Surgical Advances in Parkinson’s Disease


Cite item

Full Text

Abstract

While symptomatic pharmacological therapy remains the main therapeutic strategy for Parkinson’s disease (PD), over the last two decades, surgical approaches have become more commonly used to control levodopa-induced motor complications and dopamine-resistant and non-motor symptoms of PD. In this paper, we discuss old and new surgical treatments for PD and the many technological innovations in this field. We have initially reviewed the relevant surgical anatomy as well as the pathological signaling considered to be the underlying cause of specific symptoms of PD. Subsequently, early attempts at surgical symptom control will be briefly reviewed. As the most well-known surgical intervention for PD is deep brain stimulation, this subject is discussed at length. As deciding on whether a patient stands to benefit from DBS can be quite difficult, the different proposed paradigms for precisely this are covered. Following this, the evidence regarding different targets, especially the subthalamic nucleus and internal globus pallidus, is reviewed as well as the evidence for newer proposed targets for specific symptoms. Due to the rapidly expanding nature of knowledge and technological capabilities, some of these new and potential future capabilities are given consideration in terms of their current and future use. Following this, we have reviewed newer treatment modalities, especially magnetic resonance-guided focused ultrasound and other potential surgical therapies, such as spinal cord stimulation for gait symptoms and others. As mentioned, the field of surgical alleviation of symptoms of PD is undergoing a rapid expansion, and this review provides a general overview of the current status and future directions in the field.

About the authors

Victor Hvingelby

Department of Clinical Medicine, Nuclear Medicine and PET Center, Aarhus University

Email: info@benthamscience.net

Nicola Pavese

Department of Clinical Medicine, Nuclear Medicine and PET Center, Aarhus University

Author for correspondence.
Email: info@benthamscience.net

References

  1. Tolosa, E.; Martí, M.J.; Valldeoriola, F.; Molinuevo, J.L. History of levodopa and dopamine agonists in Parkinson’s disease treatment. Neurology, 1998, 50(Suppl. 6), S2-S10. doi: 10.1212/WNL.50.6_Suppl_6.S2 PMID: 9633679
  2. Güngör, A.; Baydın, Ş.S; Holanda, V.M.; Middlebrooks, E.H.; Isler, C.; Tugcu, B.; Foote, K.; Tanriover, N. Microsurgical anatomy of the subthalamic nucleus: correlating fiber dissection results with 3-T magnetic resonance imaging using neuronavigation. J. Neurosurg., 2019, 130(3), 716-732. doi: 10.3171/2017.10.JNS171513 PMID: 29726781
  3. Kerl, H.U.; Gerigk, L.; Pechlivanis, I.; Al-Zghloul, M.; Groden, C.; Nölte, I. The subthalamic nucleus at 3.0 Tesla: choice of optimal sequence and orientation for deep brain stimulation using a standard installation protocol. J. Neurosurg., 2012, 117(6), 1155-1165. doi: 10.3171/2012.8.JNS111930 PMID: 23039154
  4. Patil, P.G.; Conrad, E.C.; Aldridge, J.W.; Chenevert, T.L.; Chou, K.L. The anatomical and electrophysiological subthalamic nucleus visualized by 3-T magnetic resonance imaging. Neurosurgery, 2012, 71(6), 1089-1095. doi: 10.1227/NEU.0b013e318270611f PMID: 22948201
  5. Plaha, P.; Ben-Shlomo, Y.; Patel, N.K.; Gill, S.S. Stimulation of the caudal zona incerta is superior to stimulation of the subthalamic nucleus in improving contralateral parkinsonism. Brain, 2006, 129(7), 1732-1747. doi: 10.1093/brain/awl127 PMID: 16720681
  6. Holanda, V.M.; Okun, M.S.; Middlebrooks, E.H.; Gungor, A.; Barry, M.E.; Forder, J.; Foote, K.D. Postmortem dissections of common targets for lesion and deep brain stimulation surgeries. Neurosurgery, 2020, 86(6), 860-872. doi: 10.1093/neuros/nyz318 PMID: 31504849
  7. Wichmann, T.; DeLong, M.R. Functional and pathophysiological models of the basal ganglia. Curr. Opin. Neurobiol., 1996, 6(6), 751-758. doi: 10.1016/S0959-4388(96)80024-9 PMID: 9000030
  8. Obeso, J.A.; Rodríguez-Oroz, M.C.; Benitez-Temino, B.; Blesa, F.J.; Guridi, J.; Marin, C.; Rodriguez, M. Functional organization of the basal ganglia: Therapeutic implications for Parkinson’s disease. Mov. Disord., 2008, 23(Suppl. 3), S548-S559. doi: 10.1002/mds.22062 PMID: 18781672
  9. van Albada, S.J.; Robinson, P.A. Mean-field modeling of the basal ganglia-thalamocortical system. I Firing rates in healthy and parkinsonian states. J. Theor. Biol., 2009, 257(4), 642-663. doi: 10.1016/j.jtbi.2008.12.018 PMID: 19168074
  10. Wichmann, T.; Soares, J. Neuronal firing before and after burst discharges in the monkey basal ganglia is predictably patterned in the normal state and altered in parkinsonism. J. Neurophysiol., 2006, 95(4), 2120-2133. doi: 10.1152/jn.01013.2005 PMID: 16371459
  11. Alexander, G.E.; DeLong, M.R.; Strick, P.L. Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu. Rev. Neurosci., 1986, 9(1), 357-381. doi: 10.1146/annurev.ne.09.030186.002041 PMID: 3085570
  12. Alexander, G.E.; Crutcher, M.D.; DeLong, M.R. Basal gangliathalamocortical circuits: Parallel substrates for motor, oculomotor, "prefrontal" and "limbic" functions. Prog. Brain Res., 1991, 85, 119-146. doi: 10.1016/S0079-6123(08)62678-3 PMID: 2094891
  13. Fazl, A.; Fleisher, J. Anatomy, physiology, and clinical syndromes of the basal ganglia: a brief review. Semin. Pediatr. Neurol., 2018, 25, 2-9. doi: 10.1016/j.spen.2017.12.005 PMID: 29735113
  14. Galvan, A.; Wichmann, T. Pathophysiology of Parkinsonism. Clin. Neurophysiol., 2008, 119(7), 1459-1474. doi: 10.1016/j.clinph.2008.03.017 PMID: 18467168
  15. Brown, P.; Oliviero, A.; Mazzone, P.; Insola, A.; Tonali, P.; Di Lazzaro, V. Dopamine dependency of oscillations between subthalamic nucleus and pallidum in Parkinson’s disease. J. Neurosci., 2001, 21(3), 1033-1038. doi: 10.1523/JNEUROSCI.21-03-01033.2001 PMID: 11157088
  16. Priori, A.; Foffani, G.; Pesenti, A.; Tamma, F.; Bianchi, A.; Pellegrini, M.; Locatelli, M.; Moxon, K.; Villani, R. Rhythm-specific pharmacological modulation of subthalamic activity in Parkinson’s disease. Exp. Neurol., 2004, 189(2), 369-379. doi: 10.1016/j.expneurol.2004.06.001 PMID: 15380487
  17. Sommerauer, M.; Fedorova, T.D.; Hansen, A.K.; Knudsen, K.; Otto, M.; Jeppesen, J.; Frederiksen, Y.; Blicher, J.U.; Geday, J.; Nahimi, A.; Damholdt, M.F.; Brooks, D.J.; Borghammer, P. Evaluation of the noradrenergic system in Parkinson’s disease: an 11C-MeNER PET and neuromelanin MRI study. Brain, 2018, 141(2), 496-504. doi: 10.1093/brain/awx348 PMID: 29272343
  18. Pasquini, J.; Brooks, D.J.; Pavese, N. The cholinergic brain in Parkinson’s disease. Mov. Disord. Clin. Pract. (Hoboken), 2021, 8(7), 1012-1026. doi: 10.1002/mdc3.13319 PMID: 34631936
  19. Oliver, L.C. Parkinson’s disease and its surgical treatment; H. K. Lewis & Co.: London, 1953.
  20. Gardner, W.J. Surgical aspect of Parkinson’s syndrome. Postgrad. Med., 1949, 5(2), 107-111. doi: 10.1080/00325481.1949.11693763 PMID: 18123618
  21. Cooper, I.S. The neurosurgical alleviation of Parkinsonism. Springfield: Irving California,; Charles C. Thomas: Ill, 1956.
  22. Meyers, R. Surgical experiments in the therapy of certain ‘extrapyramidal’ diseases: a current evaluation. Acta Psychiatr. Neurol. Suppl., 1951, 67, 1-42. PMID: 14837767
  23. Schuepbach, W.M.; Rau, J.; Knudsen, K.; Volkmann, J.; Krack, P.; Timmermann, L.; Hälbig, T.D.; Hesekamp, H.; Navarro, S.M.; Meier, N.; Falk, D.; Mehdorn, M.; Paschen, S.; Maarouf, M.; Barbe, M.T.; Fink, G.R.; Kupsch, A.; Gruber, D.; Schneider, G.H.; Seigneuret, E.; Kistner, A.; Chaynes, P.; Ory-Magne, F.; Brefel Courbon, C.; Vesper, J.; Schnitzler, A.; Wojtecki, L.; Houeto, J.L.; Bataille, B.; Maltête, D.; Damier, P.; Raoul, S.; Sixel-Doering, F.; Hellwig, D.; Gharabaghi, A.; Krüger, R.; Pinsker, M.O.; Amtage, F.; Régis, J.M.; Witjas, T.; Thobois, S.; Mertens, P.; Kloss, M.; Hartmann, A.; Oertel, W.H.; Post, B.; Speelman, H.; Agid, Y.; Schade-Brittinger, C.; Deuschl, G. Neurostimulation for Parkinson's disease with early motor complications. N. Engl. J. Med., 2013, 368(7), 610-622. doi: 10.1056/NEJMoa1205158 PMID: 23406026
  24. Deuschl, G.; Schade-Brittinger, C.; Krack, P.; Volkmann, J.; Schäfer, H.; Bötzel, K.; Daniels, C.; Deutschländer, A.; Dillmann, U.; Eisner, W.; Gruber, D.; Hamel, W.; Herzog, J.; Hilker, R.; Klebe, S.; Kloß, M.; Koy, J.; Krause, M.; Kupsch, A.; Lorenz, D.; Lorenzl, S.; Mehdorn, H.M.; Moringlane, J.R.; Oertel, W.; Pinsker, M.O.; Reichmann, H.; Reuß, A.; Schneider, G.H.; Schnitzler, A.; Steude, U.; Sturm, V.; Timmermann, L.; Tronnier, V.; Trottenberg, T.; Wojtecki, L.; Wolf, E.; Poewe, W.; Voges, J. A randomized trial of deep-brain stimulation for Parkinson’s disease. N. Engl. J. Med., 2006, 355(9), 896-908. doi: 10.1056/NEJMoa060281 PMID: 16943402
  25. Hitti, F.L.; Ramayya, A.G.; McShane, B.J.; Yang, A.I.; Vaughan, K.A.; Baltuch, G.H. Long-term outcomes following deep brain stimulation for Parkinson’s disease. J. Neurosurg., 2019, 1-6. PMID: 30660117
  26. Witt, K.; Daniels, C.; Volkmann, J. Factors associated with neuropsychiatric side effects after STN-DBS in Parkinson’s disease. Parkinsonism Relat. Disord., 2012, 18(Suppl. 1), S168-S170. doi: 10.1016/S1353-8020(11)70052-9 PMID: 22166423
  27. Sidtis, J.J.; Van Lancker Sidtis, D.; Ramdhani, R.; Tagliati, M. Speech intelligibility during clinical and low frequency. Brain Sci., 2020, 10(1), 26. doi: 10.3390/brainsci10010026 PMID: 31906549
  28. Defer, G-L.; Widner, H.; Marié, R-M.; Rémy, P.; Levivier, M. Core assessment program for surgical interventional therapies in Parkinson’s disease (CAPSIT-PD). Mov. Disord., 1999, 14(4), 572-584. doi: 10.1002/1531-8257(199907)14:43.0.CO;2-C PMID: 10435493
  29. Moro, E.; Allert, N.; Eleopra, R.; Houeto, J.L.; Phan, T.M.; Stoevelaar, H. A decision tool to support appropriate referral for deep brain stimulation in Parkinson’s disease. J. Neurol., 2009, 256(1), 83-88. doi: 10.1007/s00415-009-0069-1 PMID: 19221846
  30. Okun, M.S.; Fernandez, H.H.; Pedraza, O.; Misra, M.; Lyons, K.E.; Pahwa, R.; Tarsy, D.; Scollins, L.; Corapi, K.; Friehs, G.M.; Grace, J.; Romrell, J.; Foote, K.D. Development and initial validation of a screening tool for Parkinson disease surgical candidates. Neurology, 2004, 63(1), 161-163. doi: 10.1212/01.WNL.0000133122.14824.25 PMID: 15249630
  31. Wächter, T.; Mínguez-Castellanos, A.; Valldeoriola, F.; Herzog, J.; Stoevelaar, H. A tool to improve pre-selection for deep brain stimulation in patients with Parkinson’s disease. J. Neurol., 2011, 258(4), 641-646. doi: 10.1007/s00415-010-5814-y PMID: 21088849
  32. Pal, G.D.; Persinger, V.; Bernard, B.; Ouyang, B.; Goetz, C.G.; Verhagen, M.L. The core assessment program for surgical interventional therapies in parkinson’s disease (CAPSIT-PD): Tolerability of preoperative neuropsychological testing for deep brain stimulation in Parkinson’s disease. Mov. Disord. Clin. Pract. (Hoboken), 2015, 2(4), 379-383. doi: 10.1002/mdc3.12213 PMID: 30363547
  33. Artusi, C.A.; Lopiano, L.; Morgante, F. Deep brain stimulation selection criteria for Parkinson’s disease: time to Go beyond CAPSIT-PD. J. Clin. Med., 2020, 9(12), 3931. doi: 10.3390/jcm9123931 PMID: 33291579
  34. Anderson, V.C.; Burchiel, K.J.; Hogarth, P.; Favre, J.; Hammerstad, J.P. Pallidal vs. subthalamic nucleus deep brain stimulation in Parkinson disease. Arch. Neurol., 2005, 62(4), 554-560. doi: 10.1001/archneur.62.4.554 PMID: 15824252
  35. Xie, C.L.; Shao, B.; Chen, J.; Zhou, Y.; Lin, S.Y.; Wang, W.W. Effects of neurostimulation for advanced Parkinson’s disease patients on motor symptoms: A multiple-treatments meta-analysas of randomized controlled trials. Sci. Rep., 2016, 6(1), 25285. doi: 10.1038/srep25285 PMID: 27142183
  36. Mansouri, A.; Taslimi, S.; Badhiwala, J.H.; Witiw, C.D.; Nassiri, F.; Odekerken, V.J.J.; De Bie, R.M.A.; Kalia, S.K.; Hodaie, M.; Munhoz, R.P.; Fasano, A.; Lozano, A.M. Deep brain stimulation for Parkinson’s disease: meta-analysis of results of randomized trials at varying lengths of follow-up. J. Neurosurg., 2018, 128(4), 1199-1213. doi: 10.3171/2016.11.JNS16715 PMID: 28665252
  37. Mao, Z.; Ling, Z.; Pan, L.; Xu, X.; Cui, Z.; Liang, S.; Yu, X. Comparison of efficacy of deep brain stimulation of different targets in Parkinson’s disease: a network meta-analysis. Front. Aging Neurosci., 2019, 11, 23. doi: 10.3389/fnagi.2019.00023 PMID: 30853908
  38. Liu, Y.; Zhang, L.; Chen, W.; Ling, Y.; Xu, M.; Li, Y.; Yang, C.; Liu, J.; Chen, L.; Jiang, N. Subthalamic nucleus deep brain stimulation improves sleep in Parkinson’s disease patients: a retrospective study and a meta-analysis. Sleep Med., 2020, 74, 301-306. doi: 10.1016/j.sleep.2020.07.042 PMID: 32882663
  39. Xu, H.; Zheng, F.; Krischek, B.; Ding, W.; Xiong, C.; Wang, X.; Niu, C. Subthalamic nucleus and globus pallidus internus stimulation for the treatment of Parkinson’s disease: A systematic review. J. Int. Med. Res., 2017, 45(5), 1602-1612. doi: 10.1177/0300060517708102 PMID: 28701061
  40. Weaver, F.M.; Follett, K.; Stern, M.; Hur, K.; Harris, C.; Marks, W.J., Jr; Rothlind, J.; Sagher, O.; Reda, D.; Moy, C.S.; Pahwa, R.; Burchiel, K.; Hogarth, P.; Lai, E.C.; Duda, J.E.; Holloway, K.; Samii, A.; Horn, S.; Bronstein, J.; Stoner, G.; Heemskerk, J.; Huang, G.D. Bilateral deep brain stimulation vs. best medical therapy for patients with advanced Parkinson disease: a randomized controlled trial. JAMA, 2009, 301(1), 63-73. doi: 10.1001/jama.2008.929 PMID: 19126811
  41. Weaver, F.M.; Follett, K.A.; Stern, M.; Luo, P.; Harris, C.L.; Hur, K.; Marks, W.J., Jr; Rothlind, J.; Sagher, O.; Moy, C.; Pahwa, R.; Burchiel, K.; Hogarth, P.; Lai, E.C.; Duda, J.E.; Holloway, K.; Samii, A.; Horn, S.; Bronstein, J.M.; Stoner, G.; Starr, P.A.; Simpson, R.; Baltuch, G.; De Salles, A.; Huang, G.D.; Reda, D.J. Randomized trial of deep brain stimulation for Parkinson disease: Thirty-six-month outcomes. Neurology, 2012, 79(1), 55-65. doi: 10.1212/WNL.0b013e31825dcdc1 PMID: 22722632
  42. Odekerken, V.J.J.; van Laar, T.; Staal, M.J.; Mosch, A.; Hoffmann, C.F.E.; Nijssen, P.C.G.; Beute, G.N.; van Vugt, J.P.P.; Lenders, M.W.P.M.; Contarino, M.F.; Mink, M.S.J.; Bour, L.J.; van den Munckhof, P.; Schmand, B.A.; de Haan, R.J.; Schuurman, P.R.; de Bie, R.M.A. Subthalamic nucleus versus globus pallidus bilateral deep brain stimulation for advanced Parkinson’s disease (NSTAPS study): a randomised controlled trial. Lancet Neurol., 2013, 12(1), 37-44. doi: 10.1016/S1474-4422(12)70264-8 PMID: 23168021
  43. Odekerken, V.J.J.; Boel, J.A.; Schmand, B.A.; de Haan, R.J.; Figee, M.; van den Munckhof, P.; Schuurman, P.R.; de Bie, R.M.A. GPi vs STN deep brain stimulation for Parkinson disease: Three-year follow-up. Neurology, 2016, 86(8), 755-761. doi: 10.1212/WNL.0000000000002401 PMID: 26819458
  44. Harati, A.; Müller, T. Neuropsychological effects of deep brain stimulation for Parkinson's disease. Surg. Neurol. Int., 2013, 4(7)(Suppl. 6), 443. doi: 10.4103/2152-7806.121637 PMID: 24349868
  45. Obeso, J.A.; Olanow, C.W.; Rodriguez-Oroz, M.C.; Krack, P.; Kumar, R.; Lang, A.E. Deep-brain stimulation of the subthalamic nucleus or the pars interna of the globus pallidus in Parkinson’s disease. N. Engl. J. Med., 2001, 345(13), 956-963. doi: 10.1056/NEJMoa000827 PMID: 11575287
  46. Moro, E.; Lozano, A.M.; Pollak, P.; Agid, Y.; Rehncrona, S.; Volkmann, J.; Kulisevsky, J.; Obeso, J.A.; Albanese, A.; Hariz, M.I.; Quinn, N.P.; Speelman, J.D.; Benabid, A.L.; Fraix, V.; Mendes, A.; Welter, M.L.; Houeto, J.L.; Cornu, P.; Dormont, D.; Tornqvist, A.L.; Ekberg, R.; Schnitzler, A.; Timmermann, L.; Wojtecki, L.; Gironell, A.; Rodriguez-Oroz, M.C.; Guridi, J.; Bentivoglio, A.R.; Contarino, M.F.; Romito, L.; Scerrati, M.; Janssens, M.; Lang, A.E. Long-term results of a multicenter study on subthalamic and pallidal stimulation in Parkinson’s disease. Mov. Disord., 2010, 25(5), 578-586. doi: 10.1002/mds.22735 PMID: 20213817
  47. Hamani, C.; Richter, E.O.; Andrade-Souza, Y.; Hutchison, W.; Saint-Cyr, J.A.; Lozano, A.M. Correspondence of microelectrode mapping with magnetic resonance imaging for subthalamic nucleus procedures. Surg. Neurol., 2005, 63(3), 249-253. doi: 10.1016/j.surneu.2004.05.036 PMID: 15734516
  48. Schlaier, J.R.; Habermeyer, C.; Janzen, A.; Fellner, C.; Hochreiter, A.; Proescholdt, M.; Brawanski, A.; Lange, M. The influence of intraoperative microelectrode recordings and clinical testing on the location of final stimulation sites in deep brain stimulation for Parkinson’s disease. Acta Neurochir. (Wien), 2013, 155(2), 357-366. doi: 10.1007/s00701-012-1592-x PMID: 23275071
  49. Gross, R.E.; Krack, P.; Rodriguez-Oroz, M.C.; Rezai, A.R.; Benabid, A.L. Electrophysiological mapping for the implantation of deep brain stimulators for Parkinson’s disease and tremor. Mov. Disord., 2006, 21(S14)(Suppl. 14), S259-S283. doi: 10.1002/mds.20960 PMID: 16810720
  50. Rolston, J.D.; Englot, D.J.; Starr, P.A.; Larson, P.S. An unexpectedly high rate of revisions and removals in deep brain stimulation surgery: Analysis of multiple databases. Parkinsonism Relat. Disord., 2016, 33, 72-77. doi: 10.1016/j.parkreldis.2016.09.014 PMID: 27645504
  51. Ho, A.L.; Ali, R.; Connolly, I.D.; Henderson, J.M.; Dhall, R.; Stein, S.C.; Halpern, C.H. Awake versus asleep deep brain stimulation for Parkinson’s disease: a critical comparison and meta-analysis. J. Neurol. Neurosurg. Psychiatry, 2018, 89(7), 687-691. doi: 10.1136/jnnp-2016-314500 PMID: 28250028
  52. Brodsky, M.A.; Anderson, S.; Murchison, C.; Seier, M.; Wilhelm, J.; Vederman, A.; Burchiel, K.J. Clinical outcomes of asleep vs. awake deep brain stimulation for Parkinson disease. Neurology, 2017, 89(19), 1944-1950. doi: 10.1212/WNL.0000000000004630 PMID: 28986415
  53. Verhagen Metman, L.; Slavin, K.V.; Rosenow, J.M.; Vitek, J.L.; Munckhof, P. More than just the level of consciousness: comparing asleep and awake deep brain stimulation. Mov. Disord., 2021, 36(12), 2763-2766. doi: 10.1002/mds.28806 PMID: 34585783
  54. Patriat, R.; Cooper, S.E.; Duchin, Y.; Niederer, J.; Lenglet, C.; Aman, J.; Park, M.C.; Vitek, J.L.; Harel, N. Individualized tractography-based parcellation of the globus pallidus pars interna using 7T MRI in movement disorder patients prior to DBS surgery. Neuroimage, 2018, 178, 198-209. doi: 10.1016/j.neuroimage.2018.05.048 PMID: 29787868
  55. Sweet, J.A.; Walter, B.L.; Gunalan, K.; Chaturvedi, A.; McIntyre, C.C.; Miller, J.P. Fiber tractography of the axonal pathways linking the basal ganglia and cerebellum in Parkinson disease: implications for targeting in deep brain stimulation. J. Neurosurg., 2014, 120(4), 988-996. doi: 10.3171/2013.12.JNS131537 PMID: 24484226
  56. Avecillas-Chasin, J.M.; Alonso-Frech, F.; Parras, O.; del Prado, N.; Barcia, J.A. Assessment of a method to determine deep brain stimulation targets using deterministic tractography in a navigation system. Neurosurg. Rev., 2015, 38(4), 739-751. doi: 10.1007/s10143-015-0643-1 PMID: 25962557
  57. Muller, J.; Alizadeh, M.; Mohamed, F.B.; Riley, J.; Pearce, J.J.; Trieu, B.; Liang, T.W.; Romo, V.; Sharan, A.; Wu, C. Clinically applicable delineation of the pallidal sensorimotor region in patients with advanced Parkinson’s disease: Study of probabilistic and deterministic tractography. J. Neurosurg., 2018, 1-12. PMID: 30554176
  58. Cacciola, A.; Milardi, D.; Bertino, S.; Basile, G.A.; Calamuneri, A.; Chillemi, G.; Rizzo, G.; Anastasi, G.; Quartarone, A. Structural connectivity-based topography of the human globus pallidus: Implications for therapeutic targeting in movement disorders. Mov. Disord., 2019, 34(7), 987-996. doi: 10.1002/mds.27712 PMID: 31077436
  59. Low, H.L.; Ismail, M.N.M.; Taqvi, A.; Deeb, J.; Fuller, C.; Misbahuddin, A. Comparison of posterior subthalamic area deep brain stimulation for tremor using conventional landmarks versus directly targeting the dentatorubrothalamic tract with tractography. Clin. Neurol. Neurosurg., 2019, 185, 105466. doi: 10.1016/j.clineuro.2019.105466 PMID: 31466022
  60. Ranjan, M.; Elias, G.J.B.; Boutet, A.; Zhong, J.; Chu, P.; Germann, J.; Devenyi, G.A.; Chakravarty, M.M.; Fasano, A.; Hynynen, K.; Lipsman, N.; Hamani, C.; Kucharczyk, W.; Schwartz, M.L.; Lozano, A.M.; Hodaie, M. Tractography-based targeting of the ventral intermediate nucleus: accuracy and clinical utility in MRgFUS thalamotomy. J. Neurosurg., 2019, 1-8. PMID: 31561221
  61. Avecillas-Chasin, J.M.; Alonso-Frech, F.; Nombela, C.; Villanueva, C.; Barcia, J.A. Stimulation of the tractography-defined subthalamic nucleus regions correlates with clinical outcomes. Neurosurgery, 2019, 85(2), E294-E303. doi: 10.1093/neuros/nyy633 PMID: 30690487
  62. Hariz, M.I.; Shamsgovara, P.; Johansson, F.; Hariz, G.M.; Fodstad, H. Tolerance and tremor rebound following long-term chronic thalamic stimulation for Parkinsonian and essential tremor. Stereotact. Funct. Neurosurg., 1999, 72(2-4), 208-218. doi: 10.1159/000029728 PMID: 10853080
  63. Cury, R.G.; Fraix, V.; Castrioto, A.; Pérez Fernández, M.A.; Krack, P.; Chabardes, S.; Seigneuret, E.; Alho, E.J.L.; Benabid, A.L.; Moro, E. Thalamic deep brain stimulation for tremor in Parkinson disease, essential tremor, and dystonia. Neurology, 2017, 89(13), 1416-1423. doi: 10.1212/WNL.0000000000004295 PMID: 28768840
  64. Ondo, W.; Jankovic, J.; Schwartz, K.; Almaguer, M.; Simpson, R.K. Unilateral thalamic deep brain stimulation for refractory essential tremor and Parkinson’s disease tremor. Neurology, 1998, 51(4), 1063-1069. doi: 10.1212/WNL.51.4.1063 PMID: 9781530
  65. Akram, H.; Dayal, V.; Mahlknecht, P.; Georgiev, D.; Hyam, J.; Foltynie, T.; Limousin, P.; De Vita, E.; Jahanshahi, M.; Ashburner, J.; Behrens, T.; Hariz, M.; Zrinzo, L. Connectivity derived thalamic segmentation in deep brain stimulation for tremor. Neuroimage Clin., 2018, 18, 130-142. doi: 10.1016/j.nicl.2018.01.008 PMID: 29387530
  66. Fukuda, M.; Barnes, A.; Simon, E.S.; Holmes, A.; Dhawan, V.; Giladi, N.; Fodstad, H.; Ma, Y.; Eidelberg, D. Thalamic stimulation for parkinsonian tremor: correlation between regional cerebral blood flow and physiological tremor characteristics. Neuroimage, 2004, 21(2), 608-615. doi: 10.1016/j.neuroimage.2003.09.068 PMID: 14980563
  67. Fransson, P.-A.; Nilsson, M.H.; Rehncrona, S.; Tjernström, F.; Magnusson, M.; Johansson, R.; Patel, M. Deep brain stimulation in the subthalamic nuclei alters postural alignment and adaptation in Parkinson’s disease. PLoS One, 2021, 16(12), e0259862. doi: 10.1371/journal.pone.0259862 PMID: 34905546
  68. Roediger, J.; Artusi, C.A.; Romagnolo, A.; Boyne, P.; Zibetti, M.; Lopiano, L.; Espay, A.J.; Fasano, A.; Merola, A. Effect of subthalamic deep brain stimulation on posture in Parkinson’s disease: A blind computerized analysis. Parkinsonism Relat. Disord., 2019, 62, 122-127. doi: 10.1016/j.parkreldis.2019.01.003 PMID: 30638820
  69. Weiss, D.; Walach, M.; Meisner, C.; Fritz, M.; Scholten, M.; Breit, S.; Plewnia, C.; Bender, B.; Gharabaghi, A.; Wächter, T.; Krüger, R. Nigral stimulation for resistant axial motor impairment in Parkinson’s disease? A randomized controlled trial. Brain, 2013, 136(7), 2098-2108. doi: 10.1093/brain/awt122 PMID: 23757762
  70. Horn, M.A.; Gulberti, A.; Hidding, U.; Gerloff, C.; Hamel, W.; Moll, C.K.E.; Pötter-Nerger, M. Comparison of shod and unshod gait in patients with Parkinson’s disease with subthalamic and nigral stimulation. Front. Hum. Neurosci., 2022, 15, 751242. doi: 10.3389/fnhum.2021.751242 PMID: 35095446
  71. Nandi, D.; Aziz, T.Z.; Giladi, N.; Winter, J.; Stein, J.F. Reversal of akinesia in experimental parkinsonism by GABA antagonist microinjections in the pedunculopontine nucleus. Brain, 2002, 125(11), 2418-2430. doi: 10.1093/brain/awf259 PMID: 12390969
  72. Ferraye, M.U.; Debû, B.; Fraix, V.; Goetz, L.; Ardouin, C.; Yelnik, J.; Henry-Lagrange, C.; Seigneuret, E.; Piallat, B.; Krack, P.; Le Bas, J.F.; Benabid, A.L.; Chabardès, S.; Pollak, P. Effects of pedunculopontine nucleus area stimulation on gait disorders in Parkinson’s disease. Brain, 2010, 133(1), 205-214. doi: 10.1093/brain/awp229 PMID: 19773356
  73. Thevathasan, W.; Coyne, T.J.; Hyam, J.A.; Kerr, G.; Jenkinson, N.; Aziz, T.Z.; Silburn, P.A. Pedunculopontine nucleus stimulation improves gait freezing in Parkinson disease. Neurosurgery, 2011, 69(6), 1248-1254. doi: 10.1227/NEU.0b013e31822b6f71 PMID: 21725254
  74. Thevathasan, W.; Debu, B.; Aziz, T.; Bloem, B.R.; Blahak, C.; Butson, C.; Czernecki, V.; Foltynie, T.; Fraix, V.; Grabli, D.; Joint, C.; Lozano, A.M.; Okun, M.S.; Ostrem, J.; Pavese, N.; Schrader, C.; Tai, C.H.; Krauss, J.K.; Moro, E. Pedunculopontine nucleus deep brain stimulation in Parkinson’s disease: A clinical review. Mov. Disord., 2018, 33(1), 10-20. doi: 10.1002/mds.27098 PMID: 28960543
  75. Yamamoto, T.; Katayama, Y.; Kano, T.; Kobayashi, K.; Oshima, H.; Fukaya, C. Deep brain stimulation for the treatment of parkinsonian, essential, and poststroke tremor: a suitable stimulation method and changes in effective stimulation intensity. J. Neurosurg., 2004, 101(2), 201-209. doi: 10.3171/jns.2004.101.2.0201 PMID: 15309909
  76. Mongardi, L.; Rispoli, V.; Scerrati, A.; Giordano, F.; Capone, J.G.; Vaudano, A.E.; De Bonis, P.; Morgante, F.; Picillo, M.; Cavallo, M.A.; Sensi, M. Deep brain stimulation of the ventralis oralis anterior thalamic nucleus is effective for dystonic tremor. Parkinsonism Relat. Disord., 2020, 81, 8-11. doi: 10.1016/j.parkreldis.2020.09.040 PMID: 33035802
  77. Alonso-Frech, F.; Fernandez-Garcia, C.; Gómez-Mayordomo, V.; Monje, M.H.G.; Delgado-Suarez, C.; Villanueva-Iza, C.; Catalan-Alonso, M.J. Non-motor adverse effects avoided by directional stimulation in Parkinson’s disease: a case report. Front. Neurol., 2022, 12, 786166. doi: 10.3389/fneur.2021.786166 PMID: 35173666
  78. Steigerwald, F.; Müller, L.; Johannes, S.; Matthies, C.; Volkmann, J. Directional deep brain stimulation of the subthalamic nucleus: A pilot study using a novel neurostimulation device. Mov. Disord., 2016, 31(8), 1240-1243. doi: 10.1002/mds.26669 PMID: 27241197
  79. Dembek, T.A.; Reker, P.; Visser-Vandewalle, V.; Wirths, J.; Treuer, H.; Klehr, M.; Roediger, J.; Dafsari, H.S.; Barbe, M.T.; Timmermann, L. Directional DBS increases side-effect thresholds-A prospective, double-blind trial. Mov. Disord., 2017, 32(10), 1380-1388. doi: 10.1002/mds.27093 PMID: 28843009
  80. Steffen, J.K.; Reker, P.; Mennicken, F.K.; Dembek, T.A.; Dafsari, H.S.; Fink, G.R.; Visser-Vandewalle, V.; Barbe, M.T. Bipolar directional deep brain stimulation in essential and Parkinsonian Tremor. Neuromodulation, 2020, 23(4), 543-549. doi: 10.1111/ner.13109 PMID: 32040883
  81. Rammo, R.A.; Ozinga, S.J.; White, A.; Nagel, S.J.; Machado, A.G.; Pallavaram, S.; Cheeran, B.J.; Walter, B.L. Directional Stimulation in Parkinson’s Disease and Essential Tremor: The Cleveland Clinic Experience. Neuromodulation, 2022, 25(6), 829-835. doi: 10.1111/ner.13374 PMID: 33733515
  82. Pavese, N.; Tai, Y.F.; Yousif, N.; Nandi, D.; Bain, P.G. Traditional trial and error versus neuroanatomic 3-dimensional image software-assisted deep brain stimulation programming in patients with Parkinson disease. World Neurosurg., 2020, 134, e98-e102. doi: 10.1016/j.wneu.2019.09.106 PMID: 31568905
  83. Kluin, K.J.; Mossner, J.M.; Costello, J.T.; Chou, K.L.; Patil, P.G. Motor speech effects in subthalamic deep brain stimulation for Parkinson’s disease. J. Neurosurg., 2022, 137(3), 722-728. doi: 10.3171/2021.12.JNS211729 PMID: 35090126
  84. Guidetti, M.; Marceglia, S.; Loh, A.; Harmsen, I.E.; Meoni, S.; Foffani, G.; Lozano, A.M.; Moro, E.; Volkmann, J.; Priori, A. Clinical perspectives of adaptive deep brain stimulation. Brain Stimul., 2021, 14(5), 1238-1247. doi: 10.1016/j.brs.2021.07.063 PMID: 34371211
  85. Gagliardo, C.; Ragonese, P.; Iacopino, G.D.; Salemi, G.; Midiri, M.; D’Amelio, M. Transcranial magnetic resonance-guided focused ultrasound thalamotomy as a safe treatment option in multiple sclerosis patients with essential tremor. Neurol. Sci., 2021, 42(3), 1139-1143. doi: 10.1007/s10072-020-04841-4 PMID: 33094429
  86. Bond, A.; Dallapiazza, R.; Huss, D.; Warren, A.; Sperling, S.; Gwinn, R. A randomized, sham-controlled trial of transcranial MR guided focused ultrasound thalamotomy trial for the treatment of tremor-dominant, idiopathic Parkinson’s disease. J. Ther. Ultrasound, 2016, 4(1)
  87. Sperling, S.A.; Shah, B.B.; Barrett, M.J.; Bond, A.E.; Huss, D.S.; Gonzalez, M.J.A.; Elias, W.J. Focused ultrasound thalamotomy in Parkinson disease. Neurology, 2018, 91(14), e1275-e1284. doi: 10.1212/WNL.0000000000006279 PMID: 30158160
  88. Martínez-Fernández, R.; Máñez-Miró, J.U.; Rodríguez-Rojas, R.; del Álamo, M.; Shah, B.B.; Hernández-Fernández, F.; Pineda-Pardo, J.A.; Monje, M.H.G.; Fernández-Rodríguez, B.; Sperling, S.A.; Mata-Marín, D.; Guida, P.; Alonso-Frech, F.; Obeso, I.; Gasca-Salas, C.; Vela-Desojo, L.; Elias, W.J.; Obeso, J.A. Randomized trial of focused ultrasound subthalamotomy for Parkinson’s disease. N. Engl. J. Med., 2020, 383(26), 2501-2513. doi: 10.1056/NEJMoa2016311 PMID: 33369354
  89. Jung, N.Y.; Park, C.K.; Kim, M.; Lee, P.H.; Sohn, Y.H.; Chang, J.W. The efficacy and limits of magnetic resonance-guided focused ultrasound pallidotomy for Parkinson’s disease: a Phase I clinical trial. J. Neurosurg., 2018, 1-9. PMID: 30095337
  90. Eisenberg, H.M.; Krishna, V.; Elias, W.J.; Cosgrove, G.R.; Gandhi, D.; Aldrich, C.E.; Fishman, P.S. MR-guided focused ultrasound pallidotomy for Parkinson’s disease: safety and feasibility. J. Neurosurg., 2020, 135(3), 1-7. PMID: 33481557
  91. de Andrade, E.M.; Ghilardi, M.G.; Cury, R.G.; Barbosa, E.R.; Fuentes, R.; Teixeira, M.J.; Fonoff, E.T. Spinal cord stimulation for Parkinson’s disease: a systematic review. Neurosurg. Rev., 2016, 39(1), 27-35. doi: 10.1007/s10143-015-0651-1 PMID: 26219854
  92. Zhou, P.B.; Bao, M. Spinal cord stimulation treatment for freezing of gait in Parkinson’s disease: A case report. Brain Stimul., 2022, 15(1), 76-77. doi: 10.1016/j.brs.2021.11.011 PMID: 34798352
  93. Pinto de Souza, C.; Hamani, C.; Oliveira Souza, C.; Lopez Contreras, W.O.; dos Santos Ghilardi, M.G.; Cury, R.G.; Reis Barbosa, E.; Jacobsen Teixeira, M.; Talamoni, F.E. Spinal cord stimulation improves gait in patients with Parkinson’s disease previously treated with deep brain stimulation. Mov. Disord., 2017, 32(2), 278-282. doi: 10.1002/mds.26850 PMID: 27862267
  94. Fénelon, G.; Goujon, C.; Gurruchaga, J.M.; Cesaro, P.; Jarraya, B.; Palfi, S.; Lefaucheur, J.P. Spinal cord stimulation for chronic pain improved motor function in a patient with Parkinson’s disease. Parkinsonism Relat. Disord., 2012, 18(2), 213-214. doi: 10.1016/j.parkreldis.2011.07.015 PMID: 21865071
  95. Samotus, O.; Parrent, A.; Jog, M. Spinal cord stimulation therapy for gait dysfunction in advanced Parkinson’s disease patients. Mov. Disord., 2018, 33(5), 783-792. doi: 10.1002/mds.27299 PMID: 29442369
  96. Prasad, S.; Aguirre-Padilla, D.H.; Poon, Y.Y.; Kalsi-Ryan, S.; Lozano, A.M.; Fasano, A. Spinal cord stimulation for very advanced Parkinson’s disease: a 1-year prospective trial. Mov. Disord., 2020, 35(6), 1082-1083. doi: 10.1002/mds.28065 PMID: 32311155
  97. Hvingelby, V.S.; Højholt Terkelsen, M.; Johnsen, E.L.; Møller, M.; Danielsen, E.H.; Henriksen, T.; Glud, A.N.; Tai, Y.; Møller Andersen, A.S.; Meier, K.; Borghammer, P.; Moro, E.; Sørensen, J.C.H.; Pavese, N. Spinal cord stimulation therapy for patients with Parkinson’s disease and gait problems (STEP-PD): Study protocol for an exploratory, double-blind, randomised, placebo-controlled feasibility trial. BMJ Neurology Open, 2022, 4(2), e000333. doi: 10.1136/bmjno-2022-000333 PMID: 36101543

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers