Antioxidants, Hormetic Nutrition, and Autism
- 作者: Modafferi S.1, Lupo G.1, Tomasello M.1, Rampulla F.1, Ontario M.1, Scuto M.1, Salinaro A.1, Arcidiacono A.1, Anfuso C.1, Legmouz M.2, Azzaoui F.2, Palmeri A.1, Spano S.1, Biamonte F.1, Cammilleri G.3, Fritsch T.4, Sidenkova A.5, Calabrese E.6, Wenzel U.7, Calabrese V.1
-
隶属关系:
- Department of Biomedical and Biotechnological Sciences, University of Catania
- Department of Biologie, Laboratory of Biologie and Health, Faculty of Science, Ibn Tofail University
- Food Department, Istituto Zooprofilattico Sperimentale della Sicilia, via Gino Marinuzzi
- , NAM-Institute
- Department of Psychiatry, Ural State Medical University
- Department of Environmental Health Sciences, University of Massachusetts
- Institut für Ernährungswissenschaft, Justus Liebig Universitat Giessen
- 期: 卷 22, 编号 7 (2024)
- 页面: 1156-1168
- 栏目: Neurology
- URL: https://rjsocmed.com/1570-159X/article/view/644830
- DOI: https://doi.org/10.2174/1570159X21666230817085811
- ID: 644830
如何引用文章
全文:
详细
Autism spectrum disorder (ASD) includes a heterogeneous group of complex neurodevelopmental disorders characterized by atypical behaviors with two core pathological manifestations: deficits in social interaction/communication and repetitive behaviors, which are associated with disturbed redox homeostasis. Modulation of cellular resilience mechanisms induced by low levels of stressors represents a novel approach for the development of therapeutic strategies, and in this context, neuroprotective effects of a wide range of polyphenol compounds have been demonstrated in several in vitro and in vivo studies and thoroughly reviewed. Mushrooms have been used in traditional medicine for many years and have been associated with a long list of therapeutic properties, including antitumor, immunomodulatory, antioxidant, antiviral, antibacterial, and hepatoprotective effects. Our recent studies have strikingly indicated the presence of polyphenols in nutritional mushrooms and demonstrated their protective effects in different models of neurodegenerative disorders in humans and rats. Although their therapeutic effects are exerted through multiple mechanisms, increasing attention is focusing on their capacity to induce endogenous defense systems by modulating cellular signaling processes such as nuclear factor erythroid 2 related factor 2 (Nrf2) and nuclear factor-kappa B (NF-κB) pathways. Here we discuss the protective role of hormesis and its modulation by hormetic nutrients in ASD.
作者简介
Sergio Modafferi
Department of Biomedical and Biotechnological Sciences, University of Catania
编辑信件的主要联系方式.
Email: info@benthamscience.net
Gabriella Lupo
Department of Biomedical and Biotechnological Sciences, University of Catania
编辑信件的主要联系方式.
Email: info@benthamscience.net
Mario Tomasello
Department of Biomedical and Biotechnological Sciences, University of Catania
Email: info@benthamscience.net
Francesco Rampulla
Department of Biomedical and Biotechnological Sciences, University of Catania
Email: info@benthamscience.net
Marialaura Ontario
Department of Biomedical and Biotechnological Sciences, University of Catania
Email: info@benthamscience.net
Maria Scuto
Department of Biomedical and Biotechnological Sciences, University of Catania
Email: info@benthamscience.net
Angela Salinaro
Department of Biomedical and Biotechnological Sciences, University of Catania
Email: info@benthamscience.net
Antonio Arcidiacono
Department of Biomedical and Biotechnological Sciences, University of Catania
编辑信件的主要联系方式.
Email: info@benthamscience.net
Carmelina Anfuso
Department of Biomedical and Biotechnological Sciences, University of Catania
Email: info@benthamscience.net
Maria Legmouz
Department of Biologie, Laboratory of Biologie and Health, Faculty of Science, Ibn Tofail University
Email: info@benthamscience.net
Fatima-Zahra Azzaoui
Department of Biologie, Laboratory of Biologie and Health, Faculty of Science, Ibn Tofail University
Email: info@benthamscience.net
Agostino Palmeri
Department of Biomedical and Biotechnological Sciences, University of Catania
Email: info@benthamscience.net
Sestina Spano
Department of Biomedical and Biotechnological Sciences, University of Catania
Email: info@benthamscience.net
Francesca Biamonte
Department of Biomedical and Biotechnological Sciences, University of Catania
Email: info@benthamscience.net
Gaetano Cammilleri
Food Department, Istituto Zooprofilattico Sperimentale della Sicilia, via Gino Marinuzzi
Email: info@benthamscience.net
Tilman Fritsch
, NAM-Institute
Email: info@benthamscience.net
Alena Sidenkova
Department of Psychiatry, Ural State Medical University
Email: info@benthamscience.net
Edward Calabrese
Department of Environmental Health Sciences, University of Massachusetts
Email: info@benthamscience.net
Uwe Wenzel
Institut für Ernährungswissenschaft, Justus Liebig Universitat Giessen
Email: info@benthamscience.net
Vittorio Calabrese
Department of Biomedical and Biotechnological Sciences, University of Catania
Email: info@benthamscience.net
参考
- Bonomini, F.; Siniscalco, D.; Schultz, S.; Carnovale, C.; Barthélémy, C.; Fazzi, E.M. Editorial: Antioxidants in autism spectrum disorders. Front. Psychiatry, 2022, 13(13), 889865. doi: 10.3389/fpsyt.2022.889865 PMID: 35463522
- Singla, R.K.; Dubey, A.K.; Garg, A.; Sharma, R.K.; Fiorino, M.; Ameen, S.M.; Haddad, M.A.; Al-Hiary, M. Natural polyphenols: Chemical classification, definition of classes, subcategories, and structures. J. AOAC Int., 2019, 102(5), 1397-1400. doi: 10.5740/jaoacint.19-0133 PMID: 31200785
- Rudrapal, M.; Khairnar, S.J.; Khan, J.; Dukhyil, A.B.; Ansari, M.A.; Alomary, M.N.; Alshabrmi, F.M.; Palai, S.; Deb, P.K.; Devi, R. Dietary polyphenols and their role in oxidative stress-induced human diseases: insights into protective effects, antioxidant potentials and mechanism(s) of action. Front. Pharmacol., 2022, 13(13), 806470. doi: 10.3389/fphar.2022.806470 PMID: 35237163
- Chugh, R.M.; Mittal, P.; Mp, N.; Arora, T.; Bhattacharya, T.; Chopra, H.; Cavalu, S.; Gautam, R.K. Fungal mushrooms: A natural compound with therapeutic applications. Front. Pharmacol., 2022, 13(13), 925387. doi: 10.3389/fphar.2022.925387 PMID: 35910346
- DAmico, R.; Salinaro, A.T.; Fusco, R.; Cordaro, M.; Impellizzeri, D.; Scuto, M.; Ontario, M.L.; Lo Dico, G.; Cuzzocrea, S.; Di Paola, R.; Siracusa, R.; Calabrese, V. Hericium erinaceus and Coriolus versicolor modulate molecular and biochemical changes after traumatic brain injury. Antioxidants, 2021, 10(6), 898. doi: 10.3390/antiox10060898 PMID: 34199629
- Scuto, M.; Di Mauro, P.; Ontario, M.L.; Amato, C.; Modafferi, S.; Ciavardelli, D.; Salinaro, A.T.; Maiolino, L.; Calabrese, V. Nutritional mushroom treatment in Menieres disease with Coriolus versicolor: A rationale for therapeutic intervention in neuroinflammation and antineurodegeneration. Int. J. Mol. Sci., 2019, 21(1), 284. doi: 10.3390/ijms21010284 PMID: 31906226
- Rose, S.; Niyazov, D.M.; Rossignol, D.A.; Goldenthal, M.; Kahler, S.G.; Frye, R.E. Clinical and molecular characteristics of mitochondrial dysfunction in autism spectrum disorder. Mol. Diagn. Ther., 2018, 22(5), 571-593. doi: 10.1007/s40291-018-0352-x PMID: 30039193
- Nabi, S.U.; Rehman, M.U.; Arafah, A.; Taifa, S.; Khan, I.S.; Khan, A.; Rashid, S.; Jan, F.; Wani, H.A.; Ahmad, S.F. Treatment of autism spectrum disorders by mitochondrial-targeted drug: Future of neurological diseases therapeutics. Curr. Neuropharmacol., 2023, 21(5), 1042-1064. doi: 10.2174/1570159X21666221121095618 PMID: 36411568
- Friedman, S.D.; Shaw, D.W.; Artru, A.A.; Richards, T.L.; Gardner, J.; Dawson, G.; Posse, S.; Dager, S.R. Regional brain chemical alterations in young children with autism spectrum disorder. Neurology, 2003, 60(1), 100-107. doi: 10.1212/WNL.60.1.100 PMID: 12525726
- Naviaux, R.K. Antipurinergic therapy for autismAn in-depth review. Mitochondrion, 2018, 43, 1-15. doi: 10.1016/j.mito.2017.12.007 PMID: 29253638
- Minshew, N.J.; Goldstein, G.; Dombrowski, S.M.; Panchalingam, K.; Pettegrew, J.W. A preliminary 31P MRS study of autism: Evidence for undersynthesis and increased degradation of brain membranes. Biol. Psychiatry, 1993, 33(11-12), 762-773. doi: 10.1016/0006-3223(93)90017-8 PMID: 8373914
- Chugani, D.C.; Sundram, B.S.; Behen, M.; Lee, M.L.; Moore, G.J. Evidence of altered energy metabolism in autistic children. Prog. Neuropsychopharmacol. Biol. Psychiatry, 1999, 23(4), 635-641. doi: 10.1016/S0278-5846(99)00022-6 PMID: 10390722
- Filipek, P.A.; Juranek, J.; Smith, M.; Mays, L.Z.; Ramos, E.R.; Bocian, M.; Masser-Frye, D.; Laulhere, T.M.; Modahl, C.; Spence, M.A.; Gargus, J.J. Mitochondrial dysfunction in autistic patients with 15q inverted duplication. Ann. Neurol., 2003, 53(6), 801-804. doi: 10.1002/ana.10596 PMID: 12783428
- Rossignol, D.A.; Frye, R.E. Mitochondrial dysfunction in autism spectrum disorders: A systematic review and meta-analysis. Mol. Psychiatry, 2012, 17(3), 290-314. doi: 10.1038/mp.2010.136 PMID: 21263444
- Chauhan, A.; Audhya, T.; Chauhan, V. Brain region-specific glutathione redox imbalance in autism. Neurochem. Res., 2012, 37(8), 1681-1689. doi: 10.1007/s11064-012-0775-4 PMID: 22528835
- Pacheva, I.; Ivanov, I. Targeted biomedical treatment for autism Spectrum disorders. Curr. Pharm. Des., 2020, 25(41), 4430-4453. doi: 10.2174/1381612825666191205091312 PMID: 31801452
- Napoli, E.; Song, G.; Panoutsopoulos, A.; Riyadh, M.A.; Kaushik, G.; Halmai, J.; Levenson, R.; Zarbalis, K.S.; Giulivi, C. Beyond autophagy: A novel role for autism-linked Wdfy3 in brain mitophagy. Sci. Rep., 2018, 8(1), 11348. doi: 10.1038/s41598-018-29421-7 PMID: 30054502
- Crespi, B.; Read, S.; Ly, A.; Hurd, P. AMBRA1, autophagy, and the extreme male brain theory of autism. Autism Res. Treat., 2019, 2019, 1-6. doi: 10.1155/2019/1968580 PMID: 31687209
- Vecchia, E.D.; Mortimer, N.; Palladino, V.S.; Kittel-Schneider, S.; Lesch, K.P.; Reif, A.; Schenck, A.; Norton, W.H.J. Cross-species models of attention-deficit/hyperactivity disorder and autism spectrum disorder. Psychiatr. Genet., 2019, 29(1), 1-17. doi: 10.1097/YPG.0000000000000211 PMID: 30376466
- Mitjans, M.; Begemann, M.; Ju, A.; Dere, E.; Wüstefeld, L.; Hofer, S.; Hassouna, I.; Balkenhol, J.; Oliveira, B.; van der Auwera, S.; Tammer, R.; Hammerschmidt, K.; Völzke, H.; Homuth, G.; Cecconi, F.; Chowdhury, K.; Grabe, H.; Frahm, J.; Boretius, S.; Dandekar, T.; Ehrenreich, H. Sexual dimorphism of AMBRA1-related autistic features in human and mouse. Transl. Psychiatry, 2017, 7(10), e1247. doi: 10.1038/tp.2017.213 PMID: 28994820
- Glessner, J.T.; Wang, K.; Cai, G.; Korvatska, O.; Kim, C.E.; Wood, S.; Zhang, H.; Estes, A.; Brune, C.W.; Bradfield, J.P.; Imielinski, M.; Frackelton, E.C.; Reichert, J.; Crawford, E.L.; Munson, J.; Sleiman, P.M.A.; Chiavacci, R.; Annaiah, K.; Thomas, K.; Hou, C.; Glaberson, W.; Flory, J.; Otieno, F.; Garris, M.; Soorya, L.; Klei, L.; Piven, J.; Meyer, K.J.; Anagnostou, E.; Sakurai, T.; Game, R.M.; Rudd, D.S.; Zurawiecki, D.; McDougle, C.J.; Davis, L.K.; Miller, J.; Posey, D.J.; Michaels, S.; Kolevzon, A.; Silverman, J.M.; Bernier, R.; Levy, S.E.; Schultz, R.T.; Dawson, G.; Owley, T.; McMahon, W.M.; Wassink, T.H.; Sweeney, J.A.; Nurnberger, J.I.; Coon, H.; Sutcliffe, J.S.; Minshew, N.J.; Grant, S.F.A.; Bucan, M.; Cook, E.H.; Buxbaum, J.D.; Devlin, B.; Schellenberg, G.D.; Hakonarson, H. Autism genome-wide copy number variation reveals ubiquitin and neuronal genes. Nature, 2009, 459(7246), 569-573. doi: 10.1038/nature07953 PMID: 19404257
- Ramoz, N.; Reichert, J.G.; Smith, C.J.; Silverman, J.M.; Bespalova, I.N.; Davis, K.L.; Buxbaum, J.D. Linkage and association of the mitochondrial aspartate/glutamate carrier SLC25A12 gene with autism. Am. J. Psychiatry, 2004, 161(4), 662-669. doi: 10.1176/appi.ajp.161.4.662 PMID: 15056512
- Koch, S.V.; Larsen, J.T.; Mouridsen, S.E.; Bentz, M.; Petersen, L.; Bulik, C.; Mortensen, P.B.; Plessen, K.J. Autism spectrum disorder in individuals with anorexia nervosa and in their first- and second-degree relatives: Danish nationwide register-based cohort-study. Br. J. Psychiatry, 2015, 206(5), 401-407. doi: 10.1192/bjp.bp.114.153221 PMID: 25657359
- Modabbernia, A.; Velthorst, E.; Reichenberg, A. Environmental risk factors for autism: An evidence-based review of systematic reviews and meta-analyses. Mol. Autism, 2017, 8(1), 13. doi: 10.1186/s13229-017-0121-4 PMID: 28331572
- Frye, R.E. Metabolic and mitochondrial disorders associated with epilepsy in children with autism spectrum disorder. Epilepsy Behav., 2015, 47, 147-157. doi: 10.1016/j.yebeh.2014.08.134 PMID: 25440829
- Guevara-Campos, J.; González-Guevara, L.; Cauli, O. Autism and intellectual disability associated with mitochondrial disease and hyperlactacidemia. Int. J. Mol. Sci., 2015, 16(2), 3870-3884. doi: 10.3390/ijms16023870 PMID: 25679448
- Koenig, M.K. Presentation and diagnosis of mitochondrial disorders in children. Pediatr. Neurol., 2008, 38(5), 305-313. doi: 10.1016/j.pediatrneurol.2007.12.001 PMID: 18410845
- Iossifov, I.; ORoak, B.J.; Sanders, S.J.; Ronemus, M.; Krumm, N.; Levy, D.; Stessman, H.A.; Witherspoon, K.T.; Vives, L.; Patterson, K.E.; Smith, J.D.; Paeper, B.; Nickerson, D.A.; Dea, J.; Dong, S.; Gonzalez, L.E.; Mandell, J.D.; Mane, S.M.; Murtha, M.T.; Sullivan, C.A.; Walker, M.F.; Waqar, Z.; Wei, L.; Willsey, A.J.; Yamrom, B.; Lee, Y.; Grabowska, E.; Dalkic, E.; Wang, Z.; Marks, S.; Andrews, P.; Leotta, A.; Kendall, J.; Hakker, I.; Rosenbaum, J.; Ma, B.; Rodgers, L.; Troge, J.; Narzisi, G.; Yoon, S.; Schatz, M.C.; Ye, K.; McCombie, W.R.; Shendure, J.; Eichler, E.E.; State, M.W.; Wigler, M. The contribution of de novo coding mutations to autism spectrum disorder. Nature, 2014, 515(7526), 216-221. doi: 10.1038/nature13908 PMID: 25363768
- Anderson, M.P.; Hooker, B.S.; Herbert, M.R. Bridging from cells to cognition in autism pathophysiology: Biological pathways to defective brain function and plasticity. Am. J. Biochem. Biotechnol., 2008, 4(2), 167-176. doi: 10.3844/ajbbsp.2008.167.176
- Wallace, D.C. Mitochondrial diseases in man and mouse. Science, 1999, 283(5407), 1482-1488. doi: 10.1126/science.283.5407.1482 PMID: 10066162
- Adams, J.B.; Bhargava, A.; Coleman, D.M.; Frye, R.E.; Rossignol, D.A. Ratings of the effectiveness of nutraceuticals for autism spectrum disorders: Results of a national survey. J. Pers. Med., 2021, 11(9), 878. doi: 10.3390/jpm11090878 PMID: 34575655
- Mattson, M.P.; Liu, D. Energetics and oxidative stress in synaptic plasticity and neurodegenerative disorders. Neuromolecular Med., 2002, 2(2), 215-232. doi: 10.1385/NMM:2:2:215 PMID: 12428812
- Poling, J.S.; Frye, R.E.; Shoffner, J.; Zimmerman, A.W. Developmental regression and mitochondrial dysfunction in a child with autism. J. Child Neurol., 2006, 21(2), 170-172. doi: 10.1177/08830738060210021401 PMID: 16566887
- Cypser, J.R.; Johnson, T.E. Multiple stressors in Caenorhabditis elegans induce stress hormesis and extended longevity. J. Gerontol. A Biol. Sci. Med. Sci., 2002, 57(3), B109-B114. doi: 10.1093/gerona/57.3.B109 PMID: 11867647
- Krafczyk, N.; Klotz, L.O. FOXO transcription factors in antioxidant defense. IUBMB Life, 2022, 74(1), 53-61. doi: 10.1002/iub.2542 PMID: 34423888
- Hartwig, K.; Heidler, T.; Moch, J.; Daniel, H.; Wenzel, U. Feeding a ROS-generator to Caenorhabditis elegans leads to increased expression of small heat shock protein HSP-16.2 and hormesis. Genes Nutr., 2009, 4(1), 59-67. doi: 10.1007/s12263-009-0113-x PMID: 19252938
- Ristow, M.; Schmeisser, S. Extending life span by increasing oxidative stress. Free Radic. Biol. Med., 2011, 51(2), 327-336. doi: 10.1016/j.freeradbiomed.2011.05.010 PMID: 21619928
- Schulz, T.J.; Zarse, K.; Voigt, A.; Urban, N.; Birringer, M.; Ristow, M. Glucose restriction extends Caenorhabditis elegans life span by inducing mitochondrial respiration and increasing oxidative stress. Cell Metab., 2007, 6(4), 280-293. doi: 10.1016/j.cmet.2007.08.011 PMID: 17908557
- Lee, G.D.; Wilson, M.A.; Zhu, M.; Wolkow, C.A.; de Cabo, R.; Ingram, D.K.; Zou, S. Dietary deprivation extends lifespan in Caenorhabditis elegans. Aging Cell, 2006, 5(6), 515-524. doi: 10.1111/j.1474-9726.2006.00241.x PMID: 17096674
- Wang, Y.; Tissenbaum, H.A. Overlapping and distinct functions for a Caenorhabditis elegans SIR2 and DAF-16/FOXO. Mech. Ageing Dev., 2006, 127(1), 48-56. doi: 10.1016/j.mad.2005.09.005 PMID: 16280150
- Govindan, S.; Amirthalingam, M.; Duraisamy, K.; Govindhan, T.; Sundararaj, N.; Palanisamy, S. Phytochemicals-induced hormesis protects Caenorhabditis elegans against α-synuclein protein aggregation and stress through modulating HSF-1 and SKN-1/Nrf2 signaling pathways. Biomed. Pharmacother., 2018, 102, 812-822. doi: 10.1016/j.biopha.2018.03.128 PMID: 29605769
- Atkuri, K.R.; Cowan, T.M.; Kwan, T.; Ng, A.; Herzenberg, L.A.; Herzenberg, L.A.; Enns, G.M. Inherited disorders affecting mitochondrial function are associated with glutathione deficiency and hypocitrullinemia. Proc. Natl. Acad. Sci. USA, 2009, 106(10), 3941-3945. doi: 10.1073/pnas.0813409106 PMID: 19223582
- Refai, O.; Aggarwal, S.; Cheng, M.H.; Gichi, Z.; Salvino, J.M.; Bahar, I.; Blakely, R.D.; Mortensen, O.V. Allosteric modulator KM822 attenuates behavioral actions of amphetamine in Caenorhabditis elegans through Interactions with the Dopamine Transporter DAT-1. Mol. Pharmacol., 2022, 101(3), 123-131. doi: 10.1124/molpharm.121.000400 PMID: 34906999
- Rawsthorne, H.; Calahorro, F.; Holden-Dye, L.; O Connor, V.; Dillon, J. Investigating autism associated genes in C. elegans reveals candidates with a role in social behaviour. PLoS One, 2021, 16(5), e0243121. doi: 10.1371/journal.pone.0243121 PMID: 34043629
- Buddell, T.; Quinn, C.C. An autism-associated calcium channel variant causes defects in neuronal polarity in the ALM neuron of C. elegans. MicroPubl Biol.2021. doi: 10.17912/micropub.biology.000378
- Rawsthorne, H.; Calahorro, F.; Feist, E.; Holden-Dye, L.; OConnor, V.; Dillon, J. Neuroligin dependence of social behaviour in Caenorhabditis elegans provides a model to investigate an autism-associated gene. Hum. Mol. Genet., 2021, 29(21), 3546-3553. doi: 10.1093/hmg/ddaa232 PMID: 33206170
- Aguirre-Chen, C.; Stec, N.; Ramos, O.M.; Kim, N.; Kramer, M.; McCarthy, S.; Gillis, J.; McCombie, W.R.; Hammell, C.M. A Caenorhabditis elegans model for integrating the functions of neuropsychiatric risk genes identifies components required for normal dendritic morphology. G3 (Bethesda), 2020, 10(5), 1617-1628. doi: 10.1534/g3.119.400925 PMID: 32132169
- McDiarmid, T.A.; Belmadani, M.; Liang, J.; Meili, F.; Mathews, E.A.; Mullen, G.P.; Hendi, A.; Wong, W.R.; Rand, J.B.; Mizumoto, K.; Haas, K.; Pavlidis, P.; Rankin, C.H. Systematic phenomics analysis of autism-associated genes reveals parallel networks underlying reversible impairments in habituation. Proc. Natl. Acad. Sci. USA, 2020, 117(1), 656-667. doi: 10.1073/pnas.1912049116 PMID: 31754030
- Hart, M.P. Stress-induced neuron remodeling reveals differential interplay between neurexin and environmental factors in Caenorhabditis elegans. Genetics, 2019, 213(4), 1415-1430. doi: 10.1534/genetics.119.302415 PMID: 31558583
- Wong, W.R.; Brugman, K.I.; Maher, S.; Oh, J.Y.; Howe, K.; Kato, M.; Sternberg, P.W. Autism-associated missense genetic variants impact locomotion and neurodevelopment in Caenorhabditis elegans. Hum. Mol. Genet., 2019, 28(13), 2271-2281. doi: 10.1093/hmg/ddz051 PMID: 31220273
- Tong, X.J.; López-Soto, E.J.; Li, L.; Liu, H.; Nedelcu, D.; Lipscombe, D.; Hu, Z.; Kaplan, J.M. Retrograde synaptic inhibition is mediated by α-Neurexin binding to the α2δ subunits of N-type calcium channels. Neuron, 2017, 95(2), 326-340.e5. doi: 10.1016/j.neuron.2017.06.018 PMID: 28669545
- Jia, F.; Cui, M.; Than, M.T.; Han, M. Developmental defects of Caenorhabditis elegans lacking branched-chain α-ketoacid dehydrogenase are mainly caused by monomethyl branched-chain fatty acid deficiency. J. Biol. Chem., 2016, 291(6), 2967-2973. doi: 10.1074/jbc.M115.676650 PMID: 26683372
- Gyurkó, M.; Steták, A. Sőti, C.; Csermely, P. Multitarget network strategies to influence memory and forgetting: The Ras/MAPK pathway as a novel option. Mini Rev. Med. Chem., 2015, 15(8), 696-704. doi: 10.2174/1389557515666150219144336 PMID: 25694072
- Opperman, K.; Moseley-Alldredge, M.; Yochem, J.; Bell, L.; Kanayinkal, T.; Chen, L. A novel nondevelopmental role of the sax-7/L1CAM cell adhesion molecule in synaptic regulation in Caenorhabditis elegans. Genetics, 2015, 199(2), 497-509. doi: 10.1534/genetics.114.169581 PMID: 25488979
- Calabrese, V.; Cornelius, C.; Stella, A.M.G.; Calabrese, E.J. Cellular stress responses, mitostress and carnitine insufficiencies as critical determinants in aging and neurodegenerative disorders: role of hormesis and vitagenes. Neurochem. Res., 2010, 35(12), 1880-1915. doi: 10.1007/s11064-010-0307-z PMID: 21080068
- Calabrese, V.; Cornelius, C.; Dinkova-Kostova, A.T.; Calabrese, E.J. Vitagenes, cellular stress response, and acetylcarnitine: Relevance to hormesis. Biofactors, 2009, 35(2), 146-160. doi: 10.1002/biof.22 PMID: 19449442
- Calabrese, V.; Cornelius, C.; Dinkova-Kostova, A.T.; Calabrese, E.J.; Mattson, M.P. Cellular stress responses, the hormesis paradigm, and vitagenes: novel targets for therapeutic intervention in neurodegenerative disorders. Antioxid. Redox Signal., 2010, 13(11), 1763-1811. doi: 10.1089/ars.2009.3074 PMID: 20446769
- Calabrese, V.; Cornelius, C.; Mancuso, C.; Pennisi, G.; Calafato, S.; Bellia, F.; Bates, T.E.; Giuffrida, S.A.M.; Schapira, T.; Dinkova Kostova, A.T.; Rizzarelli, E. Cellular stress response: A novel target for chemoprevention and nutritional neuroprotection in aging, neurodegenerative disorders and longevity. Neurochem. Res., 2008, 33(12), 2444-2471. doi: 10.1007/s11064-008-9775-9 PMID: 18629638
- Cornelius, C.; Perrotta, R.; Graziano, A.; Calabrese, E.J.; Calabrese, V. Stress responses, vitagenes and hormesis as critical determinants in aging and longevity: Mitochondria as a "chi". Immun. Ageing, 2013, 10(1), 15. doi: 10.1186/1742-4933-10-15 PMID: 23618527
- Castejon, A.M.; Spaw, J.A.; Rozenfeld, I.; Sheinberg, N.; Kabot, S.; Shaw, A.; Hardigan, P.; Faillace, R.; Packer, E.E. Improving antioxidant capacity in children with autism: A randomized, double-blind controlled study with cysteine-rich whey protein. Front. Psychiatry, 2021, 12, 669089. doi: 10.3389/fpsyt.2021.669089 PMID: 34658941
- Erten, F. Lycopene ameliorates propionic acid-induced autism spectrum disorders by inhibiting inflammation and oxidative stress in rats. J. Food Biochem., 2021, 45(10), e13922. doi: 10.1111/jfbc.13922
- Bent, S.; Lawton, B.; Warren, T.; Widjaja, F.; Dang, K.; Fahey, J.; Cornblatt, B.; Kinchen, J.M.; Delucchi, K.; Hendren, R.L. Identification of urinary metabolites that correlate with clinical improvements in children with autism treated with sulforaphane from broccoli. Mol. Autism, 2018, 9, 35. doi: 10.1186/s13229-018-0218-4
- Salinaro, A.T.; Cornelius, C.; Koverech, G.; Koverech, A.; Scuto, M.; Lodato, F.; Fronte, V.; Muccilli, V.; Reibaldi, M.; Longo, A.; Uva, M.G.; Calabrese, V. Cellular stress response, redox status, and vitagenes in glaucoma: A systemic oxidant disorder linked to Alzheimers disease. Front. Pharmacol., 2014, 5, 129. doi: 10.3389/fphar.2014.00129 PMID: 24936186
- Yang, J.; Fu, X.; Liao, X.; Li, Y. Nrf2 activators as dietary phytochemicals against oxidative stress, inflammation, and mitochondrial dysfunction in autism spectrum disorders: A systematic review. Front. Psychiatry, 2020, 11, 561998. doi: 10.3389/fpsyt.2020.561998 PMID: 33329102
- Wardyn, J.D.; Ponsford, A.H.; Sanderson, C.M. Dissecting molecular cross-talk between Nrf2 and NF-κB response pathways. Biochem. Soc. Trans., 2015, 43(4), 621-626. doi: 10.1042/BST20150014 PMID: 26551702
- Calabrese, V.; Giordano, J.; Ruggieri, M.; Berritta, D.; Trovato, A.; Ontario, M.L.; Bianchini, R.; Calabrese, E.J. Hormesis, cellular stress response, and redox homeostasis in autism spectrum disorders. J. Neurosci. Res., 2016, 94(12), 1488-1498. doi: 10.1002/jnr.23893 PMID: 27642708
- Cheffer, A.; Flitsch, L.J.; Krutenko, T. Human stem cell-based models for studying autism spectrum disorder-related neuronal dysfunction. Mol. Autism, 2020, 11(1), 99. doi: 10.1186/s13229-020-00383-w doi: 10.1186/s13229-020-00383-w
- Siracusa, R.; Scuto, M.; Fusco, R.; Trovato, A.; Ontario, M.L.; Crea, R.; Paola, R.D.; Cuzzocrea, S.; Calabrese, V. Anti-inflammatory and anti-oxidant activity of Hidrox® in rotenone-induced Parkinsons disease in mice. Antioxidants (Basel), 2020, 9(9), 824. doi: 10.3390/antiox9090824 PMID: 32899274
- Elsayed, E.A.; El Enshasy, H.; Wadaan, M.A.M.; Aziz, R. Mushrooms: A potential natural source of anti-inflammatory compounds for medical applications. Mediators Inflamm., 2014, 2014, 1-15. doi: 10.1155/2014/805841 PMID: 25505823
- Martinez-Medina, G.A.; Chávez-González, M.L.; Verma, D.K.; Arely Prado-Barragán, L.; Martínez-Hernández, J.L.; Flores-Gallegos, A.C.; Thakur, M.; Prakash Srivastav, P.; Aguilar, C.N. Bio-funcional components in mushrooms, a health opportunity: Ergothionine and huitlacohe as recent trends. J. Functional Foods, 2021, 77, 104326. doi: 10.1016/j.jff.2020.104326
- Yildiz, O. Can, Z.; Laghari, A.Q.; Şahin, H.; Malkoç, M. Wild edible mushrooms as a natural source of phenolics and antioxidants. J. Food Biochem., 2015, 39(2), 148-154. doi: 10.1111/jfbc.12107
- Paterson, R.R.; Lima, N. Biomedical effects of mushrooms with emphasis on pure compounds. Biomed. J., 2014, 37(6), 357-368. doi: 10.4103/2319-4170.143502 PMID: 25355390
- Islam, T.; Ganesan, K.; Xu, B. New insight into mycochemical profiles and antioxidant potential of edible and medicinal mushrooms: A review. Int. J. Med. Mushrooms, 2019, 21(3), 237-251. doi: 10.1615/IntJMedMushrooms.2019030079 PMID: 31002608
- Friedman, M. Mushroom polysaccharides: Chemistry and antiobesity, antidiabetes, anticancer, and antibiotic properties in cells, rodents, and humans. Foods, 2016, 5(4), 80. doi: 10.3390/foods5040080 PMID: 28231175
- Jang, J.H.; Aruoma, O.I.; Jen, L.S.; Chung, H.Y.; Surh, Y.J. Ergothioneine rescues PC12 cells from β-amyloid-induced apoptotic death. Free Radic. Biol. Med., 2004, 36(3), 288-299. doi: 10.1016/j.freeradbiomed.2003.11.005 PMID: 15036348
- Calabrese, V.; Pennisi, M.; Crupi, R.; Di Paola, R.; Alario, A.; Modafferi, S.; Di Rosa, G.; Fernandes, T.; Signorile, A.; Maiolino, L.; Cuzzocrea, S.; Calabrese, V. Neuroinflammation and mitochondrial dysfunction in the pathogenesis of Alzheimers disease: modulation by coriolus versicolor (Yun-Zhi) nutritional mushroom. J. Neurol. Neuromed, 2017, 2(1), 19-28. doi: 10.29245/2572.942X/2017/2.942X/2017/1.1088
- Friedman, M. Chemistry, nutrition, and health-promoting properties of Hericium erinaceus (Lions Mane) mushroom fruiting bodies and mycelia and their bioactive compounds. J. Agric. Food Chem., 2015, 63(32), 7108-7123. doi: 10.1021/acs.jafc.5b02914 PMID: 26244378
- Li, I.C.; Lee, L.Y.; Tzeng, T.T.; Chen, W.P.; Chen, Y.P.; Shiao, Y.J.; Chen, C.C. Neuro health properties of Hericium erinaceus mycelia enriched with erinacines. Behav. Neurol., 2018, 2018, 1-10. doi: 10.1155/2018/5802634 PMID: 29951133
- Tsai-Teng, T.; Chin-Chu, C.; Li-Ya, L.; Wan-Ping, C.; Chung-Kuang, L.; Chien-Chang, S.; Chi-Ying, H.F.; Chien-Chih, C.; Shiao, Y.J. Erinacine A-enriched Hericium erinaceus mycelium ameliorates Alzheimers disease-related pathologies in APPswe/PS1dE9 transgenic mice. J. Biomed. Sci., 2016, 23(1), 49. doi: 10.1186/s12929-016-0266-z PMID: 27350344
- Amara, I.; Scuto, M.; Zappalà, A.; Ontario, M.L.; Petralia, A.; Abid-Essefi, S.; Maiolino, L.; Signorile, A.; Trovato Salinaro, A.; Calabrese, V. Hericium Erinaceus prevents DEHP-induced mitochondrial dysfunction and apoptosis in PC12 cells. Int. J. Mol. Sci., 2020, 21(6), 2138. doi: 10.3390/ijms21062138 PMID: 32244920
- Li, T.J.; Lee, T.Y.; Lo, Y.; Lee, L.Y.; Li, I.C.; Chen, C.C.; Chang, F.C. Hericium erinaceus mycelium ameliorate anxiety induced by continuous sleep disturbance in vivo. BMC Complementary Medicine and Therapies, 2021, 21(1), 295. doi: 10.1186/s12906-021-03463-3 PMID: 34865649
- Chong, P.S.; Fung, M.L.; Wong, K.H.; Lim, L.W. Therapeutic potential of Hericium erinaceus for depressive disorder. Int. J. Mol. Sci., 2019, 21(1), 163. doi: 10.3390/ijms21010163 PMID: 31881712
- Chiu, C.H.; Chyau, C.C.; Chen, C.C.; Lee, L.Y.; Chen, W.P.; Liu, J.L.; Lin, W.H.; Mong, M.C. Erinacine A-enriched Hericium erinaceus mycelium produces antidepressant-like effects through modulating BDNF/PI3K/Akt/GSK-3β signaling in mice. Int. J. Mol. Sci., 2018, 19(2), 341. doi: 10.3390/ijms19020341 PMID: 29364170
- Ryu, S.; Kim, H.G.; Kim, J.Y.; Kim, S.Y.; Cho, K.O. Hericium erinaceus extract reduces anxiety and depressive behaviors by promoting hippocampal neurogenesis in the adult mouse brain. J. Med. Food, 2018, 21(2), 174-180. doi: 10.1089/jmf.2017.4006 PMID: 29091526
- Fritz, H.; Kennedy, D.A.; Ishii, M.; Fergusson, D.; Fernandes, R.; Cooley, K.; Seely, D. Polysaccharide K and Coriolus versicolor extracts for lung cancer: A systematic review. Integr. Cancer Ther., 2015, 14(3), 201-211. doi: 10.1177/1534735415572883 PMID: 25784670
- Matijaević D.; Pantić M.; Raković B.; Pavlović V.; Duvnjak, D.; Sknepnek, A.; Nikić M. The antibacterial activity of coriolus versicolor methanol extract and its effect on ultrastructural changes of Staphylococcus aureus and Salmonella enteritidis. Front. Microbiol., 2016, 7, 1226. doi: 10.3389/fmicb.2016.01226 PMID: 27540376
- Trovato, A.; Siracusa, R.; Di Paola, R.; Scuto, M.; Fronte, V.; Koverech, G.; Luca, M.; Serra, A.; Toscano, M.A.; Petralia, A.; Cuzzocrea, S.; Calabrese, V. Redox modulation of cellular stress response and lipoxin A4 expression by Coriolus versicolor in rat brain: Relevance to Alzheimers disease pathogenesis. Neurotoxicology, 2016, 53, 350-358. doi: 10.1016/j.neuro.2015.09.012 PMID: 26433056
- Fang, X.; Jiang, Y.; Ji, H.; Zhao, L.; Xiao, W.; Wang, Z.; Ding, G. The synergistic beneficial effects of ginkgo flavonoid and Coriolus versicolor polysaccharide for memory improvements in a mouse model of dementia. Evid. Based Complement. Alternat. Med., 2015, 2015, 1-9. doi: 10.1155/2015/128394 PMID: 25821476
- Ishiyama, G.; Wester, J.; Lopez, I.A.; Beltran-Parrazal, L.; Ishiyama, A. Oxidative stress in the blood labyrinthine barrier in the macula utricle of menieres disease patients. Front. Physiol., 2018, 9, 1068. doi: 10.3389/fphys.2018.01068 PMID: 30233382
- Ferreiro, E.; Pita, I.R.; Mota, S.I.; Valero, J.; Ferreira, N.R.; Fernandes, T.; Calabrese, V.; Fontes-Ribeiro, C.A.; Pereira, F.C.; Rego, A.C. Coriolus versicolor biomass increases dendritic arborization of newly-generated neurons in mouse hippocampal dentate gyrus. Oncotarget, 2018, 9(68), 32929-32942. doi: 10.18632/oncotarget.25978 PMID: 30250640
- Caracci, M.O.; Avila, M.E.; Espinoza-Cavieres, F.A.; López, H.R.; Ugarte, G.D.; De Ferrari, G.V. Wnt/β-catenin-dependent transcription in autism spectrum disorders. Front. Mol. Neurosci., 2021, 14, 764756. doi: 10.3389/fnmol.2021.764756 PMID: 34858139
- Huang, H.T.; Ho, C.H.; Sung, H.Y.; Lee, L.Y.; Chen, W.P.; Chen, Y.W.; Chen, C.C.; Yang, C.S.; Tzeng, S.F. Hericium erinaceus mycelium and its small bioactive compounds promote oligodendrocyte maturation with an increase in myelin basic protein. Sci. Rep., 2021, 11(1), 6551. doi: 10.1038/s41598-021-85972-2 PMID: 33753806
- Galvez-Contreras, A.Y.; Zarate-Lopez, D.; Torres-Chavez, A.L.; Gonzalez-Perez, O. Role of oligodendrocytes and myelin in the pathophysiology of autism spectrum disorder. Brain Sci., 2020, 10(12), 951. doi: 10.3390/brainsci10120951 PMID: 33302549
- Graciarena, M.; Seiffe, A.; Nait-Oumesmar, B.; Depino, A.M. Hypomyelination and oligodendroglial alterations in a mouse model of autism spectrum disorder. Front. Cell. Neurosci., 2019, 12, 517. doi: 10.3389/fncel.2018.00517 PMID: 30687009
- Fijałkowska, A.; Jędrejko, K.; Sułkowska-Ziaja, K.; Ziaja, M.; Kała, K.; Muszyń;ska, B. Edible mushrooms as a potential component of dietary interventions for major depressive disorder. Foods, 2022, 11(10), 1489. doi: 10.3390/foods11101489 PMID: 35627059
- Huang, G.; Chen, S.; Chen, X.; Zheng, J.; Xu, Z.; Doostparast Torshizi, A.; Gong, S.; Chen, Q.; Ma, X.; Yu, J.; Zhou, L.; Qiu, S.; Wang, K.; Shi, L. Uncovering the functional link between SHANK3 deletions and deficiency in neurodevelopment using iPSC-derived human neurons. Front. Neuroanat., 2019, 13, 23. doi: 10.3389/fnana.2019.00023 PMID: 30918484
- Modafferi, S.; Zhong, X.; Kleensang, A.; Murata, Y.; Fagiani, F.; Pamies, D.; Hogberg, H.T.; Calabrese, V.; Lachman, H.; Hartung, T.; Smirnova, L. Gene-environment interactions in developmental neurotoxicity: A case study of synergy between chlorpyrifos and CHD8 knockout in human brain spheres. Environ. Health Perspect., 2021, 129(7), 077001. doi: 10.1289/EHP8580 PMID: 34259569
- Prem, S.; Millonig, J.H.; DiCicco-Bloom, E. Dysregulation of neurite outgrowth and cell migration in autism and other neurodevelopmental disorders. Adv. Neurobiol., 2020, 25, 109-153. doi: 10.1007/978-3-030-45493-7_5 PMID: 32578146
- Martínez-Cerdeño, V. Dendrite and spine modifications in autism and related neurodevelopmental disorders in patients and animal models. Dev. Neurobiol., 2017, 77(4), 393-404. doi: 10.1002/dneu.22417 PMID: 27390186
- Lo, L.H.Y.; Lai, K.O. Dysregulation of protein synthesis and dendritic spine morphogenesis in ASD: Studies in human pluripotent stem cells. Mol. Autism, 2020, 11(1), 40. doi: 10.1186/s13229-020-00349-y PMID: 32460854
- Perluigi, M.; Di Domenico, F.; Giorgi, A.; Schininà, M.E.; Coccia, R.; Cini, C.; Bellia, F.; Cambria, M.T.; Cornelius, C.; Butterfield, D.A.; Calabrese, V. Redox proteomics in aging rat brain: Involvement of mitochondrial reduced glutathione status and mitochondrial protein oxidation in the aging process. J. Neurosci. Res., 2010, 88(16), 3498-3507. doi: 10.1002/jnr.22500 PMID: 20936692
- Calabrese, V.; Mancuso, C.; Calvani, M.; Rizzarelli, E.; Butterfield, D.A.; Giuffrida Stella, A.M. Nitric oxide in the CNS: Neuroprotection versus Neurotoxicity. Nat. Neurosci., 2007, 8, 766-775. doi: 10.1038/nrn2214 PMID: 17882254
- Drake, J.; Sultana, R.; Aksenova, M.; Calabrese, V.; Butterfield, D.A. Elevation of mitochondrial glutathione by glutamylcysteine ethyl ester protects mitochondria against peroxynitrite-induced oxidative stress. J. Neurosci. Res., 2003, 74(6), 917-927. doi: 10.1002/jnr.10810 PMID: 14648597
- Culetto, E.; Sattelle, D.B. A role for Caenorhabditis elegans in understanding the function and interactions of human disease genes. Hum. Mol. Genet., 2000, 9(6), 869-877. doi: 10.1093/hmg/9.6.869 PMID: 10767309
- Lai, C.H.; Chou, C.Y.; Chang, L.Y.; Liu, C.S.; Lin, W. Identification of novel human genes evolutionarily conserved in Caenorhabditis elegans by comparative proteomics. Genome Res., 2000, 10(5), 703-713. doi: 10.1101/gr.10.5.703 PMID: 10810093
- Nigon, V.M.; Félix, M.A. History of research on C. elegans and other free-living nematodes as model organisms. WormBook, 2017, 2017, 1-84. doi: 10.1895/wormbook.1.181.1 PMID: 28326696
- Fire, A.; Xu, S.; Montgomery, M.K.; Kostas, S.A.; Driver, S.E.; Mello, C.C. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature, 1998, 391(6669), 806-811. doi: 10.1038/35888 PMID: 9486653
- Dosanjh, L.E.; Brown, M.K.; Rao, G.; Link, C.D.; Luo, Y. Behavioral phenotyping of a transgenic Caenorhabditis elegans expressing neuronal amyloid-beta. J. Alzheimers Dis., 2010, 19(2), 681-690. doi: 10.3233/JAD-2010-1267 PMID: 20110612
- Wang, C.; Saar, V.; Leung, K.L.; Chen, L.; Wong, G. Human amyloid β peptide and tau co-expression impairs behavior and causes specific gene expression changes in Caenorhabditis elegans. Neurobiol. Dis., 2018, 109(Pt A), 88-101. doi: 10.1016/j.nbd.2017.10.003 PMID: 28982592
- Huang, X.; Wang, C.; Chen, L.; Zhang, T.; Leung, K.L.; Wong, G. Human amyloid beta and α-synuclein co-expression in neurons impair behavior and recapitulate features for Lewy body dementia in Caenorhabditis elegans. Biochim. Biophys. Acta Mol. Basis Dis., 2021, 1867(10), 166203. doi: 10.1016/j.bbadis.2021.166203 PMID: 34146705
- Nass, R.; Hall, D.H.; Miller, D.M., III; Blakely, R.D. Neurotoxin-induced degeneration of dopamine neurons in Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA, 2002, 99(5), 3264-3269. doi: 10.1073/pnas.042497999 PMID: 11867711
- Lin, K.; Li, Y.; Toit, E.D.; Wendt, L.; Sun, J. Effects of polyphenol supplementations on improving depression, anxiety, and quality of life in patients with depression. Front. Psychiatry, 2021, 12, 765485. doi: 10.3389/fpsyt.2021.765485 PMID: 34819888
- Chiaradia, I.; Lancaster, M.A. Brain organoids for the study of human neurobiology at the interface of in vitro and in vivo. Nat. Neurosci., 2020, 23(12), 1496-1508. doi: 10.1038/s41593-020-00730-3 PMID: 33139941
- Qian, X.; Song, H.; Ming, G. Brain organoids: Advances, applications and challenges. Development, 2019, 146(8), dev166074. doi: 10.1242/dev.166074 PMID: 30992274
- Shen, M.D.; Piven, J. Brain and behavior development in autism from birth through infancy. Dialogues Clin. Neurosci., 2017, 19(4), 325-333. doi: 10.31887/DCNS.2017.19.4/mshen PMID: 29398928
- Ecker, C.; Schmeisser, M.J.; Loth, E.; Murphy, D.G. The neuroanatomy of autism spectrum disorder: An overview of structural neuroimaging findings and their translatability to the clinical setting. Autism, 2017, 21(1), 18-28. doi: 10.1177/1362361315627136 PMID: 26975670
- Lee, C.T.; Bendriem, R.M.; Wu, W.W.; Shen, R.F. 3D brain Organoids derived from pluripotent stem cells: promising experimental models for brain development and neurodegenerative disorders. J. Biomed. Sci., 2017, 24(1), 59. doi: 10.1186/s12929-017-0362-8 PMID: 28822354
- Fernandes, S.; Klein, D.; Marchetto, M.C. Unraveling human brain development and evolution using organoid models. Front. Cell Dev. Biol., 2021, 9, 737429. doi: 10.3389/fcell.2021.737429 PMID: 34692694
- Lim, C.S.; Yang, J.; Lee, Y.K.; Lee, K.; Lee, J.A.; Kaang, B.K. Understanding the molecular basis of autism in a dish using hiPSCs-derived neurons from ASD patients. Mol. Brain, 2015, 8(1), 57. doi: 10.1186/s13041-015-0146-6 PMID: 26419846
- Bhattacharya, A.; Choi, W.W.Y.; Muffat, J.; Li, Y. Modeling developmental brain diseases using human pluripotent stem cells-derived brain organoids progress and perspective. J. Mol. Biol., 2022, 434(3), 167386. doi: 10.1016/j.jmb.2021.167386 PMID: 34883115
- Mariani, J.; Coppola, G.; Zhang, P.; Abyzov, A.; Provini, L.; Tomasini, L.; Amenduni, M.; Szekely, A.; Palejev, D.; Wilson, M.; Gerstein, M.; Grigorenko, E.L.; Chawarska, K.; Pelphrey, K.A.; Howe, J.R.; Vaccarino, F.M. FOXG1-dependent dysregulation of GABA/glutamate neuron differentiation in autism spectrum disorders. Cell, 2015, 162(2), 375-390. doi: 10.1016/j.cell.2015.06.034 PMID: 26186191
- Avazzadeh, S.; McDonagh, K.; Reilly, J.; Wang, Y.; Boomkamp, S.D.; McInerney, V.; Krawczyk, J.; Fitzgerald, J.; Feerick, N.; OSullivan, M.; Jalali, A.; Forman, E.B.; Lynch, S.A.; Ennis, S.; Cosemans, N.; Peeters, H.; Dockery, P.; OBrien, T.; Quinlan, L.R.; Gallagher, L.; Shen, S. Increased Ca2+ signaling in NRXN1α+/- neurons derived from ASD induced pluripotent stem cells. Mol. Autism, 2019, 10(1), 52. doi: 10.1186/s13229-019-0303-3 PMID: 31893021
- Jourdon, A.; Wu, F.; Mariani, J. ASD modelling in organoids reveals imbalance of excitatory cortical neuron subtypes during early neurogenesis. bioRxiv, 2022, 26(9), 1505-1515. doi: 10.1101/2022.03.19.484988
- Calabrese, V.; Guagliano, E.; Sapienza, M.; Mancuso, C.; Butterfield, D.A.; Stella, A.M. Redox regulation of cellular stress response in neurodegenerative disorders. Ital. J. Biochem., 2006, 55(3-4), 263-282. PMID: 17274531
- Siracusa, R.; Scuto, M.; Fusco, R.; Trovato, A.; Ontario, M.L.; Crea, R.; Di Paola, R.; Cuzzocrea, S.; Calabrese, V. Anti-inflammatory and anti-oxidant activity of Hidrox® in rotenone-induced Parkinsons disease in mice. Antioxidants, 2020, 9(9), 824. doi: 10.3390/antiox9090824 PMID: 32899274
补充文件
