The Basal Ganglia and Mesencephalic Locomotor Region Connectivity Matrix


如何引用文章

全文:

详细

Although classically considered a relay station for basal ganglia (BG) output, the anatomy, connectivity, and function of the mesencephalic locomotor region (MLR) were redefined during the last two decades. In striking opposition to what was initially thought, MLR and BG are actually reciprocally and intimately interconnected. New viral-based, optogenetic, and mapping technologies revealed that cholinergic, glutamatergic, and GABAergic neurons coexist in this structure, which, in addition to extending descending projections, send long-range ascending fibers to the BG. These MLR projections to the BG convey motor and non-motor information to specific synaptic targets throughout different nuclei. Moreover, MLR efferent fibers originate from precise neuronal subpopulations located in particular MLR subregions, defining independent anatomo-functional subcircuits involved in particular aspects of animal behavior such as fast locomotion, explorative locomotion, posture, forelimb- related movements, speed, reinforcement, among others. In this review, we revised the literature produced during the last decade linking MLR and BG. We conclude that the classic framework considering the MLR as a homogeneous output structure passively receiving input from the BG needs to be revisited. We propose instead that the multiple subcircuits embedded in this region should be taken as independent entities that convey relevant and specific ascending information to the BG and, thus, actively participate in the execution and tuning of behavior.

作者简介

Nicolás Morgenstern

Champalimaud Research, Champalimaud Foundation

Email: info@benthamscience.net

Maria Esposito

Department of Medical Physics, Centro Atomico Bariloche, CNEA, CONICET

编辑信件的主要联系方式.
Email: info@benthamscience.net

参考

  1. Shik, M.L.; Severin, F.V. Orlovskiĭ G.N. Control of walking and running by means of electric stimulation of the midbrain. Biofizika, 1966, 11(4), 659-666. PMID: 6000625
  2. Mori, S.; Sakamoto, T.; Ohta, Y.; Takakusaki, K.; Matsuyama, K. Site-specific postural and locomotor changes evoked in awake, freely moving intact cats by stimulating the brainstem. Brain Res., 1989, 505(1), 66-74. doi: 10.1016/0006-8993(89)90116-9 PMID: 2611678
  3. Eidelberg, E.; Walden, J.G.; Nguyen, L.H. Locomotor control in macaque monkeys. Brain, 1981, 104(4), 647-663. doi: 10.1093/brain/104.4.647-a PMID: 7326562
  4. McClellan, A.D.; Grillner, S. Activation of ‘fictive swimming’ by electrical microstimulation of brainstem locomotor regions in an in vitro preparation of the lamprey central nervous system. Brain Res., 1984, 300(2), 357-361. doi: 10.1016/0006-8993(84)90846-1 PMID: 6733478
  5. Garcia-Rill, E.; Skinner, R.D.; Fitzgerald, J.A. Chemical activation of the mesecephalic locomotor region. Brain Res., 1985, 330(1), 43-54. doi: 10.1016/0006-8993(85)90006-X PMID: 3986540
  6. Masdeu, J.C.; Alampur, U.; Cavaliere, R.; Tavoulareas, G. Astasia and gait failure with damage of the pontomesencephalic locomotor region. Ann. Neurol., 1994, 35(5), 619-621. doi: 10.1002/ana.410350517 PMID: 8179307
  7. Dubuc, R.; Brocard, F.; Antri, M.; Fénelon, K.; Gariépy, J.F.; Smetana, R.; Ménard, A.; Le Ray, D.; Viana Di Prisco, G.; Pearlstein, É.; Sirota, M.G.; Derjean, D.; St-Pierre, M.; Zielinski, B.; Auclair, F.; Veilleux, D. Initiation of locomotion in lampreys. Brain Res. Brain Res. Rev., 2008, 57(1), 172-182. doi: 10.1016/j.brainresrev.2007.07.016 PMID: 17916380
  8. Roseberry, T.K.; Lee, A.M.; Lalive, A.L.; Wilbrecht, L.; Bonci, A.; Kreitzer, A.C. Cell-type-specific control of brainstem locomotor circuits by basal ganglia. Cell, 2016, 164(3), 526-537. doi: 10.1016/j.cell.2015.12.037 PMID: 26824660
  9. Grillner, S.; Robertson, B. The basal ganglia over 500 million years. Curr. Biol., 2016, 26(20), R1088-R1100. doi: 10.1016/j.cub.2016.06.041
  10. Garcia-Rill, E.; Houser, C.R.; Skinner, R.D.; Smith, W.; Woodward, D.J. Locomotion-inducing sites in the vicinity of the pedunculopontine nucleus. Brain Res. Bull., 1987, 18(6), 731-738. doi: 10.1016/0361-9230(87)90208-5 PMID: 3304544
  11. Mena-Segovia, J.; Bolam, J.P.; Magill, P.J. Pedunculopontine nucleus and basal ganglia: distant relatives or part of the same family? Trends Neurosci., 2004, 27(10), 585-588. doi: 10.1016/j.tins.2004.07.009 PMID: 15374668
  12. Winn, P. How best to consider the structure and function of the pedunculopontine tegmental nucleus: Evidence from animal studies. J. Neurol. Sci., 2006, 248(1-2), 234-250. doi: 10.1016/j.jns.2006.05.036 PMID: 16765383
  13. Ryczko, D.; Grätsch, S.; Auclair, F.; Dubé, C.; Bergeron, S.; Alpert, M.H.; Cone, J.J.; Roitman, M.F.; Alford, S.; Dubuc, R. Forebrain dopamine neurons project down to a brainstem region controlling locomotion. Proc. Natl. Acad. Sci. USA, 2013, 110(34), E3235-E3242. doi: 10.1073/pnas.1301125110 PMID: 23918379
  14. Takakusaki, K.; Chiba, R.; Nozu, T.; Okumura, T. Brainstem control of locomotion and muscle tone with special reference to the role of the mesopontine tegmentum and medullary reticulospinal systems. J. Neural Transm., 2016, 123(7), 695-729. doi: 10.1007/s00702-015-1475-4
  15. Noga, B.R.; Whelan, P.J. The mesencephalic locomotor region: Beyond locomotor control. Front. Neural Circuits, 2022, 16, 884785. doi: 10.3389/fncir.2022.884785 PMID: 35615623
  16. Grillner, S.; Robertson, B. The basal ganglia downstream control of brainstem motor centres—an evolutionarily conserved strategy. Curr. Opin. Neurobiol., 2015, 33, 47-52. doi: 10.1016/j.conb.2015.01.019 PMID: 25682058
  17. Caggiano, V.; Leiras, R.; Goñi-Erro, H.; Masini, D.; Bellardita, C.; Bouvier, J.; Caldeira, V.; Fisone, G.; Kiehn, O. Midbrain circuits that set locomotor speed and gait selection. Nature, 2018, 553(7689), 455-460. doi: 10.1038/nature25448 PMID: 29342142
  18. Huerta-Ocampo, I.; Dautan, D.; Gut, N.K.; Khan, B.; Mena-Segovia, J. Whole-brain mapping of monosynaptic inputs to midbrain cholinergic neurons. Sci. Rep., 2021, 11(1), 9055. doi: 10.1038/s41598-021-88374-6 PMID: 33907215
  19. Dautan, D.; Kovács, A.; Bayasgalan, T.; Diaz-Acevedo, M.A.; Pal, B.; Mena-Segovia, J. Modulation of motor behavior by the mesencephalic locomotor region. Cell Rep., 2021, 36(8), 109594. doi: 10.1016/j.celrep.2021.109594 PMID: 34433068
  20. Dautan, D.; Huerta-Ocampo, I.; Witten, I.B.; Deisseroth, K.; Bolam, J.P.; Gerdjikov, T.; Mena-Segovia, J. A major external source of cholinergic innervation of the striatum and nucleus accumbens originates in the brainstem. J. Neurosci., 2014, 34(13), 4509-4518. doi: 10.1523/JNEUROSCI.5071-13.2014 PMID: 24671996
  21. Xiao, C.; Cho, J.R.; Zhou, C.; Treweek, J.B.; Chan, K.; McKinney, S.L.; Yang, B.; Gradinaru, V. Cholinergic mesopontine signals govern locomotion and reward through dissociable midbrain pathways. Neuron, 2016, 90(2), 333-347. doi: 10.1016/j.neuron.2016.03.028 PMID: 27100197
  22. Kroeger, D.; Ferrari, L.L.; Petit, G.; Mahoney, C.E.; Fuller, P.M.; Arrigoni, E.; Scammell, T.E. Cholinergic, glutamatergic, and GABAergic neurons of the pedunculopontine tegmental nucleus have distinct effects on sleep/wake behavior in mice. J. Neurosci., 2017, 37(5), 1352-1366. doi: 10.1523/JNEUROSCI.1405-16.2016 PMID: 28039375
  23. Assous, M.; Dautan, D.; Tepper, J.M.; Mena-Segovia, J. Pedunculopontine glutamatergic neurons provide a novel source of feedforward inhibition in the striatum by selectively targeting interneurons. J. Neurosci., 2019, 39(24), 4727-4737. doi: 10.1523/JNEUROSCI.2913-18.2019 PMID: 30952811
  24. Dautan, D.; Huerta-Ocampo, I.; Gut, N.K.; Valencia, M.; Kondabolu, K.; Kim, Y.; Gerdjikov, T.V.; Mena-Segovia, J. Cholinergic midbrain afferents modulate striatal circuits and shape encoding of action strategies. Nat. Commun., 2020, 11(1), 1739. doi: 10.1038/s41467-020-15514-3 PMID: 32269213
  25. Ferreira-Pinto, M.J.; Kanodia, H.; Falasconi, A.; Sigrist, M.; Esposito, M.S.; Arber, S. Functional diversity for body actions in the mesencephalic locomotor region. Cell, 2021, 184(17), 4564-4578.e18. doi: 10.1016/j.cell.2021.07.002 PMID: 34302739
  26. Lee, J.; Wang, W.; Sabatini, B.L. Anatomically segregated basal ganglia pathways allow parallel behavioral modulation. Nat. Neurosci., 2020, 23(11), 1388-1398. doi: 10.1038/s41593-020-00712-5 PMID: 32989293
  27. Arber, S.; Costa, R.M. Networking brainstem and basal ganglia circuits for movement. Nat. Rev. Neurosci., 2022, 23(6), 342-360. doi: 10.1038/s41583-022-00581-w PMID: 35422525
  28. Garcia-Rill, E.; Kinjo, N.; Atsuta, Y.; Ishikawa, Y.; Webber, M.; Skinner, R.D. Posterior midbrain-induced locomotion. Brain Res. Bull., 1990, 24(3), 499-508. doi: 10.1016/0361-9230(90)90103-7 PMID: 1970947
  29. Rye, D.B.; Saper, C.B.; Lee, H.J.; Wainer, B.H. Pedunculopontine tegmental nucleus of the rat: Cytoarchitecture, cytochemistry, and some extrapyramidal connections of the mesopontine tegmentum. J. Comp. Neurol., 1987, 259(4), 483-528. doi: 10.1002/cne.902590403 PMID: 2885347
  30. Grofova, I.; Zhou, M. Nigral innervation of cholinergic and glutamatergic cells in the rat mesopontine tegmentum: Light and electron microscopic anterograde tracing and immunohistochemical studies. J. Comp. Neurol., 1998, 395(3), 359-379. doi: 10.1002/(SICI)1096-9861(19980808)395:33.0.CO;2-1 PMID: 9596529
  31. Mink, J.W. A model for waste processing? Pergamorr. Prog. Neurobiol., 1996, 50, 26.
  32. Steriade, M.; Paré, D.; Parent, A.; Smith, Y. Projections of cholinergic and non-cholinergic neurons of the brainstem core to relay and associational thalamic nuclei in the cat and macaque monkey. Neuroscience, 1988, 25(1), 47-67. doi: 10.1016/0306-4522(88)90006-1 PMID: 3393286
  33. Lee, H.J.; Rye, D.B.; Hallanger, A.E.; Levey, A.I.; Wainer, B.H. Cholinergic vs. noncholinergic efferents from the mesopontine tegmentum to the extrapyramidal motor system nuclei. J. Comp. Neurol., 1988, 275(4), 469-492. doi: 10.1002/cne.902750402 PMID: 2461392
  34. Skinner, R.D.; Garcia-Rill, E. The mesencephalic locomotor region (MLR) in the rat. Brain Res., 1984, 323(2), 385-389. doi: 10.1016/0006-8993(84)90319-6 PMID: 6525525
  35. Peng, Y.; Schöneberg, N.; Esposito, M.S.; Geiger, J.R.P.; Sharott, A.; Tovote, P. Current approaches to characterize micro- and macroscale circuit mechanisms of Parkinson’s disease in rodent models. Exp. Neurol., 2022, 351(351), 114008. doi: 10.1016/j.expneurol.2022.114008 PMID: 35149118
  36. Clements, J.R.; Grant, S. Glutamate-like immunoreactivity in neurons of the laterodorsal tegmental and pedunculopontine nuclei in the rat. Neurosci. Lett., 1990, 120(1), 70-73. doi: 10.1016/0304-3940(90)90170-E PMID: 2293096
  37. Ford, B.; Holmes, C.J.; Mainville, L.; Jones, B.E. GABAergic neurons in the rat pontomesencephalic tegmentum: Codistribution with cholinergic and other tegmental neurons projecting to the posterior lateral hypothalamus. J. Comp. Neurol., 1995, 363(2), 177-196. doi: 10.1002/cne.903630203 PMID: 8642069
  38. Jones, B.E. Immunohistochemical study of choline acetyltransferase-immunoreactive processes and cells innervating the pontomedullary reticular formation in the rat. J. Comp. Neurol., 1990, 295(3), 485-514. doi: 10.1002/cne.902950311 PMID: 2351765
  39. Martinez-Gonzalez, C.; Bolam, J.P.; Mena-Segovia, J. Topographical organization of the pedunculopontine nucleus. Front. Neuroanat., 2011, 5, 22. doi: 10.3389/fnana.2011.00022 PMID: 21503154
  40. Wang, H.L.; Morales, M. Pedunculopontine and laterodorsal tegmental nuclei contain distinct populations of cholinergic, glutamatergic and GABAergic neurons in the rat. Eur. J. Neurosci., 2009, 29(2), 340-358. doi: 10.1111/j.1460-9568.2008.06576.x PMID: 19200238
  41. Sébille, S.B.; Rolland, A.S.; Faillot, M.; Perez-Garcia, F.; Colomb-Clerc, A.; Lau, B.; Dumas, S.; Vidal, S.F.; Welter, M.L.; Francois, C.; Bardinet, E.; Karachi, C. Normal and pathological neuronal distribution of the human mesencephalic locomotor region. Mov. Disord., 2019, 34(2), 218-227. doi: 10.1002/mds.27578 PMID: 30485555
  42. Lee, A.M.; Hoy, J.L.; Bonci, A.; Wilbrecht, L.; Stryker, M.P.; Niell, C.M. Identification of a brainstem circuit regulating visual cortical state in parallel with locomotion. Neuron, 2014, 83(2), 455-466. doi: 10.1016/j.neuron.2014.06.031 PMID: 25033185
  43. Capelli, P.; Pivetta, C.; Soledad Esposito, M.; Arber, S. Locomotor speed control circuits in the caudal brainstem. Nature, 2017, 551(7680), 373-377. doi: 10.1038/nature24064 PMID: 29059682
  44. Josset, N.; Roussel, M.; Lemieux, M.; Lafrance-Zoubga, D.; Rastqar, A.; Bretzner, F. Distinct Contributions of Mesencephalic Locomotor Region Nuclei to Locomotor Control in the Freely Behaving Mouse. Curr. Biol., 2018, 28(6), 884-901.e3. doi: 10.1016/j.cub.2018.02.007 PMID: 29526593
  45. Gut, N.K.; Yilmaz, D.; Kondabolu, K. Selective inhibition of goal-directed actions in the mesencephalic locomotor region. bioRxiv, 2022, 2022.01.18.476772.
  46. van der Zouwen, C.I.; Boutin, J.; Fougère, M.; Flaive, A.; Vivancos, M.; Santuz, A.; Akay, T.; Sarret, P.; Ryczko, D. Freely Behaving Mice Can Brake and Turn During Optogenetic Stimulation of the Mesencephalic Locomotor Region. Front. Neural Circuits, 2021, 15, 639900. doi: 10.3389/fncir.2021.639900 PMID: 33897379
  47. Carvalho, M.M.; Tanke, N.; Kropff, E.; Witter, M.P.; Moser, M.B.; Moser, E.I. A Brainstem Locomotor Circuit Drives the Activity of Speed Cells in the Medial Entorhinal Cortex. Cell Rep., 2020, 32(10), 108123. doi: 10.1016/j.celrep.2020.108123 PMID: 32905779
  48. Masini, D.; Kiehn, O. Targeted activation of midbrain neurons restores locomotor function in mouse models of parkinsonism. Nat. Commun., 2022, 13(1), 504. doi: 10.1038/s41467-022-28075-4 PMID: 35082287
  49. Wolff, S.B.E.; Ölveczky, B.P. The promise and perils of causal circuit manipulations. Curr. Opin. Neurobiol., 2018, 49, 84-94. doi: 10.1016/j.conb.2018.01.004 PMID: 29414070
  50. Roš, H.; Magill, P.J.; Moss, J.; Bolam, J.P.; Mena-Segovia, J. Distinct types of non-cholinergic pedunculopontine neurons are differentially modulated during global brain states. Neuroscience, 2010, 170(1), 78-91. doi: 10.1016/j.neuroscience.2010.06.068 PMID: 20603194
  51. Boucetta, S.; Cissé, Y.; Mainville, L.; Morales, M.; Jones, B.E. Discharge profiles across the sleep-waking cycle of identified cholinergic, GABAergic, and glutamatergic neurons in the pontomesencephalic tegmentum of the rat. J. Neurosci., 2014, 34(13), 4708-4727. doi: 10.1523/JNEUROSCI.2617-13.2014 PMID: 24672016
  52. Petzold, A.; Valencia, M.; Pál, B.; Mena-Segovia, J. Decoding brain state transitions in the pedunculopontine nucleus: cooperative phasic and tonic mechanisms. Front. Neural Circuits, 2015, 9, 68. doi: 10.3389/fncir.2015.00068 PMID: 26582977
  53. Martinez-Gonzalez, C.; Wang, H.L.; Micklem, B.R.; Bolam, J.P.; Mena-Segovia, J. Subpopulations of cholinergic, GABAergic and glutamatergic neurons in the pedunculopontine nucleus contain calcium-binding proteins and are heterogeneously distributed. Eur. J. Neurosci., 2012, 35(5), 723-734. doi: 10.1111/j.1460-9568.2012.08002.x PMID: 22356461
  54. Martinez-Gonzalez, C.; van Andel, J.; Bolam, J.P.; Mena-Segovia, J. Divergent motor projections from the pedunculopontine nucleus are differentially regulated in Parkinsonism. Brain Struct. Funct., 2013, 219(4), 1451-1462. doi: 10.1007/s00429-013-0579-6 PMID: 23708060
  55. Mena-Segovia, J. Structural and functional considerations of the cholinergic brainstem. J. Neural Transm., 2016, 123(7), 731-736. doi: 10.1007/s00702-016-1530-9
  56. Mena-Segovia, J.; Sims, H.M.; Magill, P.J.; Bolam, J.P. Cholinergic brainstem neurons modulate cortical gamma activity during slow oscillations. J. Physiol., 2008, 586(12), 2947-2960. doi: 10.1113/jphysiol.2008.153874 PMID: 18440991
  57. Mena-Segovia, J.; Micklem, B.R.; Nair-Roberts, R.G.; Ungless, M.A.; Bolam, J.P. GABAergic neuron distribution in the pedunculopontine nucleus defines functional subterritories. J. Comp. Neurol., 2009, 515(4), 397-408. doi: 10.1002/cne.22065 PMID: 19459217
  58. Brown, R.E.; Basheer, R.; McKenna, J.T.; Strecker, R.E.; McCarley, R.W. Control of sleep and wakefulness. Physiol. Rev., 2012, 92(3), 1087-1187. doi: 10.1152/physrev.00032.2011 PMID: 22811426
  59. Fuller, P.M.; Saper, C.B.; Lu, J. The pontine REM switch: past and present. J. Physiol., 2007, 584(3), 735-741. doi: 10.1113/jphysiol.2007.140160 PMID: 17884926
  60. Garcia-Rill, E.; Kezunovic, N.; Hyde, J.; Simon, C.; Beck, P.; Urbano, F.J. Coherence and frequency in the reticular activating system (RAS). Sleep Med Rev, 2013, 17(3), 227-38. doi: 10.1016/j.smrv.2012.06.002
  61. Jones, B.E. Arousal and sleep circuits. Neuropsychopharmacology, 2020, 45(1), 6-20. doi: 10.1038/s41386-019-0444-2
  62. Van Dort, C.J.; Zachs, D.P.; Kenny, J.D.; Zheng, S.; Goldblum, R.R.; Gelwan, N.A.; Ramos, D.M.; Nolan, M.A.; Wang, K.; Weng, F.J.; Lin, Y.; Wilson, M.A.; Brown, E.N. Optogenetic activation of cholinergic neurons in the PPT or LDT induces REM sleep. Proc. Natl. Acad. Sci. USA, 2015, 112(2), 584-589. doi: 10.1073/pnas.1423136112 PMID: 25548191
  63. Pernía-Andrade, A.J.; Wenger, N.; Esposito, M.S.; Tovote, P. Circuits for State-Dependent Modulation of Locomotion. Front. Hum. Neurosci., 2021, 15, 745689. doi: 10.3389/fnhum.2021.745689 PMID: 34858153
  64. Keating, G.L.; Winn, P. Examination of the role of the pedunculopontine tegmental nucleus in radial maze tasks with or without a delay. Neuroscience, 2002, 112(3), 687-696. doi: 10.1016/S0306-4522(02)00108-2 PMID: 12074910
  65. Alderson, H.L.; Latimer, M.P.; Blaha, C.D.; Phillips, A.G.; Winn, P. An examination of d-amphetamine self-administration in pedunculopontine tegmental nucleus-lesioned rats. Neuroscience, 2004, 125(2), 349-358. doi: 10.1016/j.neuroscience.2004.02.015 PMID: 15062978
  66. Wilson, D.I.G.; MacLaren, D.A.A.; Winn, P. Bar pressing for food: differential consequences of lesions to the anterior versus posterior pedunculopontine. Eur. J. Neurosci., 2009, 30(3), 504-513. doi: 10.1111/j.1460-9568.2009.06836.x PMID: 19614747
  67. MacLaren, D.A.A.; Wilson, D.I.G.; Winn, P. Updating of action-outcome associations is prevented by inactivation of the posterior pedunculopontine tegmental nucleus. Neurobiol. Learn. Mem., 2013, 102, 28-33. doi: 10.1016/j.nlm.2013.03.002 PMID: 23567109
  68. Okada, K.; Toyama, K.; Inoue, Y.; Isa, T.; Kobayashi, Y. Different pedunculopontine tegmental neurons signal predicted and actual task rewards. J. Neurosci., 2009, 29(15), 4858-4870. doi: 10.1523/JNEUROSCI.4415-08.2009 PMID: 19369554
  69. Hong, S.; Hikosaka, O. Pedunculopontine tegmental nucleus neurons provide reward, sensorimotor, and alerting signals to midbrain dopamine neurons. Neuroscience, 2014, 282, 139-155. doi: 10.1016/j.neuroscience.2014.07.002 PMID: 25058502
  70. Norton, A.B.W.; Jo, Y.S.; Clark, E.W.; Taylor, C.A.; Mizumori, S.J.Y. Independent neural coding of reward and movement by pedunculopontine tegmental nucleus neurons in freely navigating rats. Eur. J. Neurosci., 2011, 33(10), 1885-1896. doi: 10.1111/j.1460-9568.2011.07649.x PMID: 21395868
  71. Thompson, J.A.; Felsen, G. Activity in mouse pedunculopontine tegmental nucleus reflects action and outcome in a decision-making task. J. Neurophysiol., 2013, 110(12), 2817-2829. doi: 10.1152/jn.00464.2013 PMID: 24089397
  72. Thompson, J.A.; Costabile, J.D.; Felsen, G. Mesencephalic representations of recent experience influence decision making. eLife, 2016, 5, e16572. doi: 10.7554/eLife.16572 PMID: 27454033
  73. Ruan, Y.; Li, K.Y.; Zheng, R.; Yan, Y.Q.; Wang, Z.X.; Chen, Y.; Liu, Y.; Tian, J.; Zhu, L.Y.; Lou, H.F.; Yu, Y.Q.; Pu, J.L.; Zhang, B.R. Cholinergic neurons in the pedunculopontine nucleus guide reversal learning by signaling the changing reward contingency. Cell Rep., 2022, 38(9), 110437. doi: 10.1016/j.celrep.2022.110437 PMID: 35235804
  74. Inagaki, H.K.; Chen, S.; Ridder, M.C.; Sah, P.; Li, N.; Yang, Z.; Hasanbegovic, H.; Gao, Z.; Gerfen, C.R.; Svoboda, K. A midbrain-thalamus-cortex circuit reorganizes cortical dynamics to initiate movement. Cell, 2022, 185(6), 1065-1081.e23. doi: 10.1016/j.cell.2022.02.006 PMID: 35245431
  75. Alexander, G.E.; Crutcher, M.D. Functional Architectures of Basal Ganglia Circuits. Trends Neurosci., 1990, 13(7), 266-271. doi: 10.1016/0166-2236(90)90107-L PMID: 1695401
  76. Gerfen, C.R.; Surmeier, D.J. Modulation of striatal projection systems by dopamine. Annu. Rev. Neurosci., 2011, 34(1), 441-466. doi: 10.1146/annurev-neuro-061010-113641 PMID: 21469956
  77. Klaus, A.; Alves da Silva, J.; Costa, R.M. What, If, and When to Move: Basal Ganglia Circuits and Self-Paced Action Initiation. Annu. Rev. Neurosci., 2019, 42(1), 459-483. doi: 10.1146/annurev-neuro-072116-031033 PMID: 31018098
  78. Alexander, G.E.; DeLong, M.R.; Strick, P.L. Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu. Rev. Neurosci., 1986, 9(1), 357-381. doi: 10.1146/annurev.ne.09.030186.002041 PMID: 3085570
  79. Kemp, J.M.; Powell, T.P. The structure of the caudate nucleus of the cat: light and electron microscopy. Philos. Trans. R. Soc. Lond. B Biol. Sci., 1971, 262(845), 383-401. doi: 10.1098/rstb.1971.0102 PMID: 4107495
  80. McElvain, L.E.; Chen, Y.; Moore, J.D.; Brigidi, G.S.; Bloodgood, B.L.; Lim, B.K.; Costa, R.M.; Kleinfeld, D. Specific populations of basal ganglia output neurons target distinct brain stem areas while collateralizing throughout the diencephalon. Neuron, 2021, 109(10), 1721-1738.e4. doi: 10.1016/j.neuron.2021.03.017 PMID: 33823137
  81. Rommelfanger, K.S.; Wichmann, T. Extrastriatal dopaminergic circuits of the basal ganglia. Front. Neuroanat., 2010, 4, 139. doi: 10.3389/fnana.2010.00139 PMID: 21103009
  82. Gerfen, C.R.; Wilson, C.J. Chapter II The Basal Ganglia. In: Handbook of Chemical Neuroanatomy; , 1996; 12, pp. 371-468. doi: 10.1016/S0924-8196(96)80004-2
  83. Assous, M.; Tepper, J.M. Excitatory extrinsic afferents to striatal interneurons and interactions with striatal microcircuitry. Eur. J. Neurosci., 2019, 49(5), 593-603. doi: 10.1111/ejn.13881 PMID: 29480942
  84. Graybiel, A.M. Habits, rituals, and the evaluative brain. Annu. Rev. Neurosci., 2008, 31(1), 359-387. doi: 10.1146/annurev.neuro.29.051605.112851 PMID: 18558860
  85. Hintiryan, H.; Foster, N.N.; Bowman, I.; Bay, M.; Song, M.Y.; Gou, L.; Yamashita, S.; Bienkowski, M.S.; Zingg, B.; Zhu, M.; Yang, X.W.; Shih, J.C.; Toga, A.W.; Dong, H.W. The mouse cortico-striatal projectome. Nat. Neurosci., 2016, 19(8), 1100-1114. doi: 10.1038/nn.4332 PMID: 27322419
  86. Klug, J.R.; Engelhardt, M.D.; Cadman, C.N.; Li, H.; Smith, J.B.; Ayala, S.; Williams, E.W.; Hoffman, H.; Jin, X. Differential inputs to striatal cholinergic and parvalbumin interneurons imply functional distinctions. eLife, 2018, 7, e35657. doi: 10.7554/eLife.35657 PMID: 29714166
  87. Morgenstern, N.A.; Isidro, A.F.; Israely, I.; Costa, R.M. Pyramidal tract neurons drive amplification of excitatory inputs to striatum through cholinergic interneurons. Sci. Adv., 2022, 8(6), eabh4315. doi: 10.1126/sciadv.abh4315 PMID: 35138902
  88. Tanimura, A.; Du, Y.; Kondapalli, J.; Wokosin, D.L.; Surmeier, D.J. Cholinergic interneurons amplify thalamostriatal excitation of striatal indirect pathway neurons in Parkinson’s disease models. Neuron, 2019, 101(3), 444-458.e6. doi: 10.1016/j.neuron.2018.12.004 PMID: 30658860
  89. Threlfell, S.; Lalic, T.; Platt, N.J.; Jennings, K.A.; Deisseroth, K.; Cragg, S.J. Striatal dopamine release is triggered by synchronized activity in cholinergic interneurons. Neuron, 2012, 75(1), 58-64. doi: 10.1016/j.neuron.2012.04.038 PMID: 22794260
  90. Jin, X.; Costa, R.M. Start/stop signals emerge in nigrostriatal circuits during sequence learning. Nature, 2010, 466(7305), 457-462. doi: 10.1038/nature09263 PMID: 20651684
  91. Freeze, B.S.; Kravitz, A.V.; Hammack, N.; Berke, J.D.; Kreitzer, A.C. Control of basal ganglia output by direct and indirect pathway projection neurons. J. Neurosci., 2013, 33(47), 18531-18539. doi: 10.1523/JNEUROSCI.1278-13.2013 PMID: 24259575
  92. Graybiel, A.M.; Aosaki, T.; Flaherty, A.W.; Kimura, M. The basal ganglia and adaptive motor control. Science, 1994, 265(5180), 1826-1831. doi: 10.1126/science.8091209
  93. Yin, H.H.; Knowlton, B.J. The role of the basal ganglia in habit formation. Nat. Rev. Neurosci., 2006, 7(6), 464-476. doi: 10.1038/nrn1919 PMID: 16715055
  94. Zhai, S.; Shen, W.; Graves, S.M.; Surmeier, D.J. Dopaminergic modulation of striatal function and Parkinson’s disease. J. Neural Transm., 2019, 126(4), 411-422. doi: 10.1007/s00702-019-01997-y
  95. Wang, Z.; Kai, L.; Day, M.; Ronesi, J.; Yin, H.H.; Ding, J.; Tkatch, T.; Lovinger, D.M.; Surmeier, D.J. Dopaminergic control of corticostriatal long-term synaptic depression in medium spiny neurons is mediated by cholinergic interneurons. Neuron, 2006, 50(3), 443-452. doi: 10.1016/j.neuron.2006.04.010 PMID: 16675398
  96. Lerner, T.N.; Shilyansky, C.; Davidson, T.J.; Evans, K.E.; Beier, K.T.; Zalocusky, K.A.; Crow, A.K.; Malenka, R.C.; Luo, L.; Tomer, R.; Deisseroth, K. Intact-brain analyses reveal distinct information carried by SNc dopamine subcircuits. Cell, 2015, 162(3), 635-647. doi: 10.1016/j.cell.2015.07.014 PMID: 26232229
  97. Matsumoto, M.; Hikosaka, O. Two types of dopamine neuron distinctly convey positive and negative motivational signals. Nature, 2009, 459(7248), 837-841. doi: 10.1038/nature08028 PMID: 19448610
  98. Panigrahi, B.; Martin, K.A.; Li, Y.; Graves, A.R.; Vollmer, A.; Olson, L.; Mensh, B.D.; Karpova, A.Y.; Dudman, J.T. Dopamine is required for the neural representation and control of movement vigor. Cell, 2015, 162(6), 1418-1430. doi: 10.1016/j.cell.2015.08.014 PMID: 26359992
  99. Howe, M.W.; Dombeck, D.A. Rapid signalling in distinct dopaminergic axons during locomotion and reward. Nature, 2016, 535(7613), 505-510. doi: 10.1038/nature18942 PMID: 27398617
  100. da Silva, J.A.; Tecuapetla, F.; Paixão, V.; Costa, R.M. Dopamine neuron activity before action initiation gates and invigorates future movements. Nature, 2018, 554(7691), 244-248. doi: 10.1038/nature25457 PMID: 29420469
  101. Parker, N.F.; Cameron, C.M.; Taliaferro, J.P.; Lee, J.; Choi, J.Y.; Davidson, T.J.; Daw, N.D.; Witten, I.B. Reward and choice encoding in terminals of midbrain dopamine neurons depends on striatal target. Nat. Neurosci., 2016, 19(6), 845-854. doi: 10.1038/nn.4287 PMID: 27110917
  102. Hernández-López, S.; Góngora-Alfaro, J.; Martínez-Fong, D.; Aceves, J. A cholinergic input to the substantia nigra pars compacta increases striatal dopamine metabolism measured by in vivo voltammetry. Brain Res., 1992, 598(1-2), 114-120. doi: 10.1016/0006-8993(92)90174-8 PMID: 1486473
  103. Futami, T.; Takakusaki, K.; Kitai, S.T. Glutamatergic and cholinergic inputs from the pedunculopontine tegmental nucleus to dopamine neurons in the substantia nigra pars compacta. Neurosci. Res., 1995, 21(4), 331-342. doi: 10.1016/0168-0102(94)00869-H PMID: 7777224
  104. Scarnati, E.; Campana, E.; Pacitti, C. Pedunculopontine-evoked excitation of substantia nigra neurons in the rat. Brain Res., 1984, 304(2), 351-361. doi: 10.1016/0006-8993(84)90339-1 PMID: 6744046
  105. Scarnati, E.; Proia, A.; Campana, E.; Pacitti, C. A microiontophoretic study on the nature of the putative synaptic neurotransmitter involved in the pedunculopontine-substantia nigra pars compacta excitatory pathway of the rat. Exp. Brain Res., 1986, 62(3), 470-478. doi: 10.1007/BF00236025 PMID: 2873047
  106. Bolam, J.P.; Francis, C.M.; Henderson, Z. Cholinergic input to dopaminergic neurons in the substantia nigra: A double immunocytochemical study. Neuroscience, 1991, 41(2-3), 483-494. doi: 10.1016/0306-4522(91)90343-M PMID: 1678502
  107. Matsubayashi, H.; Amano, T.; Seki, T.; Sasa, M.; Sakai, N. Electrophysiological characterization of nicotine-induced excitation of dopaminergic neurons in the rat substantia nigra. J. Pharmacol. Sci., 2003, 93(2), 143-148. doi: 10.1254/jphs.93.143 PMID: 14578581
  108. Watabe-Uchida, M.; Zhu, L.; Ogawa, S.K.; Vamanrao, A.; Uchida, N. Whole-brain mapping of direct inputs to midbrain dopamine neurons. Neuron, 2012, 74(5), 858-873. doi: 10.1016/j.neuron.2012.03.017 PMID: 22681690
  109. Pan, W.X.; Hyland, B.I. Pedunculopontine tegmental nucleus controls conditioned responses of midbrain dopamine neurons in behaving rats. J. Neurosci., 2005, 25(19), 4725-4732. doi: 10.1523/JNEUROSCI.0277-05.2005 PMID: 15888648
  110. Hassan, A.; Benarroch, E.E. Heterogeneity of the midbrain dopamine system. Neurology, 2015, 85(20), 1795-1805. doi: 10.1212/WNL.0000000000002137 PMID: 26475693
  111. Di Loreto, S.; Florio, T.; Scarnati, E. Evidence that non-NMDA receptors are involved in the excitatory pathway from the pedunculopontine region to nigrostriatal dopaminergic neurons. Exp. Brain Res., 1992, 89(1), 79-86. doi: 10.1007/BF00229003 PMID: 1351000
  112. Galtieri, D.J.; Estep, C.M.; Wokosin, D.L.; Traynelis, S.; Surmeier, D.J. Pedunculopontine glutamatergic neurons control spike patterning in substantia nigra dopaminergic neurons. eLife, 2017, 6, e30352. doi: 10.7554/eLife.30352 PMID: 28980939
  113. Rolland, A.S.; Tandé, D.; Herrero, M.T.; Luquin, M.R.; Vazquez-Claverie, M.; Karachi, C.; Hirsch, E.C.; François, C. Evidence for a dopaminergic innervation of the pedunculopontine nucleus in monkeys, and its drastic reduction after MPTP intoxication. J. Neurochem., 2009, 110(4), 1321-1329. doi: 10.1111/j.1471-4159.2009.06220.x PMID: 19527435
  114. Ryczko, D.; Cone, J.J.; Alpert, M.H.; Goetz, L.; Auclair, F.; Dubé, C.; Parent, M.; Roitman, M.F.; Alford, S.; Dubuc, R. A descending dopamine pathway conserved from basal vertebrates to mammals. Proc. Natl. Acad. Sci. USA, 2016, 113(17), E2440-E2449. doi: 10.1073/pnas.1600684113 PMID: 27071118
  115. Bevan, M.D.; Bolam, J.P. Cholinergic, GABAergic, and glutamate-enriched inputs from the mesopontine tegmentum to the subthalamic nucleus in the rat. J. Neurosci., 1995, 15(11), 7105-7120. doi: 10.1523/JNEUROSCI.15-11-07105.1995 PMID: 7472465
  116. Kita, T.; Kita, H. Cholinergic and non-cholinergic mesopontine tegmental neurons projecting to the subthalamic nucleus in the rat. Eur. J. Neurosci., 2011, 33(3), 433-443. doi: 10.1111/j.1460-9568.2010.07537.x PMID: 21198985
  117. Hammond, C.; Rouzaire-Dubois, B.; Féger, J.; Jackson, A.; Crossman, A.R. Anatomical and electrophysiological studies on the reciprocal projections between the subthalamic nucleus and nucleus tegmenti pedunculopontinus in the rat. Neuroscience, 1983, 9(1), 41-52. doi: 10.1016/0306-4522(83)90045-3 PMID: 6308507
  118. Esposito, M.S.; Capelli, P.; Arber, S. Brainstem nucleus MdV mediates skilled forelimb motor tasks. Nature, 2014, 508(7496), 351-356. doi: 10.1038/nature13023 PMID: 24487621
  119. Bouvier, J.; Caggiano, V.; Leiras, R.; Caldeira, V.; Bellardita, C.; Balueva, K.; Fuchs, A.; Kiehn, O. Descending command neurons in the brainstem that halt locomotion. Cell, 2015, 163(5), 1191-1203. doi: 10.1016/j.cell.2015.10.074 PMID: 26590422
  120. Cregg, J.M.; Leiras, R.; Montalant, A.; Wanken, P.; Wickersham, I.R.; Kiehn, O. Brainstem neurons that command mammalian locomotor asymmetries. Nat. Neurosci., 2020, 23(6), 730-740. doi: 10.1038/s41593-020-0633-7 PMID: 32393896
  121. Ruder, L.; Schina, R.; Kanodia, H.; Valencia-Garcia, S.; Pivetta, C.; Arber, S. A functional map for diverse forelimb actions within brainstem circuitry. Nature, 2021, 590(7846), 445-450. doi: 10.1038/s41586-020-03080-z PMID: 33408409
  122. Usseglio, G.; Gatier, E.; Heuzé, A.; Hérent, C.; Bouvier, J. Control of orienting movements and locomotion by projection-defined subsets of brainstem V2a neurons. Curr. Biol., 2020, 30(23), 4665-4681.e6. doi: 10.1016/j.cub.2020.09.014 PMID: 33007251
  123. Hou, X.H.; Hyun, M.; Taranda, J.; Huang, K.W.; Todd, E.; Feng, D.; Atwater, E.; Croney, D.; Zeidel, M.L.; Osten, P.; Sabatini, B.L. Central control circuit for context-dependent micturition. Cell, 2016, 167(1), 73-86.e12. doi: 10.1016/j.cell.2016.08.073 PMID: 27662084
  124. Crapse, T.B.; Sommer, M.A. Corollary discharge across the animal kingdom. Nat. Rev. Neurosci., 2008, 9(8), 587-600. doi: 10.1038/nrn2457 PMID: 18641666

补充文件

附件文件
动作
1. JATS XML

版权所有 © Bentham Science Publishers, 2024