-7580.2008.01014.x PMID: 19422427
  117. Smith EE, Yelick PC, Khademhosseini A. Optimization of a biomimetic model for tooth regeneration. 40th Annual Northeast Bioengineering Conference, NEBEC . doi: 10.1109/NEBEC.2014.6972943
  118. Bahney CS, Lujan TJ, Hsu CW, Bottlang M, West JL, Johnstone B. Visible light photoinitiation of mesenchymal stem cell-laden bioresponsive hydrogels. Eur Cell Mater 2011; 22: 43-55. doi: 10.22203/eCM.v022a04 PMID: 21761391
  119. Durst CA, Cuchiara MP, Mansfield EG, West JL, Grande-Allen KJ. Flexural characterization of cell encapsulated PEGDA hydrogels with applications for tissue engineered heart valves. Acta Biomater 2011; 7(6): 2467-76. doi: 10.1016/j.actbio.2011.02.018 PMID: 21329770
  120. Poshusta AK, Anseth KS. Photopolymerized biomaterials for application in the temporomandibular joint. Cells Tissues Organs 2001; 169(3): 272-8. doi: 10.1159/000047891 PMID: 11455123
  121. Burdick JA, Mason MN, Hinman AD, Thorne K, Anseth KS. Delivery of osteoinductive growth factors from degradable PEG hydrogels influences osteoblast differentiation and mineralization. J Control Release 2002; 83(1): 53-63. doi: 10.1016/S0168-3659(02)00181-5 PMID: 12220838
  122. Jaramillo L, Briceño I, Durán C. Odontogenic cell culture in PEGDA hydrogel scaffolds for use in tooth regeneration protocols. Acta Odontol Latinoam 2012; 25(3): 243-54. PMID: 23798070
  123. Smith AJ, Scheven BA, Takahashi Y, Ferracane JL, Shelton RM, Cooper PR. Dentine as a bioactive extracellular matrix. Arch Oral Biol 2012; 57(2): 109-21. doi: 10.1016/j.archoralbio.2011.07.008 PMID: 21855856
  124. Duailibi SE, Duailibi MT, Zhang W, Asrican R, Vacanti JP, Yelick PC. Bioengineered dental tissues grown in the rat jaw. J Dent Res 2008; 87(8): 745-50. doi: 10.1177/154405910808700811 PMID: 18650546
  125. Ji B, Sheng L, Chen G, et al. The combination use of platelet-rich fibrin and treated dentin matrix for tooth root regeneration by cell homing. Tissue Eng Part A 2015; 21(1-2): 26-34. doi: 10.1089/ten.tea.2014.0043 PMID: 25111570
  126. Meng H, Hu L, Zhou Y, et al. A sandwich structure of human dental pulp stem cell sheet, treated dentin matrix, and matrigel for tooth root regeneration. Stem Cells Dev 2020; 29(8): 521-32. doi: 10.1089/scd.2019.0162 PMID: 32089088
  127. Yang F, Cui W, Xiong Z, Liu L, Bei J, Wang S. Poly(l,l-lactide-co-glycolide)/tricalcium phosphate composite scaffold and its various changes during degradation in vitro. Polym Degrad Stabil 2006; 91(12): 3065-73. Available from. https://www.sciencedirect.com/science/article/pii/S0141391006002503
  128. Xu W-P, Zhang W, Asrican R, Kim H-J, Kaplan DL, Yelick PC. Accurately shaped tooth bud cell-derived mineralized tissue formation on silk scaffolds. Tissue Eng Part A 2008; 14(4): 549-57. doi: 10.1089/tea.2007.0227 PMID: 18352829
  129. Ho H-O, Lin L-H, Sheu M-T. Characterization of collagen isolation and application of collagen gel as a drug carrier. J Control Release 1997; 44(2): 103-12. doi: 10.1016/S0168-3659(96)01513-1
  130. Swetha M, Sahithi K, Moorthi A, Srinivasan N, Ramasamy K, Selvamurugan N. Biocomposites containing natural polymers and hydroxyapatite for bone tissue engineering. Int J Biol Macromol 2010; 47(1): 1-4. doi: 10.1016/j.ijbiomac.2010.03.015 PMID: 20361991
  131. Teng S-H, Lee E-J, Wang P, Shin D-S, Kim H-E. Three-layered membranes of collagen/hydroxyapatite and chitosan for guided bone regeneration. J Biomed Mater Res B Appl Biomater 2008; 87(1): 132-8. doi: 10.1002/jbm.b.31082 PMID: 18395825
  132. Patel N, Padera R, Sanders GH, et al. Spatially controlled cell engineering on biodegradable polymer surfaces. FASEB J 1998; 12(14): 1447-54. doi: 10.1096/fasebj.12.14.1447 PMID: 9806753
  133. van Kooten TG, Whitesides JF, von Recum A. Influence of silicone (PDMS) surface texture on human skin fibroblast proliferation as determined by cell cycle analysis. J Biomed Mater Res 1998; 43(1): 1-14. doi: 10.1002/(SICI)1097-4636(199821)43:13.0.CO;2-T PMID: 9509339
  134. Ilyas K, Qureshi SW, Afzal S, et al. Microwave-assisted synthesis and evaluation of type 1 collagen-apatite composites for dental tissue regeneration. J Biomater Appl 2018; 33(1): 103-15. doi: 10.1177/0885328218773220 PMID: 29720018
  135. Woodfield TBF, Van Blitterswijk CA, De Wijn J, Sims TJ, Hollander AP, Riesle J. Polymer scaffolds fabricated with pore-size gradients as a model for studying the zonal organization within tissue-engineered cartilage constructs. Tissue Eng 2005; 11(9-10): 1297-311. doi: 10.1089/ten.2005.11.1297 PMID: 16259586
  136. Kim K, Lee CH, Kim BK, Mao JJ. Anatomically shaped tooth and periodontal regeneration by cell homing. J Dent Res 2010; 89(8): 842-7. doi: 10.1177/0022034510370803 PMID: 20448245
  137. Li R, Guo W, Yang B, et al. Human treated dentin matrix as a natural scaffold for complete human dentin tissue regeneration. Biomaterials 2011; 32(20): 4525-38. doi: 10.1016/j.biomaterials.2011.03.008 PMID: 21458067
  138. Badylak SF. The extracellular matrix as a biologic scaffold material. Biomaterials 2007; 28(25): 3587-93. doi: 10.1016/j.biomaterials.2007.04.043 PMID: 17524477
  139. Chen G, Chen J, Yang B, et al. Combination of aligned PLGA/Gelatin electrospun sheets, native dental pulp extracellular matrix and treated dentin matrix as substrates for tooth root regeneration. Biomaterials 2015; 52: 56-70. doi: 10.1016/j.biomaterials.2015.02.011 PMID: 25818413
  140. Wang F, Wu Z, Fan Z, et al. The cell re-association-based whole-tooth regeneration strategies in large animal, Sus scrofa. Cell Prolif 2018; 51(4): e12479. doi: 10.1111/cpr.12479 PMID: 30028040
  141. Stutz C, Clauss F, Huck O, Schulz G, Benkirane-Jessel N, Bornert F, et al. Eruption of bioengineered teeth: A new approach based on a polycaprolactone biomembrane Nanomater (Basel, Switzerland) 2021; 11(5) doi: 10.3390/nano11051315
  142. Zhang W, Ahluwalia IP, Yelick PC. Three dimensional dental epithelial-mesenchymal constructs of predetermined size and shape for tooth regeneration. Biomaterials 2010; 31(31): 7995-8003. doi: 10.1016/j.biomaterials.2010.07.020 PMID: 20682455
  143. Trainor PA. Neural crest cells : Evolution, development and disease. Amsterdam: Elsevier. 2014. Available from: http://lib.ugent.be/catalog/ebk01:2550000001166667
  144. Thesleff I. Epithelial-mesenchymal signalling regulating tooth morphogenesis. J Cell Sci 2003; 116(Pt 9): 1647-8. doi: 10.1242/jcs.00410 PMID: 12665545
  145. Jia S, Zhou J, Gao Y, et al. Roles of Bmp4 during tooth morphogenesis and sequential tooth formation. Development 2013; 140(2): 423-32. doi: 10.1242/dev.081927 PMID: 23250216
  146. Yamashiro T, Tummers M, Thesleff I. Expression of bone morphogenetic proteins and Msx genes during root formation. J Dent Res 2003; 82(3): 172-6. doi: 10.1177/154405910308200305 PMID: 12598544
  147. Aberg T, Wozney J, Thesleff I. Expression patterns of bone morphogenetic proteins (Bmps) in the developing mouse tooth suggest roles in morphogenesis and cell differentiation. Dev Dyn 1997; 210(4): 383-96. doi: 10.1002/(SICI)1097-0177(199712)210:43.0.CO;2-C PMID: 9415424
  148. Vainio S, Karavanova I, Jowett A, Thesleff I. Identification of BMP-4 as a signal mediating secondary induction between epithelial and mesenchymal tissues during early tooth development. Cell 1993; 75(1): 45-58. doi: 10.1016/S0092-8674(05)80083-2 PMID: 8104708
  149. Bennett JH, Hunt P, Thorogood P. Bone morphogenetic protein-2 and -4 expression during murine orofacial development. Arch Oral Biol 1995; 40(9): 847-54. doi: 10.1016/0003-9969(95)00047-S PMID: 8651889
  150. Hosoya A, Kim J-Y, Cho S-W, Jung H-S. BMP4 signaling regulates formation of Hertwig’s epithelial root sheath during tooth root development. Cell Tissue Res 2008; 333(3): 503-9. doi: 10.1007/s00441-008-0655-z PMID: 18629540
  151. Huang XF, Chai Y. TGF-ß signalling and tooth development. Chin J Dent Res 2010; 13(1): 7-15. PMID: 20936186
  152. Mackenzie A, Leeming GL, Jowett AK, Ferguson MW, Sharpe PT. The homeobox gene Hox 7.1 has specific regional and temporal expression patterns during early murine craniofacial embryogenesis, especially tooth development in vivo and in vitro. Development 1991; 111(2): 269-85. doi: 10.1242/dev.111.2.269 PMID: 1680043
  153. Harvey NT, Hughes JN, Lonic A, et al. Response to BMP4 signalling during ES cell differentiation defines intermediates of the ectoderm lineage. J Cell Sci 2010; 123(Pt 10): 1796-804. doi: 10.1242/jcs.047530 PMID: 20427322
  154. Kim E-J, Mai HN, Lee D-J, Kim K-H, Lee S-J, Jung H-S. Strategies for differentiation of hiPSCs into dental epithelial cell lineage. Cell Tissue Res 2021; 386(2): 415-21. doi: 10.1007/s00441-021-03512-w PMID: 34302527
  155. Thesleff I, Mikkola M. The role of growth factors in tooth development. Int Rev Cytol 2002; 217: 93-135. doi: 10.1016/S0074-7696(02)17013-6 PMID: 12019566
  156. Vaahtokari A, Vainio S, Thesleff I. Associations between transforming growth factor beta 1 RNA expression and epithelial-mesenchymal interactions during tooth morphogenesis. Development 1991; 113(3): 985-94. doi: 10.1242/dev.113.3.985 PMID: 1726565
  157. Cohn MJ, Izpisúa-Belmonte JC, Abud H, Heath JK, Tickle C. Fibroblast growth factors induce additional limb development from the flank of chick embryos. Cell 1995; 80(5): 739-46. doi: 10.1016/0092-8674(95)90352-6 PMID: 7889567
  158. Nosrat A, Ryul Kim J, Verma P. S Chand P. Tissue engineering considerations in dental pulp regeneration. Iran Endod J 2014; 9(1): 30-9. PMID: 24396373
  159. Kuo T-F, Lin H-C, Yang K-C, et al. Bone marrow combined with dental bud cells promotes tooth regeneration in miniature pig model. Artif Organs 2011; 35(2): 113-21. PMID: 21083830
  160. Yu J, Deng Z, Shi J, et al. Differentiation of dental pulp stem cells into regular-shaped dentin-pulp complex induced by tooth germ cell conditioned medium. Tissue Eng 2006; 12(11): 3097-105. doi: 10.1089/ten.2006.12.3097 PMID: 17518625
  161. Wang Y-X, Ma Z-F, Huo N, et al. Porcine tooth germ cell conditioned medium can induce odontogenic differentiation of human dental pulp stem cells. J Tissue Eng Regen Med 2011; 5(5): 354-62. doi: 10.1002/term.321 PMID: 20799278
  162. Sakai VT, Zhang Z, Dong Z, et al. SHED differentiate into functional odontoblasts and endothelium. J Dent Res 2010; 89(8): 791-6. doi: 10.1177/0022034510368647 PMID: 20395410
  163. Miura M, Gronthos S, Zhao M, et al. SHED: Stem cells from human exfoliated deciduous teeth. Proc Natl Acad Sci USA 2003; 100(10): 5807-12. doi: 10.1073/pnas.0937635100 PMID: 12716973
  164. Jing W, Wu L, Lin Y, Liu L, Tang W, Tian W. Odontogenic differentiation of adipose-derived stem cells for tooth regeneration: Necessity, possibility, and strategy. Med Hypotheses 2008; 70(3): 540-2. doi: 10.1016/j.mehy.2007.07.010 PMID: 17703893
  165. Cao Y, Song M, Kim E, et al. Pulp-dentin regeneration: Current state and future prospects. J Dent Res 2015; 94(11): 1544-51. doi: 10.1177/0022034515601658 PMID: 26310721
  166. Sharpe PT. Dental mesenchymal stem cells. Development 2016; 143(13): 2273-80. doi: 10.1242/dev.134189 PMID: 27381225
  167. Zhou C, Yang G, Chen M, et al. Lhx6 and Lhx8: Cell fate regulators and beyond. FASEB J 2015; 29(10): 4083-91. doi: 10.1096/fj.14-267500 PMID: 26148970
  168. Arany PR, Cho A, Hunt TD, et al. Photoactivation of endogenous latent transforming growth factor-β1 directs dental stem cell differentiation for regeneration. Sci Transl Med 2014; 6(238): 238ra69. doi: 10.1126/scitranslmed.3008234 PMID: 24871130
  169. Feng J, Jing J, Li J, et al. BMP signaling orchestrates a transcriptional network to control the fate of mesenchymal stem cells in mice. Development 2017; 144(14): 2560-9. doi: 10.1242/dev.150136 PMID: 28576771
  170. Nakashima M, Toyono T, Akamine A, Joyner A. Expression of growth/differentiation factor 11, a new member of the BMP/TGFbeta superfamily during mouse embryogenesis. Mech Dev 1999; 80(2): 185-9. doi: 10.1016/S0925-4773(98)00205-6 PMID: 10072786
  171. Pepinsky B, Gong B-J, Gao Y, et al. A prodomain fragment from the proteolytic activation of growth differentiation factor 11 remains associated with the mature growth factor and keeps it soluble. Biochemistry 2017; 56(33): 4405-18. doi: 10.1021/acs.biochem.7b00302 PMID: 28715204
  172. Qi X, Xiao Q, Sheng R, Jiang S, Yuan Q, Liu W. Endogenous GDF11 regulates odontogenic differentiation of dental pulp stem cells. J Cell Mol Med 2020; 24(19): 11457-64. doi: 10.1111/jcmm.15754 PMID: 32845070
  173. Liu J, Jin T, Ritchie HH, Smith AJ, Clarkson BH. in vitro differentiation and mineralization of human dental pulp cells induced by dentin extract. in vitro Cell Dev Biol Anim. 2005; 41(7): 232-8. doi: 10.1290/0502014.1 PMID: 16223338
  174. Chun SY, Lee HJ, Choi YA, et al. Analysis of the soluble human tooth proteome and its ability to induce dentin/tooth regeneration. Tissue Eng Part A 2011; 17(1-2): 181-91. doi: 10.1089/ten.tea.2010.0121 PMID: 20695775
  175. Sharma R, Ottenhof T, Rzeczkowska PA, Niles LP. Epigenetic targets for melatonin: Induction of histone H3 hyperacetylation and gene expression in C17.2 neural stem cells. J Pineal Res 2008; 45(3): 277-84. doi: 10.1111/j.1600-079X.2008.00587.x PMID: 18373554
  176. Wang B, Wen H, Smith W, Hao D, He B, Kong L. Regulation effects of melatonin on bone marrow mesenchymal stem cell differentiation. J Cell Physiol 2019; 234(2): 1008-15. doi: 10.1002/jcp.27090 PMID: 30145787
  177. Deng P, Chen Q-M, Hong C, Wang C-Y. Histone methyltransferases and demethylases: Regulators in balancing osteogenic and adipogenic differentiation of mesenchymal stem cells. Int J Oral Sci 2015; 7(4): 197-204. doi: 10.1038/ijos.2015.41 PMID: 26674421
  178. Rodas-Junco BA, Canul-Chan M, Rojas-Herrera RA, De-la-Peña C, Nic-Can GI. Stem cells from dental pulp: What epigenetics can do with your tooth. Front Physiol 2017; 8: 999. doi: 10.3389/fphys.2017.00999 PMID: 29270128
  179. Moore LD, Le T, Fan G. DNA methylation and its basic function. Neuropsychopharmacology 2013; 38(1): 23-38. doi: 10.1038/npp.2012.112 PMID: 22781841
  180. Hamidi T, Singh AK, Chen T. Genetic alterations of DNA methylation machinery in human diseases. Epigenomics 2015; 7(2): 247-65. doi: 10.2217/epi.14.80 PMID: 25942534
  181. Utsey K, Keener JP. A mathematical model for inheritance of dna methylation patterns in somatic cells. Bull Math Biol 2020; 82(7): 84. doi: 10.1007/s11538-020-00765-4 PMID: 32613387
  182. Li J, Deng Q, Fan W, Zeng Q, He H, Huang F. Melatonin-induced suppression of DNA methylation promotes odontogenic differentiation in human dental pulp cells. Bioengineered 2020; 11(1): 829-40. doi: 10.1080/21655979.2020.1795425 PMID: 32718272
  183. Liu Q, Fan W, He Y, et al. Effects of melatonin on the proliferation and differentiation of human dental pulp cells. Arch Oral Biol 2017; 83: 33-9. doi: 10.1016/j.archoralbio.2017.06.034 PMID: 28692829
  184. Lumsden AG. Spatial organization of the epithelium and the role of neural crest cells in the initiation of the mammalian tooth germ. Development 1988; 103 (Suppl.): 155-69. doi: 10.1242/dev.103.Supplement.155 PMID: 3250849
  185. Zhang YD, Chen Z, Song YQ, Liu C, Chen YP. Making a tooth: Growth factors, transcription factors, and stem cells. Cell Res 2005; 15(5): 301-16. doi: 10.1038/sj.cr.7290299 PMID: 15916718
  186. Jussila M, Thesleff I. Signaling networks regulating tooth organogenesis and regeneration, and the specification of dental mesenchymal and epithelial cell lineages. Cold Spring Harb Perspect Biol 2012; 4(4): a008425. doi: 10.1101/cshperspect.a008425 PMID: 22415375
  187. Rasch LJ, Martin KJ, Cooper RL, Metscher BD, Underwood CJ, Fraser GJ. An ancient dental gene set governs development and continuous regeneration of teeth in sharks. Dev Biol 2016; 415(2): 347-70. doi: 10.1016/j.ydbio.2016.01.038 PMID: 26845577
  188. Li W, Chen L, Chen Z, et al. Dentin sialoprotein facilitates dental mesenchymal cell differentiation and dentin formation. Sci Rep 2017; 7(1): 300. doi: 10.1038/s41598-017-00339-w PMID: 28331230
  189. Martinez EF, da Silva LAH, Furuse C, de Araújo NS, de Araújo VC. Dentin matrix protein 1 (DMP1) expression in developing human teeth. Braz Dent J 2009; 20(5): 365-9. doi: 10.1590/S0103-64402009000500002 PMID: 20126903
  190. Cremers S, Garnero P, Seibel MJ. Biochemical Markers of Bone Metabolism. Martin TJBT-P of BB San Diego: Academic Press. 2008; pp. 1857-81. Available from: https://www.sciencedirect.com/science/article/pii/B9780123738844000203
  191. Akiyama T. Wnt/beta-catenin signaling. Cytokine Growth Factor Rev 2000; 11(4): 273-82. doi: 10.1016/S1359-6101(00)00011-3 PMID: 10959075
  192. Lybrand DB, Naiman M, Laumann JM, et al. Destruction complex dynamics: Wnt/β-catenin signaling alters Axin-GSK3β interactions in vivo. Development 2019; 146(13): dev164145. doi: 10.1242/dev.164145 PMID: 31189665
  193. Fraser GJ, Bloomquist RF, Streelman JT. Common developmental pathways link tooth shape to regeneration. Dev Biol 2013; 377(2): 399-414. doi: 10.1016/j.ydbio.2013.02.007 PMID: 23422830
  194. Someya H, Fujiwara H, Nagata K, et al. Thymosin beta 4 is associated with RUNX2 expression through the Smad and Akt signaling pathways in mouse dental epithelial cells. Int J Mol Med 2015; 35(5): 1169-78. doi: 10.3892/ijmm.2015.2118 PMID: 25739055
  195. Lee D-J, Kim H-Y, Lee S-J, Jung H-S. Spatiotemporal changes in transcriptome of odontogenic and non-odontogenic regions in the dental arch of mus musculus. Front Cell Dev Biol 2021; 9: 723326. doi: 10.3389/fcell.2021.723326 PMID: 34722506
  196. Surana R, Sikka S, Cai W, et al. Secreted frizzled related proteins: Implications in cancers. Biochim Biophys Acta 2014; 1845(1): 53-65. PMID: 24316024
  197. Spoto G, Fioroni M, Rubini C, Tripodi D, Di Stilio M, Piattelli A. Alkaline phosphatase activity in normal and inflamed dental pulps. J Endod 2001; 27(3): 180-2. doi: 10.1097/00004770-200103000-00010 PMID: 11487147
  198. Wang C, Wang Y, Wang H, et al. SFRP2 enhances dental pulp stem cell-mediated dentin regeneration in rabbit jaw. Oral Dis 2021; 27(7): 1738-46. doi: 10.1111/odi.13698 PMID: 33128313
  199. Tabatabaei FS, Ai J, Jafarzadeh Kashi TS, Khazaei M, Kajbafzadeh A-M, Ghanbari Z. Effect of dentine matrix proteins on human endometrial adult stem-like cells: In vitro regeneration of odontoblasts cells. Arch Oral Biol 2013; 58(7): 871-9. doi: 10.1016/j.archoralbio.2013.01.013 PMID: 23465411
  200. Anneroth G, Bang G. The effect of allogeneic demineralized dentin as a pulp capping agent in Java monkeys. Odontol Revy 1972; 23(3): 315-28. PMID: 4628280
  201. Park M, Jeon S, Jeong J-H, et al. Identification and characterization of LHX8 DNA binding elements. Dev Reprod 2012; 16(4): 379-84. doi: 10.12717/DR.2012.16.4.379 PMID: 25949113
  202. Zhou C, Yang G, Chen M, et al. Lhx8 mediated Wnt and TGFβ pathways in tooth development and regeneration. Biomaterials 2015; 63: 35-46. doi: 10.1016/j.biomaterials.2015.06.004 PMID: 26081866
  203. Du W, Du W, Yu H. The Role of Fibroblast Growth Factors in Tooth Development and Incisor Renewal. Stem Cells Int 2018; 2018: 7549160. doi: 10.1155/2018/7549160
  204. Li C-Y, Prochazka J, Goodwin AF, Klein OD. Fibroblast growth factor signaling in mammalian tooth development. Odontology 2014; 102(1): 1-13. doi: 10.1007/s10266-013-0142-1 PMID: 24343791
  205. Saghiri MA, Asatourian A, Sorenson CM, Sheibani N. Role of angiogenesis in endodontics: Contributions of stem cells and proangiogenic and antiangiogenic factors to dental pulp regeneration. J Endod 2015; 41(6): 797-803. doi: 10.1016/j.joen.2014.12.019 PMID: 25649306
  206. Hoeben A, Landuyt B, Highley MS, Wildiers H, Van Oosterom AT, De Bruijn EA. Vascular endothelial growth factor and angiogenesis. Pharmacol Rev 2004; 56(4): 549-80. doi: 10.1124/pr.56.4.3 PMID: 15602010
  207. Janebodin K, Chavanachat R, Hays A, Reyes Gil M. Silencing VEGFR-2 hampers odontoblastic differentiation of dental pulp stem cells. Front Cell Dev Biol 2021; 9: 665886. doi: 10.3389/fcell.2021.665886 PMID: 34249919
  208. Zheng Y, Jia L, Liu P, et al. Insight into the maintenance of odontogenic potential in mouse dental mesenchymal cells based on transcriptomic analysis. PeerJ 2016; 4: e1684. doi: 10.7717/peerj.1684 PMID: 26925321
  209. Niwa T, Yamakoshi Y, Yamazaki H, et al. The dynamics of TGF-β in dental pulp, odontoblasts and dentin. Sci Rep 2018; 8(1): 4450. doi: 10.1038/s41598-018-22823-7 PMID: 29535349
  210. Kirkbride KC, Townsend TA, Bruinsma MW, Barnett JV, Blobe GC. Bone morphogenetic proteins signal through the transforming growth factor-beta type III receptor. J Biol Chem 2008; 283(12): 7628-37. doi: 10.1074/jbc.M704883200 PMID: 18184661
  211. Gheldof A, Hulpiau P, van Roy F, De Craene B, Berx G. Evolutionary functional analysis and molecular regulation of the ZEB transcription factors. Cell Mol Life Sci 2012; 69(15): 2527-41. doi: 10.1007/s00018-012-0935-3 PMID: 22349261
  212. Xiao Y, Lin YX, Cui Y, et al. Zeb1 promotes odontoblast differentiation in a stage-dependent manner. J Dent Res 2021; 100(6): 648-57. doi: 10.1177/0022034520982249 PMID: 33419386
  213. Kang Q, Song W-X, Luo Q, et al. A comprehensive analysis of the dual roles of BMPs in regulating adipogenic and osteogenic differentiation of mesenchymal progenitor cells. Stem Cells Dev 2009; 18(4): 545-59. doi: 10.1089/scd.2008.0130 PMID: 18616389
  214. Luther G, Wagner ER, Zhu G, et al. BMP-9 induced osteogenic differentiation of mesenchymal stem cells: Molecular mechanism and therapeutic potential. Curr Gene Ther 2011; 11(3): 229-40. doi: 10.2174/156652311795684777 PMID: 21453282
  215. Abrahão IJ, Martins MD, Katayama E, Antoniazzi JH, Segmentilli A, Marques MM. Collagen analysis in human tooth germ papillae. Braz Dent J 2006; 17(3): 208-12. doi: 10.1590/S0103-64402006000300006 PMID: 17262126
  216. Bronckers AL, Price PA, Schrijvers A, Bervoets TJ, Karsenty G. Studies of osteocalcin function in dentin formation in rodent teeth. Eur J Oral Sci 1998; 106(3): 795-807. doi: 10.1046/j.0909-8836.1998.eos106306.x PMID: 9672102
  217. Luo W, Zhang L, Huang B, et al. BMP9-initiated osteogenic/odontogenic differentiation of mouse tooth germ mesenchymal cells (TGMCS) requires Wnt/β-catenin signalling activity. J Cell Mol Med 2021; 25(5): 2666-78. doi: 10.1111/jcmm.16293 PMID: 33605035
  218. Weidauer SE, Schmieder P, Beerbaum M, Schmitz W, Oschkinat H, Mueller TD. NMR structure of the Wnt modulator protein Sclerostin. Biochem Biophys Res Commun 2009; 380(1): 160-5. doi: 10.1016/j.bbrc.2009.01.062 PMID: 19166819
  219. Lintern KB, Guidato S, Rowe A, Saldanha JW, Itasaki N. Characterization of wise protein and its molecular mechanism to interact with both Wnt and BMP signals. J Biol Chem 2009; 284(34): 23159-68. doi: 10.1074/jbc.M109.025478 PMID: 19553665
  220. Murashima-Suginami A, Kiso H, Tokita Y, et al. Anti-USAG-1 therapy for tooth regeneration through enhanced BMP signaling Sci Adv 2021; 7(7): eabf1798. doi: 10.1126/sciadv.abf1798 PMID: 33579703
  221. Mishima S, Takahashi K, Kiso H, et al. Local application of Usag-1 siRNA can promote tooth regeneration in Runx2-deficient mice. Sci Rep 2021; 11(1): 13674. doi: 10.1038/s41598-021-93256-y PMID: 34211084
  222. Wang Y, Li L, Zheng Y, et al. BMP activity is required for tooth development from the lamina to bud stage. J Dent Res 2012; 91(7): 690-5. doi: 10.1177/0022034512448660 PMID: 22592126
  223. Lim H-M, Nam M-H, Kim Y-M, Seo Y-K. Increasing odontoblast-like differentiation from dental pulp stem cells through increase of β-Catenin/p-GSK-3β expression by low-frequency electromagnetic field. Biomedicines 2021; 9(8) doi: 10.3390/biomedicines9081049
  224. Blank U, Karlsson S. The role of Smad signaling in hematopoiesis and translational hematology. Leukemia 2011; 25(9): 1379-88. doi: 10.1038/leu.2011.95 PMID: 21566654
  225. Liu J, Saito K, Maruya Y, et al. Mutant GDF5 enhances ameloblast differentiation via accelerated BMP2-induced Smad1/5/8 phosphorylation. Sci Rep 2016; 6(1): 23670. doi: 10.1038/srep23670 PMID: 27030100
  226. Goldstein AL, Hannappel E, Sosne G, Kleinman HK. Thymosin β4: A multi-functional regenerative peptide. Basic properties and clinical applications. Expert Opin Biol Ther 2012; 12(1): 37-51. doi: 10.1517/14712598.2012.634793 PMID: 22074294
  227. Brockes JP. The nerve dependence of amphibian limb regeneration. J Exp Biol 1987; 132: 79-91. doi: 10.1242/jeb.132.1.79 PMID: 3323408
  228. Makanae A, Tajika Y, Nishimura K, Saito N, Tanaka J-I, Satoh A. Neural regulation in tooth regeneration of Ambystoma mexicanum. Sci Rep 2020; 10(1): 9323. doi: 10.1038/s41598-020-66142-2 PMID: 32518359

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers