Sensory Reinforced Corticostriatal Plasticity
- Authors: Vautrelle N.1, Coizet V.2, Leriche M.1, Dahan L.2, Schulz J.1, Zhang Y.1, Zeghbib A.2, Overton P.2, Bracci E.2, Redgrave P.2, Reynolds J.1
-
Affiliations:
- Department of Anatomy, Brain Health Research Centre, University of Otago
- Department of Psychology, University of Sheffield
- Issue: Vol 22, No 9 (2024)
- Pages: 1513-1527
- Section: Neurology
- URL: https://rjsocmed.com/1570-159X/article/view/644910
- DOI: https://doi.org/10.2174/1570159X21666230801110359
- ID: 644910
Cite item
Full Text
Abstract
Background:Regional changes in corticostriatal transmission induced by phasic dopaminergic signals are an essential feature of the neural network responsible for instrumental reinforcement during discovery of an action. However, the timing of signals that are thought to contribute to the induction of corticostriatal plasticity is difficult to reconcile within the framework of behavioural reinforcement learning, because the reinforcer is normally delayed relative to the selection and execution of causally-related actions.
Objective:While recent studies have started to address the relevance of delayed reinforcement signals and their impact on corticostriatal processing, our objective was to establish a model in which a sensory reinforcer triggers appropriately delayed reinforcement signals relayed to the striatum via intact neuronal pathways and to investigate the effects on corticostriatal plasticity.
Methods:We measured corticostriatal plasticity with electrophysiological recordings using a light flash as a natural sensory reinforcer, and pharmacological manipulations were applied in an in vivo anesthetized rat model preparation.
Results:We demonstrate that the spiking of striatal neurons evoked by single-pulse stimulation of the motor cortex can be potentiated by a natural sensory reinforcer, operating through intact afferent pathways, with signal timing approximating that required for behavioural reinforcement. The pharmacological blockade of dopamine receptors attenuated the observed potentiation of corticostriatal neurotransmission.
Conclusion:This novel in vivo model of corticostriatal plasticity offers a behaviourally relevant framework to address the physiological, anatomical, cellular, and molecular bases of instrumental reinforcement learning.
Keywords
About the authors
Nicolas Vautrelle
Department of Anatomy, Brain Health Research Centre, University of Otago
Email: info@benthamscience.net
Véronique Coizet
Department of Psychology, University of Sheffield
Email: info@benthamscience.net
Mariana Leriche
Department of Anatomy, Brain Health Research Centre, University of Otago
Email: info@benthamscience.net
Lionel Dahan
Department of Psychology, University of Sheffield
Email: info@benthamscience.net
Jan Schulz
Department of Anatomy, Brain Health Research Centre, University of Otago
Email: info@benthamscience.net
Yan-Feng Zhang
Department of Anatomy, Brain Health Research Centre, University of Otago
Email: info@benthamscience.net
Abdelhafid Zeghbib
Department of Psychology, University of Sheffield
Email: info@benthamscience.net
Paul Overton
Department of Psychology, University of Sheffield
Email: info@benthamscience.net
Enrico Bracci
Department of Psychology, University of Sheffield
Email: info@benthamscience.net
Peter Redgrave
Department of Psychology, University of Sheffield
Email: info@benthamscience.net
John Reynolds
Department of Anatomy, Brain Health Research Centre, University of Otago
Author for correspondence.
Email: info@benthamscience.net
References
- Thorndike, E.L. Animal intelligence; Macmillan: New York, 1911.
- Bar-Gad, I.; Havazelet-Heimer, G.; Goldberg, J.A.; Ruppin, E.; Bergman, H. Reinforcement-driven dimensionality reduction-a model for information processing in the basal ganglia. J. Basic Clin. Physiol. Pharmacol., 2000, 11(4), 305-320. doi: 10.1515/JBCPP.2000.11.4.305 PMID: 11248944
- Cataldi, S.; Stanley, A.T.; Miniaci, M.C.; Sulzer, D. Interpreting the role of the striatum during multiple phases of motor learning. FEBS J., 2022, 289(8), 2263-2281. PMID: 33977645
- Hart, G.; Leung, B.K.; Balleine, B.W. Dorsal and ventral streams: The distinct role of striatal subregions in the acquisition and performance of goal-directed actions. Neurobiol. Learn. Mem., 2014, 108, 104-118. doi: 10.1016/j.nlm.2013.11.003 PMID: 24231424
- Redgrave, P.; Gurney, K. The short-latency dopamine signal: A role in discovering novel actions? Nat. Rev. Neurosci., 2006, 7(12), 967-975. doi: 10.1038/nrn2022 PMID: 17115078
- Redgrave, P.; Vautrelle, N.; Reynolds, J.N.J. Functional properties of the basal ganglias re-entrant loop architecture: Selection and reinforcement. Neuroscience, 2011, 198, 138-151. doi: 10.1016/j.neuroscience.2011.07.060 PMID: 21821101
- Balleine, B.W.; Delgado, M.R.; Hikosaka, O. The role of the dorsal striatum in reward and decision-making. J. Neurosci., 2007, 27(31), 8161-8165. doi: 10.1523/JNEUROSCI.1554-07.2007 PMID: 17670959
- Graybiel, A.M. The basal ganglia: Learning new tricks and loving it. Curr. Opin. Neurobiol., 2005, 15(6), 638-644. doi: 10.1016/j.conb.2005.10.006 PMID: 16271465
- Gurney, K.N.; Humphries, M.D.; Redgrave, P. A new framework for cortico-striatal plasticity: Behavioural theory meets in vitro data at the reinforcement-action interface. PLoS Biol., 2015, 13(1), e1002034. doi: 10.1371/journal.pbio.1002034 PMID: 25562526
- Redgrave, P.; Gurney, K.; Reynolds, J. What is reinforced by phasic dopamine signals? Brain Res. Brain Res. Rev., 2008, 58(2), 322-339. doi: 10.1016/j.brainresrev.2007.10.007 PMID: 18055018
- Barto, A.; Mirolli, M.; Baldassarre, G. Novelty or surprise? Front. Psychol., 2013, 4, 907. doi: 10.3389/fpsyg.2013.00907 PMID: 24376428
- Bromberg-Martin, E.S.; Matsumoto, M.; Hikosaka, O. Dopamine in motivational control: rewarding, aversive, and alerting. Neuron, 2010, 68(5), 815-834. doi: 10.1016/j.neuron.2010.11.022 PMID: 21144997
- Lloyd, D.R.; Gancarz, A.M.; Ashrafioun, L.; Kausch, M.A.; Richards, J.B. Habituation and the reinforcing effectiveness of visual stimuli. Behav. Processes, 2012, 91(2), 184-191. doi: 10.1016/j.beproc.2012.07.007 PMID: 22868172
- Menegas, W.; Babayan, B.M.; Uchida, N.; Watabe-Uchida, M. Opposite initialization to novel cues in dopamine signaling in ventral and posterior striatum in mice. eLife, 2017, 6, e21886. doi: 10.7554/eLife.21886 PMID: 28054919
- Reynolds, J.N.J.; Hyland, B.I.; Wickens, J.R. A cellular mechanism of reward-related learning. Nature, 2001, 413(6851), 67-70. doi: 10.1038/35092560 PMID: 11544526
- Schultz, W. Behavioral theories and the neurophysiology of reward. Annu. Rev. Psychol., 2006, 57(1), 87-115. doi: 10.1146/annurev.psych.56.091103.070229 PMID: 16318590
- Wickens, J.R. Synaptic plasticity in the basal ganglia. Behav. Brain Res., 2009, 199(1), 119-128. doi: 10.1016/j.bbr.2008.10.030 PMID: 19026691
- Calabresi, P.; Picconi, B.; Tozzi, A.; Di Filippo, M. Dopamine-mediated regulation of corticostriatal synaptic plasticity. Trends Neurosci., 2007, 30(5), 211-219. doi: 10.1016/j.tins.2007.03.001 PMID: 17367873
- Fino, E.; Glowinski, J.; Venance, L. Bidirectional activity-dependent plasticity at corticostriatal synapses. J. Neurosci., 2005, 25(49), 11279-11287. doi: 10.1523/JNEUROSCI.4476-05.2005 PMID: 16339023
- Fino, E.; Venance, L. Spike-timing dependent plasticity in the striatum. Front. Synaptic Neurosci., 2010, 2, 6. PMID: 21423492
- Pawlak, V.; Kerr, J.N.D. Dopamine receptor activation is required for corticostriatal spike-timing-dependent plasticity. J. Neurosci., 2008, 28(10), 2435-2446. doi: 10.1523/JNEUROSCI.4402-07.2008 PMID: 18322089
- Shen, W.; Flajolet, M.; Greengard, P.; Surmeier, D.J. Dichotomous dopaminergic control of striatal synaptic plasticity. Science, 2008, 321(5890), 848-851. doi: 10.1126/science.1160575 PMID: 18687967
- Dickinson, A. The 28th Bartlett Memorial Lecture Causal learning: An associative analysis. Q. J. Exp. Psychol. B, 2001, 54(1), 3-25. doi: 10.1080/02724990042000010 PMID: 11216300
- Foncelle, A.; Mendes, A. Jędrzejewska-Szmek, J.; Valtcheva, S.; Berry, H.; Blackwell, K.T.; Venance, L. Modulation of spike-timing dependent plasticity: Towards the inclusion of a third factor in computational models. Front. Comput. Neurosci., 2018, 12, 49. doi: 10.3389/fncom.2018.00049 PMID: 30018546
- Frémaux, N.; Gerstner, W. Neuromodulated spike-timing-dependent plasticity, and theory of three-factor learning rules. Front. Neural Circuits, 2016, 9, 85. doi: 10.3389/fncir.2015.00085 PMID: 26834568
- Izhikevich, E.M. Solving the distal reward problem through linkage of STDP and dopamine signaling. Cereb. Cortex, 2007, 17(10), 2443-2452. doi: 10.1093/cercor/bhl152 PMID: 17220510
- Cacciapaglia, F.; Saddoris, M.P.; Wightman, R.M.; Carelli, R.M. Differential dopamine release dynamics in the nucleus accumbens core and shell track distinct aspects of goal-directed behavior for sucrose. Neuropharmacology, 2012, 62(5-6), 2050-2056. doi: 10.1016/j.neuropharm.2011.12.027 PMID: 22261383
- Howard, C.D.; Li, H.; Geddes, C.E.; Jin, X. Dynamic nigrostriatal dopamine biases action selection. Neuron, 2017, 93(6), 1436-1450.e8. doi: 10.1016/j.neuron.2017.02.029 PMID: 28285820
- Phillips, P.E.M.; Stuber, G.D.; Heien, M.L.A.V.; Wightman, R.M.; Carelli, R.M. Subsecond dopamine release promotes cocaine seeking. Nature, 2003, 422(6932), 614-618. doi: 10.1038/nature01476 PMID: 12687000
- Roitman, M.F.; Stuber, G.D.; Phillips, P.E.; Wightman, R.M.; Carelli, R.M. Dopamine operates as a subsecond modulator of food seeking. J. Neurosci., 2004, 24(6), 1265-1271. doi: 10.1523/JNEUROSCI.3823-03.2004 PMID: 14960596
- Stopper, C.M.; Tse, M.T.L.; Montes, D.R.; Wiedman, C.R.; Floresco, S.B. Overriding phasic dopamine signals redirects action selection during risk/reward decision making. Neuron, 2014, 84(1), 177-189. doi: 10.1016/j.neuron.2014.08.033 PMID: 25220811
- Stuber, G.D.; Roitman, M.F.; Phillips, P.E.M.; Carelli, R.M.; Wightman, R.M. Rapid dopamine signaling in the nucleus accumbens during contingent and noncontingent cocaine administration. Neuropsychopharmacology, 2005, 30(5), 853-863. doi: 10.1038/sj.npp.1300619 PMID: 15549053
- Yagishita, S.; Hayashi-Takagi, A.; Ellis-Davies, G.C.R.; Urakubo, H.; Ishii, S.; Kasai, H. A critical time window for dopamine actions on the structural plasticity of dendritic spines. Science, 2014, 345(6204), 1616-1620. doi: 10.1126/science.1255514 PMID: 25258080
- Fisher, S.D.; Robertson, P.B.; Black, M.J.; Redgrave, P.; Sagar, M.A.; Abraham, W.C.; Reynolds, J.N.J. Reinforcement determines the timing dependence of corticostriatal synaptic plasticity in vivo. Nat. Commun., 2017, 8(1), 334. doi: 10.1038/s41467-017-00394-x PMID: 28839128
- Schulz, J.M.; Redgrave, P.; Reynolds, J.N. Cortico-striatal spike-timing dependent plasticity after activation of subcortical pathways. Front. Synaptic Neurosci., 2010, 2, 23. doi: 10.3389/fnsyn.2010.00023 PMID: 21423509
- Shindou, T.; Shindou, M.; Watanabe, S.; Wickens, J. A silent eligibility trace enables dopamine‐dependent synaptic plasticity for reinforcement learning in the mouse striatum. Eur. J. Neurosci., 2019, 49(5), 726-736. doi: 10.1111/ejn.13921 PMID: 29603470
- Reynolds, J.N.J.; Avvisati, R.; Dodson, P.D.; Fisher, S.D.; Oswald, M.J.; Wickens, J.R.; Zhang, Y.F. Coincidence of cholinergic pauses, dopaminergic activation and depolarisation of spiny projection neurons drives synaptic plasticity in the striatum. Nat. Commun., 2022, 13(1), 1296. doi: 10.1038/s41467-022-28950-0 PMID: 35277506
- Gerstner, W.; Lehmann, M.; Liakoni, V.; Corneil, D.; Brea, J. Eligibility traces and plasticity on behavioral time scales: Experimental support of neoHebbian three-Factor learning rules. Front. Neural Circuits, 2018, 12, 53. doi: 10.3389/fncir.2018.00053 PMID: 30108488
- Reiner, A.; Jiao, Y.; Del Mar, N.; Laverghetta, A.V.; Lei, W.L. Differential morphology of pyramidal tract-type and intratelencephalically projecting-type corticostriatal neurons and their intrastriatal terminals in rats. J. Comp. Neurol., 2003, 457(4), 420-440. doi: 10.1002/cne.10541 PMID: 12561080
- Hunnicutt, B.J.; Jongbloets, B.C.; Birdsong, W.T.; Gertz, K.J.; Zhong, H.; Mao, T. A comprehensive excitatory input map of the striatum reveals novel functional organization. eLife, 2016, 5, e19103. doi: 10.7554/eLife.19103 PMID: 27892854
- Ding, J.B.; Guzman, J.N.; Peterson, J.D.; Goldberg, J.A.; Surmeier, D.J. Thalamic gating of corticostriatal signaling by cholinergic interneurons. Neuron, 2010, 67(2), 294-307. doi: 10.1016/j.neuron.2010.06.017 PMID: 20670836
- Matsumoto, N.; Minamimoto, T.; Graybiel, A.M.; Kimura, M. Neurons in the thalamic CM-Pf complex supply striatal neurons with information about behaviorally significant sensory events. J. Neurophysiol., 2001, 85(2), 960-976. doi: 10.1152/jn.2001.85.2.960 PMID: 11160526
- Schulz, J.M.; Redgrave, P.; Mehring, C.; Aertsen, A.; Clements, K.M.; Wickens, J.R.; Reynolds, J.N.J. Short-latency activation of striatal spiny neurons via subcortical visual pathways. J. Neurosci., 2009, 29(19), 6336-6347. doi: 10.1523/JNEUROSCI.4815-08.2009 PMID: 19439610
- Dommett, E.; Coizet, V.; Blaha, C.D.; Martindale, J.; Lefebvre, V.; Walton, N.; Mayhew, J.E.W.; Overton, P.G.; Redgrave, P. How visual stimuli activate dopaminergic neurons at short latency. Science, 2005, 307(5714), 1476-1479. doi: 10.1126/science.1107026 PMID: 15746431
- Benavidez, N.L.; Bienkowski, M.S.; Zhu, M.; Garcia, L.H.; Fayzullina, M.; Gao, L.; Bowman, I.; Gou, L.; Khanjani, N.; Cotter, K.R.; Korobkova, L.; Becerra, M.; Cao, C.; Song, M.Y.; Zhang, B.; Yamashita, S.; Tugangui, A.J.; Zingg, B.; Rose, K.; Lo, D.; Foster, N.N.; Boesen, T.; Mun, H.S.; Aquino, S.; Wickersham, I.R.; Ascoli, G.A.; Hintiryan, H.; Dong, H.W. Organization of the inputs and outputs of the mouse superior colliculus. Nat. Commun., 2021, 12(1), 4004. doi: 10.1038/s41467-021-24241-2 PMID: 34183678
- Coizet, V.; Overton, P.G.; Redgrave, P. Collateralization of the tectonigral projection with other major output pathways of superior colliculus in the rat. J. Comp. Neurol., 2007, 500(6), 1034-1049. doi: 10.1002/cne.21202 PMID: 17183537
- Comoli, E.; Coizet, V.; Boyes, J.; Bolam, J.P.; Canteras, N.S.; Quirk, R.H.; Overton, P.G.; Redgrave, P. A direct projection from superior colliculus to substantia nigra for detecting salient visual events. Nat. Neurosci., 2003, 6(9), 974-980. doi: 10.1038/nn1113 PMID: 12925855
- Valjent, E.; Pascoli, V.; Svenningsson, P.; Paul, S.; Enslen, H.; Corvol, J.C.; Stipanovich, A.; Caboche, J.; Lombroso, P.J.; Nairn, A.C.; Greengard, P.; Hervé, D.; Girault, J.A. Regulation of a protein phosphatase cascade allows convergent dopamine and glutamate signals to activate ERK in the striatum. Proc. Natl. Acad. Sci. USA, 2005, 102(2), 491-496. doi: 10.1073/pnas.0408305102 PMID: 15608059
- Katsuta, H.; Isa, T. Release from GABAA receptor-mediated inhibition unmasks interlaminar connection within superior colliculus in anesthetized adult rats. Neurosci. Res., 2003, 46(1), 73-83. doi: 10.1016/S0168-0102(03)00029-4 PMID: 12725914
- Sgambato, V.; Abo, V.; Rogard, M.; Besson, M.J.; Deniau, J.M. Effect of electrical stimulation of the cerebral cortex on the expression of the fos protein in the basal ganglia. Neuroscience, 1997, 81(1), 93-112. doi: 10.1016/S0306-4522(97)00179-6 PMID: 9300404
- Manly, B.F.J. Randomization and Monte Carlo methods in biology; Chapman and Hall: London, 1991, p. 281. doi: 10.1007/978-1-4899-2995-2
- Coizet, V.; Graham, J.H.; Moss, J.; Bolam, J.P.; Savasta, M.; McHaffie, J.G.; Redgrave, P.; Overton, P.G. Short-latency visual input to the subthalamic nucleus is provided by the midbrain superior colliculus. J. Neurosci., 2009, 29(17), 5701-5709. doi: 10.1523/JNEUROSCI.0247-09.2009 PMID: 19403836
- Alexander, G.E.; DeLong, M.R.; Strick, P.L. Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu. Rev. Neurosci., 1986, 9(1), 357-381. doi: 10.1146/annurev.ne.09.030186.002041 PMID: 3085570
- McHaffie, J.; Stanford, T.; Stein, B.; Coizet, V.; Redgrave, P. Subcortical loops through the basal ganglia. Trends Neurosci., 2005, 28(8), 401-407. doi: 10.1016/j.tins.2005.06.006 PMID: 15982753
- Wilson, C.J. Postsynaptic potentials evoked in spiny neostriatal projection neurons by stimulation of ipsilateral and contralateral neocortex. Brain Res., 1986, 367(1-2), 201-213. doi: 10.1016/0006-8993(86)91593-3 PMID: 3008920
- Brown, J.R.; Arbuthnott, G.W. The electrophysiology of dopamine (D2) receptors: A study of the actions of dopamine on corticostriatal transmission. Neuroscience, 1983, 10(2), 349-355. doi: 10.1016/0306-4522(83)90138-0 PMID: 6138732
- Balleine, B.W.; Liljeholm, M.; Ostlund, S.B. The integrative function of the basal ganglia in instrumental conditioning. Behav. Brain Res., 2009, 199(1), 43-52. doi: 10.1016/j.bbr.2008.10.034 PMID: 19027797
- Peak, J.; Hart, G.; Balleine, B.W. From learning to action: The integration of dorsal striatal input and output pathways in instrumental conditioning. Eur. J. Neurosci., 2019, 49(5), 658-671. doi: 10.1111/ejn.13964 PMID: 29791051
- Kato, S.; Fukabori, R.; Nishizawa, K.; Okada, K.; Yoshioka, N.; Sugawara, M.; Maejima, Y.; Shimomura, K.; Okamoto, M.; Eifuku, S.; Kobayashi, K. Action selection and flexible switching controlled by the intralaminar thalamic neurons. Cell Rep., 2018, 22(9), 2370-2382. doi: 10.1016/j.celrep.2018.02.016 PMID: 29490273
- Klaus, A.; Alves da Silva, J.; Costa, R.M. What, if, and when to move: Basal ganglia circuits and self-paced action initiation. Annu. Rev. Neurosci., 2019, 42(1), 459-483. doi: 10.1146/annurev-neuro-072116-031033 PMID: 31018098
- Mink, J.W. The basal ganglia: Focused selection and inhibition of competing motor programs. Prog. Neurobiol., 1996, 50(4), 381-425. doi: 10.1016/S0301-0082(96)00042-1 PMID: 9004351
- Redgrave, P.; Prescott, T.J.; Gurney, K. The basal ganglia: A vertebrate solution to the selection problem? Neuroscience, 1999, 89(4), 1009-1023. doi: 10.1016/S0306-4522(98)00319-4 PMID: 10362291
- Chevalier, G.; Deniau, J.M. Disinhibition as a basic process in the expression of striatal functions. Trends Neurosci., 1990, 13(7), 277-280. doi: 10.1016/0166-2236(90)90109-N PMID: 1695403
- Humphries, M.D.; Stewart, R.D.; Gurney, K.N. A physiologically plausible model of action selection and oscillatory activity in the basal ganglia. J. Neurosci., 2006, 26(50), 12921-12942. doi: 10.1523/JNEUROSCI.3486-06.2006 PMID: 17167083
- Prescott, T.J.; Montes González, F.M.; Gurney, K.; Humphries, M.D.; Redgrave, P. A robot model of the basal ganglia: Behavior and intrinsic processing. Neural Netw., 2006, 19(1), 31-61. doi: 10.1016/j.neunet.2005.06.049 PMID: 16153803
- Arbuthnott, G.W.; Wickens, J. Space, time and dopamine. Trends Neurosci., 2007, 30(2), 62-69. doi: 10.1016/j.tins.2006.12.003 PMID: 17173981
- Menegas, W.; Bergan, J.F.; Ogawa, S.K.; Isogai, Y.; Umadevi Venkataraju, K.; Osten, P.; Uchida, N.; Watabe-Uchida, M. Dopamine neurons projecting to the posterior striatum form an anatomically distinct subclass. eLife, 2015, 4, e10032. doi: 10.7554/eLife.10032 PMID: 26322384
- Schultz, W. Predictive reward signal of dopamine neurons. J. Neurophysiol., 1998, 80(1), 1-27. doi: 10.1152/jn.1998.80.1.1 PMID: 9658025
- Van der Werf, Y.D.; Witter, M.P.; Groenewegen, H.J. The intralaminar and midline nuclei of the thalamus. Anatomical and functional evidence for participation in processes of arousal and awareness. Brain Res. Brain Res. Rev., 2002, 39(2-3), 107-140. doi: 10.1016/S0165-0173(02)00181-9 PMID: 12423763
- Fino, E.; Deniau, J.M.; Venance, L. Brief subthreshold events can act as Hebbian signals for long-term plasticity. PLoS One, 2009, 4(8), e6557. doi: 10.1371/journal.pone.0006557 PMID: 19675683
- Cui, Y.; Paillé, V.; Xu, H.; Genet, S.; Delord, B.; Fino, E.; Berry, H.; Venance, L. Endocannabinoids mediate bidirectional striatal spike-timing-dependent plasticity. J. Physiol., 2015, 593(13), 2833-2849. doi: 10.1113/JP270324 PMID: 25873197
- Cui, Y.; Prokin, I.; Xu, H.; Delord, B.; Genet, S.; Venance, L.; Berry, H. Endocannabinoid dynamics gate spike-timing dependent depression and potentiation. eLife, 2016, 5, e13185. doi: 10.7554/eLife.13185 PMID: 26920222
- Fino, E.; Deniau, J.M.; Venance, L. Cell-specific spike-timing-dependent plasticity in GABAergic and cholinergic interneurons in corticostriatal rat brain slices. J. Physiol., 2008, 586(1), 265-282. doi: 10.1113/jphysiol.2007.144501 PMID: 17974593
- Fino, E.; Paille, V.; Deniau, J.M.; Venance, L. Asymmetric spike-timing dependent plasticity of striatal nitric oxide-synthase interneurons. Neuroscience, 2009, 160(4), 744-754. doi: 10.1016/j.neuroscience.2009.03.015 PMID: 19303912
- Peters, A.J.; Fabre, J.M.J.; Steinmetz, N.A.; Harris, K.D.; Carandini, M. Striatal activity topographically reflects cortical activity. Nature, 2021, 591(7850), 420-425. doi: 10.1038/s41586-020-03166-8 PMID: 33473213
- Sharott, A.; Doig, N.M.; Mallet, N.; Magill, P.J. Relationships between the firing of identified striatal interneurons and spontaneous and driven cortical activities in vivo. J. Neurosci., 2012, 32(38), 13221-13236. doi: 10.1523/JNEUROSCI.2440-12.2012 PMID: 22993438
- Sharott, A.; Moll, C.K.E.; Engler, G.; Denker, M.; Grün, S.; Engel, A.K. Different subtypes of striatal neurons are selectively modulated by cortical oscillations. J. Neurosci., 2009, 29(14), 4571-4585. doi: 10.1523/JNEUROSCI.5097-08.2009 PMID: 19357282
- Martiros, N.; Burgess, A.A.; Graybiel, A.M. Inversely active striatal projection neurons and interneurons selectively delimit useful behavioral sequences. Curr. Biol., 2018, 28(4), 560-573.e5. doi: 10.1016/j.cub.2018.01.031 PMID: 29429614
- Centonze, D.; Grande, C.; Saulle, E.; Martín, A.B.; Gubellini, P.; Pavón, N.; Pisani, A.; Bernardi, G.; Moratalla, R.; Calabresi, P. Distinct roles of D1 and D5 dopamine receptors in motor activity and striatal synaptic plasticity. J. Neurosci., 2003, 23(24), 8506-8512. doi: 10.1523/JNEUROSCI.23-24-08506.2003 PMID: 13679419
- Kerr, J.N.D.; Wickens, J.R. Dopamine D-1/D-5 receptor activation is required for long-term potentiation in the rat neostriatum in vitro. J. Neurophysiol., 2001, 85(1), 117-124. doi: 10.1152/jn.2001.85.1.117 PMID: 11152712
- Suzuki, T.; Miura, M.; Nishimura, K.; Aosaki, T. Dopamine-dependent synaptic plasticity in the striatal cholinergic interneurons. J. Neurosci., 2001, 21(17), 6492-6501. doi: 10.1523/JNEUROSCI.21-17-06492.2001 PMID: 11517238
- Flajolet, M.; Wang, Z.; Futter, M.; Shen, W.; Nuangchamnong, N.; Bendor, J.; Wallach, I.; Nairn, A.C.; Surmeier, D.J.; Greengard, P. FGF acts as a co-transmitter through adenosine A2A receptor to regulate synaptic plasticity. Nat. Neurosci., 2008, 11(12), 1402-1409. doi: 10.1038/nn.2216 PMID: 18953346
- Sciamanna, G.; Ponterio, G.; Mandolesi, G.; Bonsi, P.; Pisani, A. Optogenetic stimulation reveals distinct modulatory properties of thalamostriatal vs corticostriatal glutamatergic inputs to fast-spiking interneurons. Sci. Rep., 2015, 5(1), 16742. doi: 10.1038/srep16742 PMID: 26572101
- Saunders, B.T.; Richard, J.M.; Margolis, E.B.; Janak, P.H. Dopamine neurons create Pavlovian conditioned stimuli with circuit-defined motivational properties. Nat. Neurosci., 2018, 21(8), 1072-1083. doi: 10.1038/s41593-018-0191-4 PMID: 30038277
- Saunders, BT; Richard, JM; Janak, PH Contemporary approaches to neural circuit manipulation and mapping: Focus on reward and addiction. Philos Trans. R Soc. Lond B Biol. Sci., 2015, 370(1677), 20140210. doi: 10.1098/rstb.2014.0210
- Huang, M.; Li, D.; Cheng, X.; Pei, Q.; Xie, Z.; Gu, H.; Zhang, X.; Chen, Z.; Liu, A.; Wang, Y.; Sun, F.; Li, Y.; Zhang, J.; He, M.; Xie, Y.; Zhang, F.; Qi, X.; Shang, C.; Cao, P. The tectonigral pathway regulates appetitive locomotion in predatory hunting in mice. Nat. Commun., 2021, 12(1), 4409. doi: 10.1038/s41467-021-24696-3 PMID: 34285209
- Voon, V.; Fernagut, P.O.; Wickens, J.; Baunez, C.; Rodriguez, M.; Pavon, N.; Juncos, J.L.; Obeso, J.A.; Bezard, E. Chronic dopaminergic stimulation in Parkinsons disease: From dyskinesias to impulse control disorders. Lancet Neurol., 2009, 8(12), 1140-1149. doi: 10.1016/S1474-4422(09)70287-X PMID: 19909912
- Ziauddeen, H.; Murray, G.K. The relevance of reward pathways for schizophrenia. Curr. Opin. Psychiatry, 2010, 23(2), 91-96. doi: 10.1097/YCO.0b013e328336661b PMID: 20051858
- Sciamanna, G.; Tassone, A.; Mandolesi, G.; Puglisi, F.; Ponterio, G.; Martella, G.; Madeo, G.; Bernardi, G.; Standaert, D.G.; Bonsi, P.; Pisani, A. Cholinergic dysfunction alters synaptic integration between thalamostriatal and corticostriatal inputs in DYT1 dystonia. J. Neurosci., 2012, 32(35), 11991-12004. doi: 10.1523/JNEUROSCI.0041-12.2012 PMID: 22933784
- Russo, S.J.; Dietz, D.M.; Dumitriu, D.; Morrison, J.H.; Malenka, R.C.; Nestler, E.J. The addicted synapse: mechanisms of synaptic and structural plasticity in nucleus accumbens. Trends Neurosci., 2010, 33(6), 267-276. doi: 10.1016/j.tins.2010.02.002 PMID: 20207024
Supplementary files
