Reconfigurations of Dynamic Functional Network Connectivity in Large-scale Brain Network after Prolonged Abstinence in Heroin Users
- 作者: Zhang S.1, Yang W.2, Li M.1, Wen X.1, Shao Z.1, Li J.3, Liu J.1, Zhang J.4, Yu D.5, Liu J.2, Yuan K.1
-
隶属关系:
- Center for Brain Imaging, School of Life Science and Technology, Xidian University
- Department of Radiology, Second Xiangya Hospital, Central South University
- Center for Brain Imaging, School of Life Science and Technology, Xidian Universit
- , Hunan Judicial Police Academy
- Information Processing Laboratory, School of Information Engineering, Inner Mongolia University of Science and Technology
- 期: 卷 22, 编号 6 (2024)
- 页面: 1144-1153
- 栏目: Neurology
- URL: https://rjsocmed.com/1570-159X/article/view/644824
- DOI: https://doi.org/10.2174/1570159X21666221129105408
- ID: 644824
如何引用文章
全文:
详细
Background:Brain recovery phenomenon after long-term abstinence had been reported in substance use disorders. Yet, few longitudinal studies have been conducted to observe the abnormal dynamic functional connectivity (dFNC) of large-scale brain networks and recovery after prolonged abstinence in heroin users.
Objective:The current study will explore the brain network dynamic connection reconfigurations after prolonged abstinence in heroin users (HUs).
Methods:The 10-month longitudinal design was carried out for 40 HUs. The 40 healthy controls (HCs) were also enrolled. Group independent component analysis (GICA) and dFNC analysis were employed to detect the different dFNC patterns of addiction-related ICNs between HUs and HCs. The temporal properties and the graph-theoretical properties were calculated. Whether the abnormalities would be reconfigured in HUs after prolonged abstinence was then investigated.
Results:Based on eight functional networks extracted from GICA, four states were identified by the dFNC analysis. Lower mean dwell time and fraction rate in state4 were found for HUs, which were increased toward HCs after prolonged abstinence. In this state, HUs at baseline showed higher dFNC of RECN-aSN, aSN- aSN and dDMN-pSN, which decreased after protracted abstinence. A similar recovery phenomenon was found for the global efficiency and path length in abstinence HUs. Mean while, the abnormal dFNC strength was correlated with craving both at baseline and after abstinence.
Conclusion:Our longitudinal study observed the large-scale brain network reconfiguration from the dynamic perspective in HUs after prolonged abstinence and improved the understanding of the neurobiology of prolonged abstinence in HUs.
作者简介
Shan Zhang
Center for Brain Imaging, School of Life Science and Technology, Xidian University
Email: info@benthamscience.net
Wenhan Yang
Department of Radiology, Second Xiangya Hospital, Central South University
Email: info@benthamscience.net
Minpeng Li
Center for Brain Imaging, School of Life Science and Technology, Xidian University
Email: info@benthamscience.net
Xinwen Wen
Center for Brain Imaging, School of Life Science and Technology, Xidian University
Email: info@benthamscience.net
Ziqiang Shao
Center for Brain Imaging, School of Life Science and Technology, Xidian University
Email: info@benthamscience.net
Jun Li
Center for Brain Imaging, School of Life Science and Technology, Xidian Universit
Email: info@benthamscience.net
Jixin Liu
Center for Brain Imaging, School of Life Science and Technology, Xidian University
Email: info@benthamscience.net
Jun Zhang
, Hunan Judicial Police Academy
Email: info@benthamscience.net
Dahua Yu
Information Processing Laboratory, School of Information Engineering, Inner Mongolia University of Science and Technology
Email: info@benthamscience.net
Jun Liu
Department of Radiology, Second Xiangya Hospital, Central South University
编辑信件的主要联系方式.
Email: info@benthamscience.net
Kai Yuan
Center for Brain Imaging, School of Life Science and Technology, Xidian University
编辑信件的主要联系方式.
Email: info@benthamscience.net
参考
- Power, J.D.; Cohen, A.L.; Nelson, S.M.; Wig, G.S.; Barnes, K.A.; Church, J.A.; Vogel, A.C.; Laumann, T.O.; Miezin, F.M.; Schlaggar, B.L.; Petersen, S.E. Functional network organization of the human brain. Neuron, 2011, 72(4), 665-678. doi: 10.1016/j.neuron.2011.09.006 PMID: 22099467
- Heilig, M.; MacKillop, J.; Martinez, D.; Rehm, J.; Leggio, L.; Vanderschuren, L.J.M.J. Addiction as a brain disease revised: Why it still matters, and the need for consilience. Neuropsychopharmacology, 2021, 46(10), 1715-1723. doi: 10.1038/s41386-020-00950-y PMID: 33619327
- Leshner, A.I. Addiction is a brain disease, and it matters. Science, 1997, 278(5335), 45-47. doi: 10.1126/science.278.5335.45 PMID: 9311924
- Volkow, N.D.; Wang, G.J.; Fowler, J.S.; Tomasi, D.; Telang, F. Addiction: Beyond dopamine reward circuitry. Proc. Natl. Acad. Sci., 2011, 108(37), 15037-15042. doi: 10.1073/pnas.1010654108 PMID: 21402948
- Menon, V. Large-scale brain networks and psychopathology: A unifying triple network model. Trends Cogn. Sci., 2011, 15(10), 483-506. doi: 10.1016/j.tics.2011.08.003 PMID: 21908230
- Yuan, K.; Qin, W.; Dong, M.; Liu, J.; Liu, P.; Zhang, Y.; Sun, J.; Wang, W.; Wang, Y.; Li, Q.; Yang, W.; Tian, J. Combining spatial and temporal information to explore resting-state networks changes in abstinent heroin-dependent individuals. Neurosci. Lett., 2010, 475(1), 20-24. doi: 10.1016/j.neulet.2010.03.033 PMID: 20302912
- Liu, S.; Wang, S.; Zhang, M.; Xu, Y.; Shao, Z.; Chen, L.; Yang, W.; Liu, J.; Yuan, K. Brain responses to drug cues predict craving changes in abstinent heroin users: A preliminary study. Neuroimage, 2021, 237, 118169. doi: 10.1016/j.neuroimage.2021.118169 PMID: 34000396
- Chen, J.; Wang, F.; Zhu, J.; Li, Y.; Liu, W.; Xue, J.; Shi, H.; Li, W.; Li, Q.; Wang, W. Assessing effect of long-term abstinence on coupling of three core brain networks in male heroin addicts: A resting-state functional magnetic resonance imaging study. Addict. Biol., 2021, 26(4), e12982. doi: 10.1111/adb.12982 PMID: 33142364
- Yang, W.; Zhang, M.; Tang, F.; Du, Y.; Fan, L.; Luo, J.; Yan, C.; Wang, S.; Zhang, J.; Yuan, K.; Liu, J. Recovery of superior frontal gyrus cortical thickness and resting-state functional connectivity in abstinent heroin users after 8 months of follow-up. Hum. Brain Mapp., 2022, 43(10), 3164-3175. doi: 10.1002/hbm.25841 PMID: 35324057
- Lerman, C.; Gu, H.; Loughead, J.; Ruparel, K.; Yang, Y.; Stein, E.A. Large-scale brain network coupling predicts acute nicotine abstinence effects on craving and cognitive function. JAMA Psychiatry, 2014, 71(5), 523-530. doi: 10.1001/jamapsychiatry.2013.4091 PMID: 24622915
- Sutherland, M.T.; McHugh, M.J.; Pariyadath, V.; Stein, E.A. Resting state functional connectivity in addiction: Lessons learned and a road ahead. Neuroimage, 2012, 62(4), 2281-2295. doi: 10.1016/j.neuroimage.2012.01.117 PMID: 22326834
- Menon, V.; Uddin, L.Q. Saliency, switching, attention and control: A network model of insula function. Brain Struct. Funct., 2010, 214(5-6), 655-667. doi: 10.1007/s00429-010-0262-0 PMID: 20512370
- Xu, Y.; Wang, S.; Chen, L.; Shao, Z.; Zhang, M.; Liu, S.; Wen, X.; Li, Y.; Yang, W.; Tang, F.; Luo, J.; Fan, L.; Yan, C.; Liu, J.; Yuan, K. Reduced midbrain functional connectivity and recovery in abstinent heroin users. J. Psychiatr. Res., 2021, 144, 168-176. doi: 10.1016/j.jpsychires.2021.10.011 PMID: 34662755
- Allen, E.A.; Damaraju, E.; Plis, S.M.; Erhardt, E.B.; Eichele, T.; Calhoun, V.D. Tracking whole-brain connectivity dynamics in the resting state. Cereb. Cortex, 2014, 24(3), 663-676. doi: 10.1093/cercor/bhs352 PMID: 23146964
- Matsui, T.; Murakami, T.; Ohki, K. Neuronal origin of the temporal dynamics of spontaneous BOLD activity correlation. Cereb. Cortex, 2019, 29(4), 1496-1508. doi: 10.1093/cercor/bhy045 PMID: 29522092
- Ma, Z.; Zhang, N. Temporal transitions of spontaneous brain activity. eLife, 2018, 7, e33562. doi: 10.7554/eLife.33562 PMID: 29517975
- Tu, Y.; Fu, Z.; Mao, C.; Falahpour, M.; Gollub, R.L.; Park, J.; Wilson, G.; Napadow, V.; Gerber, J.; Chan, S.T.; Edwards, R.R.; Kaptchuk, T.J.; Liu, T.; Calhoun, V.; Rosen, B.; Kong, J. Distinct thalamocortical network dynamics are associated with the pathophysiology of chronic low back pain. Nat. Commun., 2020, 11(1), 3948. doi: 10.1038/s41467-020-17788-z PMID: 31911652
- Liu, F.; Wang, Y.; Li, M.; Wang, W.; Li, R.; Zhang, Z.; Lu, G.; Chen, H. Dynamic functional network connectivity in idiopathic generalized epilepsy with generalized tonic-clonic seizure. Hum. Brain Mapp., 2017, 38(2), 957-973. doi: 10.1002/hbm.23430 PMID: 27726245
- Xue, K.; Liang, S.; Yang, B.; Zhu, D.; Xie, Y.; Qin, W.; Liu, F.; Zhang, Y.; Yu, C. Local dynamic spontaneous brain activity changes in first-episode, treatment-naïve patients with major depressive disorder and their associated gene expression profiles. Psychol. Med., 2020, 52(11), 1-10. PMID: 33121546
- Li, Q.; Wang, Y.; Zhang, Y.; Li, W.; Yang, W.; Zhu, J.; Wu, N.; Chang, H.; Zheng, Y.; Qin, W.; Zhao, L.; Yuan, K.; Liu, J.; Wang, W.; Tian, J. Craving correlates with mesolimbic responses to heroin-related cues in short-term abstinence from heroin: An event-related fMRI study. Brain Res., 2012, 1469, 63-72. doi: 10.1016/j.brainres.2012.06.024 PMID: 22759909
- Varjacic, A.; Mantini, D.; Demeyere, N.; Gillebert, C.R. Neural signatures of trail making test performance: Evidence from lesion-mapping and neuroimaging studies. Neuropsychologia, 2018, 115, 78-87. doi: 10.1016/j.neuropsychologia.2018.03.031 PMID: 29596856
- Chao-Gan, Y.; Yu-Feng, Z. DPARSF: A MATLAB toolbox for" pipeline" data analysis of resting-state fMRI. Front. Syst. Neurosci., 2010, 4, 13. PMID: 20577591
- Calhoun, V.D.; Adali, T.; Pearlson, G.D.; Pekar, J.J. A method for making group inferences from functional MRI data using independent component analysis. Hum. Brain Mapp., 2001, 14(3), 140-151. doi: 10.1002/hbm.1048 PMID: 11559959
- Bell, A.J.; Sejnowski, T.J. An information-maximization approach to blind separation and blind deconvolution. Neural Comput., 1995, 7(6), 1129-1159. doi: 10.1162/neco.1995.7.6.1129 PMID: 7584893
- Himberg, J.; Hyvärinen, A.; Esposito, F. Validating the independent components of neuroimaging time series via clustering and visualization. Neuroimage, 2004, 22(3), 1214-1222. doi: 10.1016/j.neuroimage.2004.03.027 PMID: 15219593
- Shirer, W.R.; Ryali, S.; Rykhlevskaia, E.; Menon, V.; Greicius, M.D. Decoding subject-driven cognitive states with whole-brain connectivity patterns. Cereb. Cortex, 2012, 22(1), 158-165. doi: 10.1093/cercor/bhr099 PMID: 21616982
- Cordes, D.; Haughton, V.M.; Arfanakis, K.; Wendt, G.J.; Turski, P.A.; Moritz, C.H.; Quigley, M.A.; Meyerand, M.E. Mapping functionally related regions of brain with functional connectivity MR imaging. AJNR Am. J. Neuroradiol., 2000, 21(9), 1636-1644. PMID: 11039342
- Friedman, J.; Hastie, T.; Tibshirani, R. Sparse inverse covariance estimation with the graphical lasso. Biostatistics, 2008, 9(3), 432-441. doi: 10.1093/biostatistics/kxm045 PMID: 18079126
- Varoquaux, G.; Gramfort, A.; Poline, J-B.; Thirion, B. Brain covariance selection: better individual functional connectivity models using population prior. Adv. Neural Inf. Process. Syst., 2010, 23.
- Allen, E.A.; Erhardt, E.B.; Damaraju, E.; Gruner, W.; Segall, J.M.; Silva, R.F.; Havlicek, M.; Rachakonda, S.; Fries, J.; Kalyanam, R.; Michael, A.M.; Caprihan, A.; Turner, J.A.; Eichele, T.; Adelsheim, S.; Bryan, A.D.; Bustillo, J.; Clark, V.P.; Feldstein Ewing, S.W.; Filbey, F.; Ford, C.C.; Hutchison, K.; Jung, R.E.; Kiehl, K.A.; Kodituwakku, P.; Komesu, Y.M.; Mayer, A.R.; Pearlson, G.D.; Phillips, J.P.; Sadek, J.R.; Stevens, M.; Teuscher, U.; Thoma, R.J.; Calhoun, V.D. A baseline for the multivariate comparison of resting-state networks. Front. Syst. Neurosci., 2011, 5, 2. doi: 10.3389/fnsys.2011.00002 PMID: 21442040
- Tu, Y.; Fu, Z.; Zeng, F.; Maleki, N.; Lan, L.; Li, Z.; Park, J.; Wilson, G.; Gao, Y.; Liu, M.; Calhoun, V.; Liang, F.; Kong, J. Abnormal thalamocortical network dynamics in migraine. Neurology, 2019, 92(23), e2706-e2716. doi: 10.1212/WNL.0000000000007607 PMID: 31076535
- Damaraju, E.; Allen, E.A.; Belger, A.; Ford, J.M.; McEwen, S.; Mathalon, D.H.; Mueller, B.A.; Pearlson, G.D.; Potkin, S.G.; Preda, A.; Turner, J.A.; Vaidya, J.G.; van Erp, T.G.; Calhoun, V.D. Dynamic functional connectivity analysis reveals transient states of dysconnectivity in schizophrenia. Neuroimage Clin., 2014, 5, 298-308. doi: 10.1016/j.nicl.2014.07.003 PMID: 25161896
- Preacher, K.J.; Hayes, A.F. SPSS and SAS procedures for estimating indirect effects in simple mediation models. Behav. Res. Methods Instrum. Comput., 2004, 36(4), 717-731. doi: 10.3758/BF03206553 PMID: 15641418
- Li, Y.; Yuan, K.; Guan, Y.; Cheng, J.; Bi, Y.; Shi, S.; Xue, T.; Lu, X.; Qin, W.; Yu, D.; Tian, J. The implication of salience network abnormalities in young male adult smokers. Brain Imaging Behav., 2017, 11(4), 943-953. doi: 10.1007/s11682-016-9568-8 PMID: 27437925
- McHugh, M.J.; Gu, H.; Yang, Y.; Adinoff, B.; Stein, E.A. Executive control network connectivity strength protects against relapse to cocaine use. Addict. Biol., 2017, 22(6), 1790-1801. doi: 10.1111/adb.12448 PMID: 27600492
- Lu, L.; Yang, W.; Zhang, X.; Tang, F.; Du, Y.; Fan, L.; Luo, J.; Yan, C.; Zhang, J.; Li, J.; Liu, J.; von Deneen, K.M.; Yu, D.; Liu, J.; Yuan, K. Potential brain recovery of frontostriatal circuits in heroin users after prolonged abstinence: A preliminary study. J. Psychiatr. Res., 2022, 152, 326-334. doi: 10.1016/j.jpsychires.2022.06.036 PMID: 35785575
- Zhang, S.; Li, M.; Wang, S.; Zhang, J.; Liu, J.; Yuan, K. Partial recovery of the left DLPFC-right insula circuit with reduced carving in abstinent heroin users: A longitudinal study; Preprint, 2022. doi: 10.21203/rs.3.rs-1788658/v1
- Manoliu, A.; Meng, C.; Brandl, F.; Doll, A.; Tahmasian, M.; Scherr, M.; Schwerthöffer, D.; Zimmer, C.; Förstl, H.; Bäuml, J.; Riedl, V.; Wohlschläger, A.M.; Sorg, C. Insular dysfunction within the salience network is associated with severity of symptoms and aberrant inter-network connectivity in major depressive disorder. Front. Hum. Neurosci., 2014, 7, 930. doi: 10.3389/fnhum.2013.00930 PMID: 24478665
- Zhang, Y.; Gong, J.; Xie, C.; Ye, E.M.; Jin, X.; Song, H.; Yang, Z.; Shao, Y. Alterations in brain connectivity in three sub-regions of the anterior cingulate cortex in heroin-dependent individuals: Evidence from resting state fMRI. Neuroscience, 2015, 284, 998-1010. doi: 10.1016/j.neuroscience.2014.11.007 PMID: 25446365
- Ma, N.; Liu, Y.; Fu, X.M.; Li, N.; Wang, C.X.; Zhang, H.; Qian, R.B.; Xu, H.S.; Hu, X.; Zhang, D.R. Abnormal brain default-mode network functional connectivity in drug addicts. PLoS One, 2011, 6(1), e16560. doi: 10.1371/journal.pone.0016560 PMID: 21298074
- Li, Q.; Yang, W.C.; Wang, Y.R.; Huang, Y.F.; Li, W.; Zhu, J.; Zhang, Y.; Zhao, L.Y.; Qin, W.; Yuan, K.; von Deneen, K.M.; Wang, W.; Tian, J. Abnormal function of the posterior cingulate cortex in heroin addicted users during resting-state and drug-cue stimulation task. Chin. Med. J., 2013, 126(4), 734-739. PMID: 23422198
- Wang, W.; Wang, Y.R.; Qin, W.; Yuan, K.; Tian, J.; Li, Q.; Yang, L.Y.; Lu, L.; Guo, Y.M. Changes in functional connectivity of ventral anterior cingulate cortex in heroin abusers. Chin. Med. J., 2010, 123(12), 1582-1588. PMID: 20819516
- Haber, S. Parallel and integrative processing through the Basal Ganglia reward circuit: lessons from addiction. Biol. Psychiatry, 2008, 64(3), 173-174. doi: 10.1016/j.biopsych.2008.05.033 PMID: 18617023
- Gremel, C.M.; Lovinger, D.M. Associative and sensorimotor cortico-basal ganglia circuit roles in effects of abused drugs. Genes Brain Behav., 2017, 16(1), 71-85. doi: 10.1111/gbb.12309 PMID: 27457495
- Zhang, R.; Jiang, G.; Tian, J.; Qiu, Y.; Wen, X.; Zalesky, A.; Li, M.; Ma, X.; Wang, J.; Li, S.; Wang, T.; Li, C.; Huang, R. Abnormal white matter structural networks characterize heroin-dependent individuals: A network analysis. Addict. Biol., 2016, 21(3), 667-678. doi: 10.1111/adb.12234 PMID: 25740690
- Yuan, K.; Qin, W.; Liu, J.; Guo, Q.; Dong, M.; Sun, J.; Zhang, Y.; Liu, P.; Wang, W.; Wang, Y.; Li, Q.; Yang, W.; von Deneen, K.M.; Gold, M.S.; Liu, Y.; Tian, J. Altered small-world brain functional networks and duration of heroin use in male abstinent heroin-dependent individuals. Neurosci. Lett., 2010, 477(1), 37-42. doi: 10.1016/j.neulet.2010.04.032 PMID: 20417253
补充文件
