Research Progress of Aging-related MicroRNAs


Cite item

Full Text

Abstract

Senescence refers to the irreversible state in which cells enter cell cycle arrest due to internal or external stimuli. The accumulation of senescent cells can lead to many age-related diseases, such as neurodegenerative diseases, cardiovascular diseases, and cancers. MicroRNAs are short non-coding RNAs that bind to target mRNA to regulate gene expression after transcription and play an important regulatory role in the aging process. From nematodes to humans, a variety of miRNAs have been confirmed to alter and affect the aging process. Studying the regulatory mechanisms of miRNAs in aging can further deepen our understanding of cell and body aging and provide a new perspective for the diagnosis and treatment of aging-related diseases. In this review, we illustrate the current research status of miRNAs in aging and discuss the possible prospects for clinical applications of targeting miRNAs in senile diseases.

About the authors

Zhongyu Chen

School of Basic Medicine, Dali University

Email: info@benthamscience.net

Chenxu Li

School of Basic Medicine, Dali University

Email: info@benthamscience.net

Haitao Huang

School of Basic Medicine, Dali University

Email: info@benthamscience.net

Yi-Ling Shi

School of Basic Medicine, Dali University

Author for correspondence.
Email: info@benthamscience.net

Xiaobo Wang

School of Basic Medicine, Dali University

Author for correspondence.
Email: info@benthamscience.net

References

  1. Gorgoulis V, Adams PD, Alimonti A, et al. Cellular Senescence: Defining a Path Forward. Cell 2019; 179(4): 813-27. doi: 10.1016/j.cell.2019.10.005 PMID: 31675495
  2. Bartel DP. Metazoan MicroRNAs. Cell 2018; 173(1): 20-51. doi: 10.1016/j.cell.2018.03.006 PMID: 29570994
  3. Ito T, Yagi S, Yamakuchi M. MicroRNA-34a regulation of endothelial senescence. Biochem Biophys Res Commun 2010; 398(4): 735-40. doi: 10.1016/j.bbrc.2010.07.012 PMID: 20627091
  4. Ueda M, Sato T, Ohkawa Y, Inoue YH. Identification of miR-305, a microRNA that promotes aging, and its target mRNAs in Drosophila. Genes Cells 2018; 23(2): 80-93.
  5. Liang R, Khanna A, Muthusamy S, et al. Post-transcriptional regulation of IGF1R by key microRNAs in long-lived mutant mice. Aging Cell 2011; 10(6): 1080-8. doi: 10.1111/j.1474-9726.2011.00751.x PMID: 21967153
  6. Dallaire A, Garand C, Paquet ER, et al. Down regulation of miR-124 in both Werner syndrome DNA helicase mutant mice and mutant Caenorhabditis elegans wrn-1 reveals the importance of this microRNA in accelerated aging. Aging (Albany NY) 2012; 4(9): 636-47. doi: 10.18632/aging.100489 PMID: 23075628
  7. Cai WL, Huang WD, Li B, et al. microRNA-124 inhibits bone metastasis of breast cancer by repressing Interleukin-11. Mol Cancer 2018; 17(1): 9. doi: 10.1186/s12943-017-0746-0 PMID: 29343249
  8. Sun Y, Luo ZM, Guo XM, Su DF, Liu X. An updated role of microRNA-124 in central nervous system disorders: A review. Front Cell Neurosci 2015; 9: 193. doi: 10.3389/fncel.2015.00193 PMID: 26041995
  9. Liu N, Landreh M, Cao K, et al. The microRNA miR-34 modulates ageing and neurodegeneration in Drosophila. Nature 2012; 482(7386): 519-23. doi: 10.1038/nature10810 PMID: 22343898
  10. Jiang X, Ruan X, Xue Y, Yang S, Shi M, Wang L. Metformin reduces the senescence of renal tubular epithelial cells in diabetic nephropathy via the MBNL1/miR-130a-3p/STAT3 Pathway. Oxid Med Cell Longev 2020; 2020: 8708236. doi: 10.1155/2020/8708236 PMID: 32104542
  11. Vora M, Shah M, Ostafi S, et al. Deletion of microRNA-80 activates dietary restriction to extend C. elegans healthspan and lifespan. PLoS Genet 2013; 9(8): e1003737. doi: 10.1371/journal.pgen.1003737 PMID: 24009527
  12. Liebig JK, Kuphal S, Bosserhoff AK. HuRdling Senescence: HuR breaks BRAF-induced senescence in melanocytes and supports melanoma growth. Cancers (Basel) 2020; 12(5): 1299. doi: 10.3390/cancers12051299 PMID: 32455577
  13. Magenta A, Cencioni C, Fasanaro P, et al. miR-200c is upregulated by oxidative stress and induces endothelial cell apoptosis and senescence via ZEB1 inhibition. Cell Death Differ 2011; 18(10): 1628-39. doi: 10.1038/cdd.2011.42 PMID: 21527937
  14. Fulzele S, Mendhe B, Khayrullin A, et al. Muscle-derived miR-34a increases with age in circulating extracellular vesicles and induces senescence of bone marrow stem cells. Aging (Albany NY) 2019; 11(6): 1791-803. doi: 10.18632/aging.101874 PMID: 30910993
  15. Xu R, Shen X, Si Y, et al. MicroRNA-31a-5p from aging BMSCs links bone formation and resorption in the aged bone marrow microenvironment. Aging Cell 2018; 17(4): e12794. doi: 10.1111/acel.12794 PMID: 29896785
  16. Jazbutyte V, Fiedler J, Kneitz S, et al. MicroRNA-22 increases senescence and activates cardiac fibroblasts in the aging heart. Age (Omaha) 2013; 35(3): 747-62. doi: 10.1007/s11357-012-9407-9 PMID: 22538858
  17. Feng CZ, Yin JB, Yang JJ, Cao L. Regulatory factor X1 depresses ApoE-dependent Aβ uptake by miRNA-124 in microglial response to oxidative stress. Neuroscience 2017; 344: 217-28. doi: 10.1016/j.neuroscience.2016.12.017 PMID: 28003160
  18. Ruediger C, Karimzadegan S, Lin S, Shapira M. miR-71 mediates age-dependent opposing contributions of the stress-activated kinase KGB-1 in Caenorhabditis elegans. Genetics 2021; 218(2): iyab049. doi: 10.1093/genetics/iyab049 PMID: 33755114
  19. Horsburgh S, Fullard N, Roger M, et al. MicroRNAs in the skin: Role in development, homoeostasis and regeneration. Clinical science (London, England: 1979) 2017; 131(15): 1923-40.
  20. Wu Y, Zhang K, Liu R, et al. MicroRNA-21-3p accelerates diabetic wound healing in mice by downregulating SPRY1. Aging (Albany NY) 2020; 12(15): 15436-45. doi: 10.18632/aging.103610 PMID: 32634115
  21. Yin C, Tian Y, Yu Y, et al. miR-129-5p Inhibits Bone Formation Through TCF4. Front Cell Dev Biol 2020; 8: 600641. doi: 10.3389/fcell.2020.600641 PMID: 33240893
  22. Su W, Hong L, Xu X, et al. miR-30 disrupts senescence and promotes cancer by targeting both p16INK4A and DNA damage pathways. Oncogene 2018; 37(42): 5618-32. doi: 10.1038/s41388-018-0358-1 PMID: 29907771
  23. Kuo G, Wu CY, Yang HY. MiR-17-92 cluster and immunity. J Formosan Med Assoc 2019; 118(1 Pt 1): 2-6.
  24. Friedman DB, Johnson TE. A mutation in the age-1 gene in Caenorhabditis elegans lengthens life and reduces hermaphrodite fertility. Genetics 1988; 118(1): 75-86. doi: 10.1093/genetics/118.1.75 PMID: 8608934
  25. Tatar M, Bartke A, Antebi A. The endocrine regulation of aging by insulin-like signals. Science 2003; 299(5611): 1346-51. doi: 10.1126/science.1081447 PMID: 12610294
  26. Boehm M, Slack F. A developmental timing microRNA and its target regulate life span in C. elegans. Science 2005; 310(5756): 1954-7. doi: 10.1126/science.1115596 PMID: 16373574
  27. Qi Z, Ji H, Le M, et al. Sulforaphane promotes C. elegans longevity and healthspan via DAF-16/DAF-2 insulin/IGF-1 signaling. Aging (Albany NY) 2021; 13(2): 1649-70. doi: 10.18632/aging.202512 PMID: 33471780
  28. Luo X, Jiang X, Li J, et al. Insulin-like growth factor-1 attenuates oxidative stress-induced hepatocyte premature senescence in liver fibrogenesis via regulating nuclear p53–progerin interaction. Cell Death Dis 2019; 10(6): 451. doi: 10.1038/s41419-019-1670-6 PMID: 31171766
  29. Pincus Z, Smith-Vikos T, Slack FJ. MicroRNA predictors of longevity in Caenorhabditis elegans. PLoS Genet 2011; 7(9): e1002306. doi: 10.1371/journal.pgen.1002306 PMID: 21980307
  30. Baugh LR, Sternberg PW. DAF-16/FOXO regulates transcription of cki-1/Cip/Kip and repression of lin-4 during C. elegans L1 arrest. Curr Biol 2006; 16(8): 780-5. doi: 10.1016/j.cub.2006.03.021 PMID: 16631585
  31. Mariño G, Ugalde AP, Fernández ÁF, et al. Insulin-like growth factor 1 treatment extends longevity in a mouse model of human premature aging by restoring somatotroph axis function. Proc Natl Acad Sci USA 2010; 107(37): 16268-73. doi: 10.1073/pnas.1002696107 PMID: 20805469
  32. Hyun S, Lee JH, Jin H, et al. Conserved MicroRNA miR-8/miR-200 and its target USH/FOG2 control growth by regulating PI3K. Cell 2009; 139(6): 1096-108. doi: 10.1016/j.cell.2009.11.020 PMID: 20005803
  33. Xia Q, Han T, Yang P, et al. MicroRNA-28-5p regulates liver cancer stem cell expansion via IGF-1 Pathway. Stem Cells Int 2019; 2019: 1-16. doi: 10.1155/2019/8734362 PMID: 31885628
  34. Zhou Y, Li S, Li J, Wang D, Li Q. Effect of microRNA-135a on cell proliferation, migration, invasion, apoptosis and tumor angiogenesis through the IGF-1/PI3K/Akt signaling pathway in non-small cell lung cancer. Cell Physiol Biochem 2017; 42(4): 1431-46. doi: 10.1159/000479207 PMID: 28715819
  35. Dang X, Li X, Wang L, Sun X, Tian X. MicroRNA-3941 targets IGF-1 to regulate cell proliferation and migration of breast cancer cells. Int J Clin Exp Pathol 2017; 10(7): 7650-60. PMID: 31966610
  36. Hung TM, Ho CM, Liu YC, et al. Up-regulation of microRNA-190b plays a role for decreased IGF-1 that induces insulin resistance in human hepatocellular carcinoma. PLoS One 2014; 9(2): e89446. doi: 10.1371/journal.pone.0089446 PMID: 24586785
  37. Salminen A, Kaarniranta K, Kauppinen A. AMPK and HIF signaling pathways regulate both longevity and cancer growth: the good news and the bad news about survival mechanisms. Biogerontology 2016; 17(4): 655-80. doi: 10.1007/s10522-016-9655-7 PMID: 27259535
  38. Han X, Tai H, Wang X, et al. AMPK activation protects cells from oxidative stress‐induced senescence via autophagic flux restoration and intracellular NAD+ elevation. Aging Cell 2016; 15(3): 416-27. doi: 10.1111/acel.12446 PMID: 26890602
  39. Han X, Zhang T, Zhang X, et al. AMPK alleviates oxidative stress induced premature senescence via inhibition of NF-κB/STAT3 axis-mediated positive feedback loop. Mech Ageing Dev 2020; 191: 111347. doi: 10.1016/j.mad.2020.111347 PMID: 32882228
  40. Wang Y, Wang L, Wen X, et al. NF-κB signaling in skin aging. Mech Ageing Dev 2019; 184: 111160. doi: 10.1016/j.mad.2019.111160 PMID: 31634486
  41. Podhorecka M, Ibanez B, Dmoszyńska A. Metformin – its potential anti-cancer and anti-aging effects. Postepy Hig Med Dosw 2017; 71(1): 3801. doi: 10.5604/01.3001.0010.3801 PMID: 28258677
  42. Zhang H, Jin K. Peripheral circulating exosomal miRNAs potentially contribute to the regulation of molecular signaling networks in aging. Int J Mol Sci 2020; 21(6): 1908. doi: 10.3390/ijms21061908 PMID: 32168775
  43. Hong Y, He H, Jiang G, et al. miR‐155‐5p inhibition rejuvenates aged mesenchymal stem cells and enhances cardioprotection following infarction. Aging Cell 2020; 19(4): e13128. doi: 10.1111/acel.13128 PMID: 32196916
  44. (a) Kuo SJ, Liu SC, Huang YL, et al. TGF-β1 enhances FOXO3 expression in human synovial fibroblasts by inhibiting miR-92a through AMPK and p38 pathways. Aging (Albany NY) 2019; 11(12): 4075-89. doi: 10.18632/aging.102038 PMID: 31232696; (b) Rine J and, Herskowitz I. Four genes responsible for a position effect on expression from HML and HMR in Saccharomyces cerevisiae. Genetics 1987; 116(1): 9-22. doi: 10.1093/genetics/116.1.9
  45. Kaeberlein M, Kirkland KT, Fields S, Kennedy BK. Sir2-independent life span extension by calorie restriction in yeast. PLoS Biol 2004; 2(9): e296. doi: 10.1371/journal.pbio.0020296 PMID: 15328540
  46. Frye RA. Characterization of five human cDNAs with homology to the yeast SIR2 gene: Sir2-like proteins (sirtuins) metabolize NAD and may have protein ADP-ribosyltransferase activity. Biochem Biophys Res Commun 1999; 260(1): 273-9. doi: 10.1006/bbrc.1999.0897 PMID: 10381378
  47. Ota H. The mechanism of vascular senescence regulated by longevity gene, Sirt1. Nihon Ronen Igakkai Zasshi 2007; 44(2): 194-7. doi: 10.3143/geriatrics.44.194 PMID: 17527017
  48. Liu W, Hong Q, Bai XY, et al. High-affinity Na+-dependent dicarboxylate cotransporter promotes cellular senescence by inhibiting SIRT1. Mech Ageing Dev 2010; 131(10): 601-13. doi: 10.1016/j.mad.2010.08.006 PMID: 20813124
  49. Zu Y, Liu L, Lee MYK, et al. SIRT1 promotes proliferation and prevents senescence through targeting LKB1 in primary porcine aortic endothelial cells. Circ Res 2010; 106(8): 1384-93. doi: 10.1161/CIRCRESAHA.109.215483 PMID: 20203304
  50. Tran D, Bergholz J, Zhang H, et al. Insulin‐like growth factor‐1 regulates the SIRT 1‐p53 pathway in cellular senescence. Aging Cell 2014; 13(4): 669-78. doi: 10.1111/acel.12219 PMID: 25070626
  51. Aw S, Cohen SM. Time is of the essence: microRNAs and age-associated neurodegeneration. Cell Res 2012; 22(8): 1218-20. doi: 10.1038/cr.2012.59 PMID: 22491478
  52. Zhang Q, Liu H, McGee J, Walsh EJ, Soukup GA, He DZZ. Identifying microRNAs involved in degeneration of the organ of corti during age-related hearing loss. PLoS One 2013; 8(4): e62786. doi: 10.1371/journal.pone.0062786 PMID: 23646144
  53. Li T, Yan X, Jiang M, Xiang L. The comparison of microRNA profile of the dermis between the young and elderly. J Dermatol Sci 2016; 82(2): 75-83. doi: 10.1016/j.jdermsci.2016.01.005 PMID: 26899446
  54. Yamakuchi M, Lowenstein CJ. MiR-34, SIRT1, and p53: The feedback loop. Cell Cycle 2009; 8(5): 712-5. doi: 10.4161/cc.8.5.7753 PMID: 19221490
  55. Yamakuchi M, Ferlito M, Lowenstein CJ. miR-34a repression of SIRT1 regulates apoptosis. Proc Natl Acad Sci USA 2008; 105(36): 13421-6. doi: 10.1073/pnas.0801613105 PMID: 18755897
  56. Guo Q, Zhang H, Zhang B, Zhang E, Wu Y. Tumor Necrosis Factor-alpha (TNF-α) Enhances miR-155-mediated endothelial senescence by targeting Sirtuin1 (SIRT1). Med Sci Monit 2019; 25: 8820-35. doi: 10.12659/MSM.919721 PMID: 31752013
  57. Tan P, Guo YH, Zhan JK, et al. LncRNA-ANRIL inhibits cell senescence of vascular smooth muscle cells by regulating miR-181a/Sirt1. Biochem Cell Biol 2019; 97(5): 571-80. doi: 10.1139/bcb-2018-0126 PMID: 30789795
  58. Komarova EA, Antoch MP, Novototskaya LR, et al. Rapamycin extends lifespan and delays tumorigenesis in heterozygous p53+/− mice. Aging (Albany NY) 2012; 4(10): 709-14. doi: 10.18632/aging.100498 PMID: 23123616
  59. Fingar DC, Blenis J. Target of rapamycin (TOR): An integrator of nutrient and growth factor signals and coordinator of cell growth and cell cycle progression. Oncogene 2004; 23(18): 3151-71. doi: 10.1038/sj.onc.1207542 PMID: 15094765
  60. Cai J, Zhang Y, Huang S, et al. MiR-100-5p, miR-199a-3p and miR-199b-5p induce autophagic death of endometrial carcinoma cell through targeting mTOR. Int J Clin Exp Pathol 2017; 10(9): 9262-72. PMID: 31966798
  61. Yu Z, Li N, Jiang K, Zhang N, Yao LL. MiR-100 up-regulation enhanced cell autophagy and apoptosis induced by cisplatin in osteosarcoma by targeting mTOR. Eur Rev Med Pharmacol Sci 2020; 24(14): 7570. PMID: 32744675
  62. Ge YY, Shi Q, Zheng ZY, et al. MicroRNA-100 promotes the autophagy of hepatocellular carcinoma cells by inhibiting the expression of mTOR and IGF-1R. Oncotarget 2014; 5(15): 6218-28. doi: 10.18632/oncotarget.2189 PMID: 25026290
  63. Ma L, Tang X, Guo S, Liang M, Zhang B, Jiang Z. miRNA-21–3p targeting of FGF2 suppresses autophagy of bovine ovarian granulosa cells through AKT/mTOR pathway. Theriogenology 2020; 157: 226-37. doi: 10.1016/j.theriogenology.2020.06.021 PMID: 32818880
  64. Zhang H, Zhang X, Zhang J. MiR-129-5p inhibits autophagy and apoptosis of H9c2 cells induced by hydrogen peroxide via the PI3K/AKT/mTOR signaling pathway by targeting ATG14. Biochem Biophys Res Commun 2018; 506(1): 272-7. doi: 10.1016/j.bbrc.2018.10.085 PMID: 30348524
  65. Katoch A, George B, Iyyappan A, Khan D, Das S. Interplay between PTB and miR-1285 at the p53 3′UTR modulates the levels of p53 and its isoform Δ40p53α. Nucleic Acids Res 2017; 45(17): 10206-17. doi: 10.1093/nar/gkx630 PMID: 28973454
  66. Xu S, Wu W, Huang H, et al. The p53/miRNAs/Ccna2 pathway serves as a novel regulator of cellular senescence: Complement of the canonical p53/p21 pathway. Aging Cell 2019; 18(3): e12918. doi: 10.1111/acel.12918 PMID: 30848072
  67. Kitadate A, Ikeda S, Teshima K, et al. MicroRNA-16 mediates the regulation of a senescence–apoptosis switch in cutaneous T-cell and other non-Hodgkin lymphomas. Oncogene 2016; 35(28): 3692-704. doi: 10.1038/onc.2015.435 PMID: 26640145
  68. Lal A, Kim HH, Abdelmohsen K, et al. p16(INK4a) translation suppressed by miR-24. PLoS One 2008; 3(3): e1864. doi: 10.1371/journal.pone.0001864 PMID: 18365017
  69. O’Loghlen A, Brookes S, Martin N, Rapisarda V, Peters G, Gil J. CBX7 and miR-9 are part of an autoregulatory loop controlling p16 INK 4a. Aging Cell 2015; 14(6): 1113-21. doi: 10.1111/acel.12404 PMID: 26416703
  70. O’Loghlen A, Muñoz-Cabello AM, Gaspar-Maia A, et al. MicroRNA regulation of Cbx7 mediates a switch of Polycomb orthologs during ESC differentiation. Cell Stem Cell 2012; 10(1): 33-46. doi: 10.1016/j.stem.2011.12.004 PMID: 22226354
  71. Lin R, Rahtu-Korpela L, Magga J, et al. miR-1468-3p Promotes Aging-Related Cardiac Fibrosis. Mol Ther Nucleic Acids 2020; 20: 589-605. doi: 10.1016/j.omtn.2020.04.001 PMID: 32348937
  72. Roush S, Slack FJ. The let-7 family of microRNAs. Trends Cell Biol 2008; 18(10): 505-16. doi: 10.1016/j.tcb.2008.07.007 PMID: 18774294
  73. Su JL, Chen PS, Johansson G, Kuo ML. Function and regulation of let-7 family microRNAs. MicroRNA 2012; 1(1): 34-9. doi: 10.2174/2211536611201010034 PMID: 25048088
  74. de Lencastre A, Pincus Z, Zhou K, Kato M, Lee SS, Slack FJ. MicroRNAs both promote and antagonize longevity in C. elegans. Curr Biol 2010; 20(24): 2159-68. doi: 10.1016/j.cub.2010.11.015 PMID: 21129974
  75. Smith-Vikos T, de Lencastre A, Inukai S, Shlomchik M, Holtrup B, Slack FJ. MicroRNAs mediate dietary-restriction-induced longevity through PHA-4/FOXA and SKN-1/Nrf transcription factors. Curr Biol 2014; 24(19): 2238-46. doi: 10.1016/j.cub.2014.08.013 PMID: 25242029
  76. Nehammer C, Podolska A, Mackowiak SD, Kagias K, Pocock R. Specific microRNAs regulate heat stress responses in Caenorhabditis elegans. Sci Rep 2015; 5(1): 8866. doi: 10.1038/srep08866 PMID: 25746291
  77. Yang J, Chen D, He Y, et al. MiR-34 modulates Caenorhabditis elegans lifespan via repressing the autophagy gene atg9. Age (Omaha) 2013; 35(1): 11-22. doi: 10.1007/s11357-011-9324-3 PMID: 22081425
  78. Isik M, Blackwell TK, Berezikov E. MicroRNA mir-34 provides robustness to environmental stress response via the DAF-16 network in C. elegans. Sci Rep 2016; 6(1): 36766. doi: 10.1038/srep36766 PMID: 27905558
  79. Aalto AP, Nicastro IA, Broughton JP, et al. Opposing roles of microRNA Argonautes during Caenorhabditis elegans aging. PLoS Genet 2018; 14(6): e1007379. doi: 10.1371/journal.pgen.1007379 PMID: 29927939
  80. Xu P, Vernooy SY, Guo M, Hay BA. The Drosophila microRNA Mir-14 suppresses cell death and is required for normal fat metabolism. Curr Biol 2003; 13(9): 790-5. doi: 10.1016/S0960-9822(03)00250-1 PMID: 12725740
  81. Varghese J, Cohen SM. microRNA miR-14 acts to modulate a positive autoregulatory loop controlling steroid hormone signaling in Drosophila. Genes Dev 2007; 21(18): 2277-82. doi: 10.1101/gad.439807 PMID: 17761811
  82. Kennell JA, Cadigan KM, Shakhmantsir I, Waldron EJ. The MicroRNA miR-8 is a positive regulator of pigmentation and eclosion in Drosophila. Dev Dyn 2012; 241(1): 161-8. doi: 10.1002/dvdy.23705 PMID: 22174085
  83. Jin H, Kim VN, Hyun S. Conserved microRNA miR-8 controls body size in response to steroid signaling in Drosophila. Genes Dev 2012; 26(13): 1427-32. doi: 10.1101/gad.192872.112 PMID: 22751499
  84. Esslinger SM, Schwalb B, Helfer S, et al. Drosophila miR-277 controls branched-chain amino acid catabolism and affects lifespan. RNA Biol 2013; 10(6): 1042-56. doi: 10.4161/rna.24810 PMID: 23669073
  85. Maes OC, An J, Sarojini H, Wang E. Murine microRNAs implicated in liver functions and aging process. Mech Ageing Dev 2008; 129(9): 534-41. doi: 10.1016/j.mad.2008.05.004 PMID: 18561983
  86. Cui H, Ge J, Xie N, et al. miR-34a inhibits lung fibrosis by inducing lung fibroblast senescence. Am J Respir Cell Mol Biol 2017; 56(2): 168-78. doi: 10.1165/rcmb.2016-0163OC PMID: 27635790
  87. Du WW, Li X, Li T, et al. The microRNA miR-17-3p inhibits mouse cardiac fibroblast senescence by targeting Par4. J Cell Sci 2015; 128(2): 293-304. PMID: 25472717
  88. Li N, Bates DJ, An J, Terry DA, Wang E. Up-regulation of key microRNAs, and inverse down-regulation of their predicted oxidative phosphorylation target genes, during aging in mouse brain. Neurobiol Aging 2011; 32(5): 944-55. doi: 10.1016/j.neurobiolaging.2009.04.020 PMID: 19487051
  89. Tan J, Hu L, Yang X, et al. miRNA expression profiling uncovers a role of miR‐302b‐3p in regulating skin fibroblasts senescence. J Cell Biochem 2020; 121(1): 70-80. doi: 10.1002/jcb.28862 PMID: 31074095
  90. Lan Y, Li YJ, Li DJ, et al. Long noncoding RNA MEG3 prevents vascular endothelial cell senescence by impairing miR-128-dependent Girdin downregulation. Am J Physiol Cell Physiol 2019; 316(6): C830-43. doi: 10.1152/ajpcell.00262.2018 PMID: 30576236
  91. Du WW, Yang W, Fang L, et al. miR-17 extends mouse lifespan by inhibiting senescence signaling mediated by MKP7. Cell Death Dis 2014; 5(7): e1355-5. doi: 10.1038/cddis.2014.305 PMID: 25077541
  92. Takeda T, Tanabe H. Lifespan and reproduction in brain-specific miR-29-knockdown mouse. Biochem Biophys Res Commun 2016; 471(4): 454-8. doi: 10.1016/j.bbrc.2016.02.055 PMID: 26902119
  93. Peng Y, Croce CM. The role of MicroRNAs in human cancer. Signal Transduct Target Ther 2016; 1(1): 15004. doi: 10.1038/sigtrans.2015.4 PMID: 29263891
  94. Wang X, Li J, Dong K, et al. Tumor suppressor miR-34a targets PD-L1 and functions as a potential immunotherapeutic target in acute myeloid leukemia. Cell Signal 2015; 27(3): 443-52. doi: 10.1016/j.cellsig.2014.12.003 PMID: 25499621
  95. Cortez MA, Ivan C, Valdecanas D, et al. PDL1 Regulation by p53 via miR-34. J Natl Cancer Inst 2015; 108(1): djv303. PMID: 26577528
  96. Zhang L, Liao Y, Tang L. MicroRNA-34 family: A potential tumor suppressor and therapeutic candidate in cancer. J Exp Clin Cancer Res 2019; 38(1): 53. doi: 10.1186/s13046-019-1059-5 PMID: 30717802
  97. Vu T, Datta P. Regulation of EMT in Colorectal Cancer: A culprit in metastasis. Cancers (Basel) 2017; 9(12): 171. doi: 10.3390/cancers9120171 PMID: 29258163
  98. Sánchez-Tilló E, Liu Y, de Barrios O, et al. EMT-activating transcription factors in cancer: beyond EMT and tumor invasiveness. Cell Mol Life Sci 2012; 69(20): 3429-56. doi: 10.1007/s00018-012-1122-2 PMID: 22945800
  99. Kaller M, Hermeking H. Interplay between transcription factors and MicroRNAs regulating epithelial-mesenchymal transitions in colorectal cancer. Adv Exp Med Biol 2016; 937: 71-92. doi: 10.1007/978-3-319-42059-2_4 PMID: 27573895
  100. Li YJ, Du L, Aldana-Masangkay G, et al. Regulation of miR-34b/c-targeted gene expression program by SUMOylation. Nucleic Acids Res 2018; 46(14): 7108-23. doi: 10.1093/nar/gky484 PMID: 29893976
  101. Xi L, Zhang Y, Kong S, Liang W. miR-34 inhibits growth and promotes apoptosis of osteosarcoma in nude mice through targetly regulating TGIF2 expression. Biosci Rep 2018; 38(3): BSR20180078. doi: 10.1042/BSR20180078 PMID: 29895719
  102. Gang L, Qun L, Liu WD, Li YS, Xu YZ, Yuan DT. MicroRNA-34a promotes cell cycle arrest and apoptosis and suppresses cell adhesion by targeting DUSP1 in osteosarcoma. Am J Transl Res 2017; 9(12): 5388-99. PMID: 29312491
  103. Sun Y, Zhao Y, Zhao X, Lee RJ, Teng L, Zhou C. Enhancing the therapeutic delivery of oligonucleotides by chemical modification and nanoparticle encapsulation. Molecules 2017; 22(10): 1724. doi: 10.3390/molecules22101724 PMID: 29027965
  104. Hui L, Zheng F, Bo Y, et al. MicroRNA let-7b inhibits cell proliferation via upregulation of p21 in hepatocellular carcinoma. Cell Biosci 2020; 10(1): 83. doi: 10.1186/s13578-020-00443-x PMID: 32626571
  105. Rong J, Xu L, Hu Y, et al. Inhibition of let-7b-5p contributes to an anti-tumorigenic macrophage phenotype through the SOCS1/STAT pathway in prostate cancer. Cancer Cell Int 2020; 20(1): 470. doi: 10.1186/s12935-020-01563-7 PMID: 33005103
  106. Wu A, Wu K, Li J, et al. Let-7a inhibits migration, invasion and epithelial-mesenchymal transition by targeting HMGA2 in nasopharyngeal carcinoma. J Transl Med 2015; 13(1): 105. doi: 10.1186/s12967-015-0462-8 PMID: 25884389
  107. Li Y, Zhang X, Chen D, Ma C. Let-7a suppresses glioma cell proliferation and invasion through TGF-β/Smad3 signaling pathway by targeting HMGA2. Tumour Biol 2016; 37(6): 8107-19. doi: 10.1007/s13277-015-4674-6 PMID: 26715270
  108. Schultz J, Lorenz P, Gross G, Ibrahim S, Kunz M. MicroRNA let-7b targets important cell cycle molecules in malignant melanoma cells and interferes with anchorage-independent growth. Cell Res 2008; 18(5): 549-57. doi: 10.1038/cr.2008.45 PMID: 18379589
  109. Yang N, Kaur S, Volinia S, et al. MicroRNA microarray identifies Let-7i as a novel biomarker and therapeutic target in human epithelial ovarian cancer. Cancer Res 2008; 68(24): 10307-14. doi: 10.1158/0008-5472.CAN-08-1954 PMID: 19074899
  110. Shell S, Park SM, Radjabi AR, et al. Let-7 expression defines two differentiation stages of cancer. Proc Natl Acad Sci USA 2007; 104(27): 11400-5. doi: 10.1073/pnas.0704372104 PMID: 17600087
  111. Sun X, Xu C, Tang S-C, et al. Let-7c blocks estrogen-activated Wnt signaling in induction of self-renewal of breast cancer stem cells. Cancer Gene Ther 2016; 23(4): 83-9. doi: 10.1038/cgt.2016.3 PMID: 26987290
  112. Calatayud D, Dehlendorff C, Boisen MK, et al. Tissue MicroRNA profiles as diagnostic and prognostic biomarkers in patients with resectable pancreatic ductal adenocarcinoma and periampullary cancers. Biomark Res 2017; 5(1): 8. doi: 10.1186/s40364-017-0087-6 PMID: 28239461
  113. Chen K, Hou Y, Wang K, et al. Reexpression of Let-7g microRNA inhibits the proliferation and migration via K-Ras/HMGA2/snail axis in hepatocellular carcinoma. BioMed Res Int 2014; 2014: 742417. doi: 10.1155/2014/742417 PMID: 24724096
  114. Qattan A, Intabli H, Alkhayal W, Eltabache C, Tweigieri T, Amer SB. Robust expression of tumor suppressor miRNA’s let-7 and miR-195 detected in plasma of Saudi female breast cancer patients. BMC Cancer 2017; 17(1): 799. doi: 10.1186/s12885-017-3776-5 PMID: 29183284
  115. Lu L, Katsaros D, Rigault de la Longrais IA, Sochirca O, Yu H. Hypermethylation of let-7a-3 in epithelial ovarian cancer is associated with low insulin-like growth factor-II expression and favorable prognosis. Cancer Res 2007; 67(21): 10117-22. doi: 10.1158/0008-5472.CAN-07-2544 PMID: 17974952
  116. Shi W, Zhang Z, Yang B, et al. Overexpression of microRNA let-7 correlates with disease progression and poor prognosis in hepatocellular carcinoma. Medicine (Baltimore) 2017; 96(32): e7764. doi: 10.1097/MD.0000000000007764 PMID: 28796071
  117. Bi R, Wei W, Lu Y, et al. High hsa_circ_0020123 expression indicates poor progression to non-small cell lung cancer by regulating the miR-495/HOXC9 axis. Aging (Albany NY) 2020; 12(17): 17343-52. doi: 10.18632/aging.103722 PMID: 32927434
  118. Xu X, Zhu S, Tao Z, Ye S. High circulating miR-18a, miR-20a, and miR-92a expression correlates with poor prognosis in patients with non-small cell lung cancer. Cancer Med 2018; 7(1): 21-31. doi: 10.1002/cam4.1238 PMID: 29266846
  119. Shu XL, Fan CB, Long B, Zhou X, Wang Y. The anti-cancer effects of cisplatin on hepatic cancer are associated with modulation of miRNA-21 and miRNA-122 expression. Eur Rev Med Pharmacol Sci 2016; 20(21): 4459-65. PMID: 27874954
  120. He Z, Long J, Yang C, et al. LncRNA DGCR5 plays a tumor-suppressive role in glioma via the miR-21/Smad7 and miR-23a/PTEN axes. Aging (Albany NY) 2020; 12(20): 20285-307. doi: 10.18632/aging.103800 PMID: 33085646
  121. Luo X, Li Z, Wang G, et al. MicroRNA-catalyzed cancer therapeutics based on DNA-programmed nanoparticle complex. ACS Appl Mater Interfaces 2017; 9(39): 33624-31. doi: 10.1021/acsami.7b09420 PMID: 28915002
  122. Liu T, Liu D, Guan S, Dong M. Diagnostic role of circulating MiR-21 in colorectal cancer: a update meta-analysis. Ann Med 2021; 53(1): 87-102. doi: 10.1080/07853890.2020.1828617 PMID: 33108223
  123. Huang ZP, Chen J, Seok HY, et al. MicroRNA-22 regulates cardiac hypertrophy and remodeling in response to stress. Circ Res 2013; 112(9): 1234-43. doi: 10.1161/CIRCRESAHA.112.300682 PMID: 23524588
  124. Yang Y, Del Re DP, Nakano N, et al. miR-206 mediates YAP-induced cardiac hypertrophy and survival. Circ Res 2015; 117(10): 891-904. doi: 10.1161/CIRCRESAHA.115.306624 PMID: 26333362
  125. Wu XC, Zhao Y, Li C, et al. Expression and bioinformatics analysis of miRNA in ISO-induced rat cardiac hypertrophy. Chinese J Appl Physiol 2019; 35(5): 476-80.
  126. He R, Ding C, Yin P, et al. MiR-1a-3p mitigates isoproterenol-induced heart failure by enhancing the expression of mitochondrial ND1 and COX1. Exp Cell Res 2019; 378(1): 87-97. doi: 10.1016/j.yexcr.2019.03.012 PMID: 30853447
  127. Garikipati VNS, Verma SK, Jolardarashi D, et al. Therapeutic inhibition of miR-375 attenuates post-myocardial infarction inflammatory response and left ventricular dysfunction via PDK-1-AKT signalling axis. Cardiovasc Res 2017; 113(8): 938-49. doi: 10.1093/cvr/cvx052 PMID: 28371849
  128. Fan ZG, Qu XL, Chu P, et al. MicroRNA-210 promotes angiogenesis in acute myocardial infarction. Mol Med Rep 2018; 17(4): 5658-65. doi: 10.3892/mmr.2018.8620 PMID: 29484401
  129. Wang X, Tian L, Sun Q. Diagnostic and prognostic value of circulating miRNA‐499 and miRNA‐22 in acute myocardial infarction. J Clin Lab Anal 2020; 34(8): 2410-7. doi: 10.1002/jcla.23332 PMID: 32529742
  130. Yin Y, Lv L, Wang W. Expression of miRNA 214 in the sera of elderly patients with acute myocardial infarction and its effect on cardiomyocyte apoptosis. Exp Ther Med 2019; 17(6): 4657-62. doi: 10.3892/etm.2019.7464 PMID: 31086597
  131. Geng T, Song ZY, Xing JX, Wang BX, Dai SP, Xu ZS. Exosome derived from coronary serum of patients with myocardial infarction promotes angiogenesis through the miRNA-143/IGF-IR pathway. Int J Nanomedicine 2020; 15: 2647-58. doi: 10.2147/IJN.S242908 PMID: 32368046
  132. Zhang XG, Wang LQ, Guan HL. Investigating the expression of miRNA-133 in animal models of myocardial infarction and its effect on cardiac function. Eur Rev Med Pharmacol Sci 2019; 23(13): 5934-40. PMID: 31298344
  133. Song Y, Zhang C, Zhang J, et al. Localized injection of miRNA-21-enriched extracellular vesicles effectively restores cardiac function after myocardial infarction. Theranostics 2019; 9(8): 2346-60. doi: 10.7150/thno.29945 PMID: 31149048
  134. Fan PC, Chen CC, Peng CC, et al. A circulating miRNA signature for early diagnosis of acute kidney injury following acute myocardial infarction. J Transl Med 2019; 17(1): 139. doi: 10.1186/s12967-019-1890-7 PMID: 31039814
  135. Konovalova J, Gerasymchuk D, Parkkinen I, Chmielarz P, Domanskyi A. Interplay between MicroRNAs and oxidative stress in neurodegenerative diseases. Int J Mol Sci 2019; 20(23): 6055. doi: 10.3390/ijms20236055 PMID: 31801298
  136. Miñones-Moyano E, Porta S, Escaramís G, et al. MicroRNA profiling of Parkinson’s disease brains identifies early downregulation of miR-34b/c which modulate mitochondrial function. Hum Mol Genet 2011; 20(15): 3067-78. doi: 10.1093/hmg/ddr210 PMID: 21558425
  137. Kim J, Inoue K, Ishii J, et al. A MicroRNA feedback circuit in midbrain dopamine neurons. Science 2007; 317(5842): 1220-4. doi: 10.1126/science.1140481 PMID: 17761882
  138. Cho HJ, Liu G, Jin SM, et al. MicroRNA-205 regulates the expression of Parkinson’s disease-related leucine-rich repeat kinase 2 protein. Hum Mol Genet 2013; 22(3): 608-20. doi: 10.1093/hmg/dds470 PMID: 23125283
  139. Lee SWL, Paoletti C, Campisi M, et al. MicroRNA delivery through nanoparticles. J Control Release 2019; 313: 80-95. doi: 10.1016/j.jconrel.2019.10.007 PMID: 31622695
  140. Wang WX, Rajeev BW, Stromberg AJ, et al. The expression of microRNA miR-107 decreases early in Alzheimer’s disease and may accelerate disease progression through regulation of beta-site amyloid precursor protein-cleaving enzyme 1. J Neurosci 2008; 28(5): 1213-23. doi: 10.1523/JNEUROSCI.5065-07.2008 PMID: 18234899
  141. Goodall EF, Heath PR, Bandmann O, Kirby J, Shaw PJ. Neuronal dark matter: The emerging role of microRNAs in neurodegeneration. Front Cell Neurosci 2013; 7: 178. doi: 10.3389/fncel.2013.00178 PMID: 24133413
  142. Chen J, Zhao B, Zhao J, Li S. Potential roles of exosomal MicroRNAs as diagnostic biomarkers and therapeutic application in Alzheimer’s Disease. Neural Plast 2017; 2017: 1-12. doi: 10.1155/2017/7027380 PMID: 28770113
  143. Gui Y, Liu H, Zhang L, Lv W, Hu X. Altered microRNA profiles in cerebrospinal fluid exosome in Parkinson disease and Alzheimer disease. Oncotarget 2015; 6(35): 37043-53. doi: 10.18632/oncotarget.6158 PMID: 26497684
  144. Gaughwin PM, Ciesla M, Lahiri N, Tabrizi SJ, Brundin P, Björkqvist M. Hsa-miR-34b is a plasma-stable microRNA that is elevated in pre-manifest Huntington’s disease. Hum Mol Genet 2011; 20(11): 2225-37. doi: 10.1093/hmg/ddr111 PMID: 21421997

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers