The HPA Axis as Target for Depression


Cite item

Full Text

Abstract

Major depressive disorder (MDD) is a stress-related mental disorder with a lifetime prevalence of 20% and, thus, is one of the most prevalent mental health disorders worldwide. Many studies with a large number of patients support the notion that abnormalities of the hypothalamus-pituitaryadrenal (HPA) axis are crucial for the development of MDD. Therefore, a number of strategies and drugs have been investigated to target different components of the HPA axis: 1) corticotrophinreleasing hormone (CRH) 1 receptor antagonists; 2) vasopressin V1B receptor antagonists, 3) glucocorticoid receptor antagonists, and 4) FKBP5 antagonists. Until now, V1B receptor antagonists and GR antagonists have provided the most promising results. Preclinical data also support antagonists of FKBP5, which seem to be partly responsible for the effects exerted by ketamine. However, as HPA axis alterations occur only in a subset of patients, specific treatment approaches that target only single components of the HPA axis will be effective only in this subset of patients. Companion tests that measure the function of the HPA axis and identify patients with an impaired HPA axis, such as the dexamethasone-corticotrophin-releasing hormone (dex-CRH) test or the molecular dexamethasonesuppression (mDST) test, may match the patient with an effective treatment to enable patient-tailored treatments in terms of a precision medicine approach.

About the authors

Andreas Menke

Department of Psychosomatic Medicine and Psychotherapy, Medical Park Chiemseeblick

Author for correspondence.
Email: info@benthamscience.net

References

  1. Ebmeier, K.P.; Donaghey, C.; Steele, J.D. Recent developments and current controversies in depression. Lancet, 2006, 367(9505), 153-167. doi: 10.1016/S0140-6736(06)67964-6 PMID: 16413879
  2. Vos, T.; Barber, R.M.; Bell, B.; Bertozzi-Villa, A.; Biryukov, S.; Bolliger, I.; Charlson, F.; Davis, A.; Degenhardt, L.; Dicker, D.; Duan, L.; Erskine, H.; Feigin, V.L.; Ferrari, A.J.; Fitzmaurice, C.; Fleming, T.; Graetz, N.; Guinovart, C.; Haagsma, J.; Hansen, G.M.; Hanson, S.W.; Heuton, K.R.; Higashi, H.; Kassebaum, N.; Kyu, H.; Laurie, E.; Liang, X.; Lofgren, K.; Lozano, R.; MacIntyre, M.F.; Moradi-Lakeh, M.; Naghavi, M.; Nguyen, G.; Odell, S.; Ortblad, K.; Roberts, D.A.; Roth, G.A.; Sandar, L.; Serina, P.T.; Stanaway, J.D.; Steiner, C.; Thomas, B.; Vollset, S.E.; Whiteford, H.; Wolock, T.M.; Ye, P.; Zhou, M.; Ãvila, M.A.; Aasvang, G.M.; Abbafati, C.; Ozgoren, A.A.; Abd-Allah, F.; Aziz, M.I.A.; Abera, S.F.; Aboyans, V.; Abraham, J.P.; Abraham, B.; Abubakar, I.; Abu-Raddad, L.J.; Abu-Rmeileh, N.M.E.; Aburto, T.C.; Achoki, T.; Ackerman, I.N.; Adelekan, A.; Ademi, Z.; Adou, A.K.; Adsuar, J.C.; Arnlov, J.; Agardh, E.E.; Al Khabouri, M.J.; Alam, S.S.; Alasfoor, D.; Albittar, M.I.; Alegretti, M.A.; Aleman, A.V.; Alemu, Z.A.; Alfonso-Cristancho, R.; Alhabib, S.; Ali, R.; Alla, F.; Allebeck, P.; Allen, P.J.; AlMazroa, M.A.A.; Alsharif, U.; Alvarez, E.; Alvis-Guzman, N.; Ameli, O.; Amini, H.; Ammar, W.; Anderson, B.O.; Anderson, H.R.; Antonio, C.A.T.; Anwari, P.; Apfel, H.; Arsenijevic, V.S.A.; Artaman, A.; Asghar, R.J.; Assadi, R.; Atkins, L.S.; Atkinson, C.; Badawi, A.; Bahit, M.C.; Bakfalouni, T.; Balakrishnan, K.; Balalla, S.; Banerjee, A.; Barker-Collo, S.L.; Barquera, S.; Barregard, L.; Barrero, L.H.; Basu, S.; Basu, A.; Baxter, A.; Beardsley, J.; Bedi, N.; Beghi, E.; Bekele, T.; Bell, M.L.; Benjet, C.; Bennett, D.A.; Bensenor, I.M.; Benzian, H.; Bernabe, E.; Beyene, T.J.; Bhala, N.; Bhalla, A.; Bhutta, Z.; Bienhoff, K.; Bikbov, B.; Abdulhak, A.B.; Blore, J.D.; Blyth, F.M.; Bohensky, M.A.; Basara, B.B.; Borges, G.; Bornstein, N.M.; Bose, D.; Boufous, S.; Bourne, R.R.; Boyers, L.N.; Brainin, M.; Brauer, M.; Brayne, C.E.G.; Brazinova, A.; Breitborde, N.J.K.; Brenner, H.; Briggs, A.D.M.; Brooks, P.M.; Brown, J.; Brugha, T.S.; Buchbinder, R.; Buckle, G.C.; Bukhman, G.; Bulloch, A.G.; Burch, M.; Burnett, R.; Cardenas, R.; Cabral, N.L.; Nonato, I.R.C.; Campuzano, J.C.; Carapetis, J.R.; Carpenter, D.O.; Caso, V.; Castaneda-Orjuela, C.A.; Catala-Lopez, F.; Chadha, V.K.; Chang, J-C.; Chen, H.; Chen, W.; Chiang, P.P.; Chimed-Ochir, O.; Chowdhury, R.; Christensen, H.; Christophi, C.A.; Chugh, S.S.; Cirillo, M.; Coggeshall, M.; Cohen, A.; Colistro, V.; Colquhoun, S.M.; Contreras, A.G.; Cooper, L.T.; Cooper, C.; Cooperrider, K.; Coresh, J.; Cortinovis, M.; Criqui, M.H.; Crump, J.A.; Cuevas-Nasu, L.; Dandona, R.; Dandona, L.; Dansereau, E.; Dantes, H.G.; Dargan, P.I.; Davey, G.; Davitoiu, D.V.; Dayama, A.; De la Cruz-Gongora, V.; de la Vega, S.F.; De Leo, D.; del Pozo-Cruz, B.; Dellavalle, R.P.; Deribe, K.; Derrett, S.; Des Jarlais, D.C.; Dessalegn, M.; deVeber, G.A.; Dharmaratne, S.D.; Diaz-Torne, C.; Ding, E.L.; Dokova, K.; Dorsey, E.R.; Driscoll, T.R.; Duber, H.; Durrani, A.M.; Edmond, K.M.; Ellenbogen, R.G.; Endres, M.; Ermakov, S.P.; Eshrati, B.; Esteghamati, A.; Estep, K.; Fahimi, S.; Farzadfar, F.; Fay, D.F.J.; Felson, D.T.; Fereshtehnejad, S-M.; Fernandes, J.G.; Ferri, C.P.; Flaxman, A.; Foigt, N.; Foreman, K.J.; Fowkes, F.G.R.; Franklin, R.C.; Furst, T.; Futran, N.D.; Gabbe, B.J.; Gankpe, F.G.; Garcia-Guerra, F.A.; Geleijnse, J.M.; Gessner, B.D.; Gibney, K.B.; Gillum, R.F.; Ginawi, I.A.; Giroud, M.; Giussani, G.; Goenka, S.; Goginashvili, K.; Gona, P.; de Cosio, T.G.; Gosselin, R.A.; Gotay, C.C.; Goto, A.; Gouda, H.N.; Guerrant, R.; Gugnani, H.C.; Gunnell, D.; Gupta, R.; Gupta, R.; Gutierrez, R.A.; Hafezi-Nejad, N.; Hagan, H.; Halasa, Y.; Hamadeh, R.R.; Hamavid, H.; Hammami, M.; Hankey, G.J.; Hao, Y.; Harb, H.L.; Haro, J.M.; Havmoeller, R.; Hay, R.J.; Hay, S.; Hedayati, M.T.; Pi, I.B.H.; Heydarpour, P.; Hijar, M.; Hoek, H.W.; Hoffman, H.J.; Hornberger, J.C.; Hosgood, H.D.; Hossain, M.; Hotez, P.J.; Hoy, D.G.; Hsairi, M.; Hu, H.; Hu, G.; Huang, J.J.; Huang, C.; Huiart, L.; Husseini, A.; Iannarone, M.; Iburg, K.M.; Innos, K.; Inoue, M.; Jacobsen, K.H.; Jassal, S.K.; Jeemon, P.; Jensen, P.N.; Jha, V.; Jiang, G.; Jiang, Y.; Jonas, J.B.; Joseph, J.; Juel, K.; Kan, H.; Karch, A.; Karimkhani, C.; Karthikeyan, G.; Katz, R.; Kaul, A.; Kawakami, N.; Kazi, D.S.; Kemp, A.H.; Kengne, A.P.; Khader, Y.S.; Khalifa, S.E.A.H.; Khan, E.A.; Khan, G.; Khang, Y-H.; Khonelidze, I.; Kieling, C.; Kim, D.; Kim, S.; Kimokoti, R.W.; Kinfu, Y.; Kinge, J.M.; Kissela, B.M.; Kivipelto, M.; Knibbs, L.; Knudsen, A.K.; Kokubo, Y.; Kosen, S.; Kramer, A.; Kravchenko, M.; Krishnamurthi, R.V.; Krishnaswami, S.; Defo, B.K.; Bicer, B.K.; Kuipers, E.J.; Kulkarni, V.S.; Kumar, K.; Kumar, G.A.; Kwan, G.F.; Lai, T.; Lalloo, R.; Lam, H.; Lan, Q.; Lansingh, V.C.; Larson, H.; Larsson, A.; Lawrynowicz, A.E.B.; Leasher, J.L.; Lee, J-T.; Leigh, J.; Leung, R.; Levi, M.; Li, B.; Li, Y.; Li, Y. liang, J.; Lim, S.; Lin, H-H.; Lind, M.; Lindsay, M.P.; Lipshultz, S.E.; Liu, S.; Lloyd, B.K.; Ohno, S.L.; Logroscino, G.; Looker, K.J.; Lopez, A.D.; Lopez-Olmedo, N.; Lortet-Tieulent, J.; Lotufo, P.A.; Low, N.; Lucas, R.M.; Lunevicius, R.; Lyons, R.A.; Ma, J.; Ma, S.; Mackay, M.T.; Majdan, M.; Malekzadeh, R.; Mapoma, C.C.; Marcenes, W.; March, L.M.; Margono, C.; Marks, G.B.; Marzan, M.B.; Masci, J.R.; Mason-Jones, A.J.; Matzopoulos, R.G.; Mayosi, B.M.; Mazorodze, T.T.; McGill, N.W.; McGrath, J.J.; McKee, M.; McLain, A.; McMahon, B.J.; Meaney, P.A.; Mehndiratta, M.M.; Mejia-Rodriguez, F.; Mekonnen, W.; Melaku, Y.A.; Meltzer, M.; Memish, Z.A.; Mensah, G.; Meretoja, A.; Mhimbira, F.A.; Micha, R.; Miller, T.R.; Mills, E.J.; Mitchell, P.B.; Mock, C.N.; Moffitt, T.E.; Ibrahim, N.M.; Mohammad, K.A.; Mokdad, A.H.; Mola, G.L.; Monasta, L.; Montico, M.; Montine, T.J.; Moore, A.R.; Moran, A.E.; Morawska, L.; Mori, R.; Moschandreas, J.; Moturi, W.N.; Moyer, M.; Mozaffarian, D.; Mueller, U.O.; Mukaigawara, M.; Murdoch, M.E.; Murray, J.; Murthy, K.S.; Naghavi, P.; Nahas, Z.; Naheed, A.; Naidoo, K.S.; Naldi, L.; Nand, D.; Nangia, V.; Narayan, K.M.V.; Nash, D.; Nejjari, C.; Neupane, S.P.; Newman, L.M.; Newton, C.R.; Ng, M.; Ngalesoni, F.N.; Nhung, N.T.; Nisar, M.I.; Nolte, S.; Norheim, O.F.; Norman, R.E.; Norrving, B.; Nyakarahuka, L.; Oh, I.H.; Ohkubo, T.; Omer, S.B.; Opio, J.N.; Ortiz, A.; Pandian, J.D.; Panelo, C.I.A.; Papachristou, C.; Park, E-K.; Parry, C.D.; Caicedo, A.J.P.; Patten, S.B.; Paul, V.K.; Pavlin, B.I.; Pearce, N.; Pedraza, L.S.; Pellegrini, C.A.; Pereira, D.M.; Perez-Ruiz, F.P.; Perico, N.; Pervaiz, A.; Pesudovs, K.; Peterson, C.B.; Petzold, M.; Phillips, M.R.; Phillips, D.; Phillips, B.; Piel, F.B.; Plass, D.; Poenaru, D.; Polanczyk, G.V.; Polinder, S.; Pope, C.A.; Popova, S.; Poulton, R.G.; Pourmalek, F.; Prabhakaran, D.; Prasad, N.M.; Qato, D.; Quistberg, D.A.; Rafay, A.; Rahimi, K.; Rahimi-Movaghar, V.; Rahman, S.; Raju, M.; Rakovac, I.; Rana, S.M.; Razavi, H.; Refaat, A.; Rehm, J.; Remuzzi, G.; Resnikoff, S.; Ribeiro, A.L.; Riccio, P.M.; Richardson, L.; Richardus, J.H.; Riederer, A.M.; Robinson, M.; Roca, A.; Rodriguez, A.; Rojas-Rueda, D.; Ronfani, L.; Rothenbacher, D.; Roy, N.; Ruhago, G.M.; Sabin, N.; Sacco, R.L.; Ksoreide, K.; Saha, S.; Sahathevan, R.; Sahraian, M.A.; Sampson, U.; Sanabria, J.R.; Sanchez-Riera, L.; Santos, I.S.; Satpathy, M.; Saunders, J.E.; Sawhney, M.; Saylan, M.I.; Scarborough, P.; Schoettker, B.; Schneider, I.J.C.; Schwebel, D.C.; Scott, J.G.; Seedat, S.; Sepanlou, S.G.; Serdar, B.; Servan-Mori, E.E.; Shackelford, K.; Shaheen, A.; Shahraz, S.; Levy, T.S.; Shangguan, S.; She, J.; Sheikhbahaei, S.; Shepard, D.S.; Shi, P.; Shibuya, K.; Shinohara, Y.; Shiri, R.; Shishani, K.; Shiue, I.; Shrime, M.G.; Sigfusdottir, I.D.; Silberberg, D.H.; Simard, E.P.; Sindi, S.; Singh, J.A.; Singh, L.; Skirbekk, V.; Sliwa, K.; Soljak, M.; Soneji, S.; Soshnikov, S.S.; Speyer, P.; Sposato, L.A.; Sreeramareddy, C.T.; Stoeckl, H.; Stathopoulou, V.K.; Steckling, N.; Stein, M.B.; Stein, D.J.; Steiner, T.J.; Stewart, A.; Stork, E.; Stovner, L.J.; Stroumpoulis, K.; Sturua, L.; Sunguya, B.F.; Swaroop, M.; Sykes, B.L.; Tabb, K.M.; Takahashi, K.; Tan, F.; Tandon, N.; Tanne, D.; Tanner, M.; Tavakkoli, M.; Taylor, H.R.; Te Ao, B.J.; Temesgen, A.M.; Have, M.T.; Tenkorang, E.Y.; Terkawi, A.S.; Theadom, A.M.; Thomas, E.; Thorne-Lyman, A.L.; Thrift, A.G.; Tleyjeh, I.M.; Tonelli, M.; Topouzis, F.; Towbin, J.A.; Toyoshima, H.; Traebert, J.; Tran, B.X.; Trasande, L.; Trillini, M.; Truelsen, T.; Trujillo, U.; Tsilimbaris, M.; Tuzcu, E.M.; Ukwaja, K.N.; Undurraga, E.A.; Uzun, S.B.; van Brakel, W.H.; van de Vijver, S.; Dingenen, R.V.; van Gool, C.H.; Varakin, Y.Y.; Vasankari, T.J.; Vavilala, M.S.; Veerman, L.J.; Velasquez-Melendez, G.; Venketasubramanian, N.; Vijayakumar, L.; Villalpando, S.; Violante, F.S.; Vlassov, V.V.; Waller, S.; Wallin, M.T.; Wan, X.; Wang, L.; Wang, J.L.; Wang, Y.; Warouw, T.S.; Weichenthal, S.; Weiderpass, E.; Weintraub, R.G.; Werdecker, A.; Wessells, K.R.R.; Westerman, R.; Wilkinson, J.D.; Williams, H.C.; Williams, T.N.; Woldeyohannes, S.M.; Wolfe, C.D.A.; Wong, J.Q.; Wong, H.; Woolf, A.D.; Wright, J.L.; Wurtz, B.; Xu, G.; Yang, G.; Yano, Y.; Yenesew, M.A.; Yentur, G.K.; Yip, P.; Yonemoto, N.; Yoon, S-J.; Younis, M.; Yu, C.; Kim, K.Y.; Zaki, M.E.S.; Zhang, Y.; Zhao, Z.; Zhao, Y.; Zhu, J.; Zonies, D.; Zunt, J.R.; Salomon, J.A.; Murray, C.J.L. Global Burden of Disease Study 2013 Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 301 acute and chronic diseases and injuries in 188 countries, 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet, 2015, 386(9995), 743-800. doi: 10.1016/S0140-6736(15)60692-4 PMID: 26063472
  3. Monroe, S.M.; Harkness, K.L. Major depression and its recurrences: Life course matters. Annu. Rev. Clin. Psychol., 2022, 18(1), 329-357. doi: 10.1146/annurev-clinpsy-072220-021440 PMID: 35216520
  4. Lépine, J.P.; Briley, M. The increasing burden of depression. Neuropsychiatr. Dis. Treat., 2011, 7(Suppl. 1), 3-7. PMID: 21750622
  5. Laursen, T.M.; Musliner, K.L.; Benros, M.E.; Vestergaard, M.; Munk-Olsen, T. Mortality and life expectancy in persons with severe unipolar depression. J. Affect. Disord., 2016, 193, 203-207. doi: 10.1016/j.jad.2015.12.067 PMID: 26773921
  6. Chesney, E.; Goodwin, G.M.; Fazel, S. Risks of all-cause and suicide mortality in mental disorders: A meta-review. World Psychiatry, 2014, 13(2), 153-160. doi: 10.1002/wps.20128 PMID: 24890068
  7. Penninx, B.W.J.H.; Milaneschi, Y.; Lamers, F.; Vogelzangs, N. Understanding the somatic consequences of depression: Biological mechanisms and the role of depression symptom profile. BMC Med., 2013, 11(1), 129. doi: 10.1186/1741-7015-11-129 PMID: 23672628
  8. Ruhé, H.G.; Huyser, J.; Swinkels, J.A.; Schene, A.H. Switching antidepressants after a first selective serotonin reuptake inhibitor in major depressive disorder: A systematic review. J. Clin. Psychiatry, 2006, 67(12), 1836-1855. doi: 10.4088/JCP.v67n1203 PMID: 17194261
  9. Rush, A.J.; Trivedi, M.H.; Wisniewski, S.R.; Stewart, J.W.; Nierenberg, A.A.; Thase, M.E.; Ritz, L.; Biggs, M.M.; Warden, D.; Luther, J.F.; Shores-Wilson, K.; Niederehe, G.; Fava, M. Bupropion-SR, sertraline, or venlafaxine-XR after failure of SSRIs for depression. N. Engl. J. Med., 2006, 354(12), 1231-1242. doi: 10.1056/NEJMoa052963 PMID: 16554525
  10. Giakoumatos, C.I.; Osser, D. The psychopharmacology algorithm project at the harvard south shore program: An update on unipolar nonpsychotic depression. Harv. Rev. Psychiatry, 2019, 27(1), 33-52. doi: 10.1097/HRP.0000000000000197 PMID: 30614886
  11. Otte, C.; Gold, S.M.; Penninx, B.W.; Pariante, C.M.; Etkin, A.; Fava, M.; Mohr, D.C.; Schatzberg, A.F. Major depressive disorder. Nat. Rev. Dis. Primers, 2016, 2(1), 16065. doi: 10.1038/nrdp.2016.65 PMID: 27629598
  12. Ormel, J.; Oldehinkel, A.J.; Nolen, W.A.; Vollebergh, W. Psychosocial disability before, during, and after a major depressive episode: A 3-wave population-based study of state, scar, and trait effects. Arch. Gen. Psychiatry, 2004, 61(4), 387-392. doi: 10.1001/archpsyc.61.4.387 PMID: 15066897
  13. Wittchen, H.U.; Jacobi, F.; Rehm, J.; Gustavsson, A.; Svensson, M.; Jönsson, B.; Olesen, J.; Allgulander, C.; Alonso, J.; Faravelli, C.; Fratiglioni, L.; Jennum, P.; Lieb, R.; Maercker, A.; van Os, J.; Preisig, M.; Salvador-Carulla, L.; Simon, R.; Steinhausen, H.C. The size and burden of mental disorders and other disorders of the brain in Europe 2010. Eur. Neuropsychopharmacol., 2011, 21(9), 655-679. doi: 10.1016/j.euroneuro.2011.07.018 PMID: 21896369
  14. Menke, A. Precision pharmacotherapy: Psychiatry’s future direction in preventing, diagnosing, and treating mental disorders. Pharm. Genomics Pers. Med., 2018, 11, 211-222. doi: 10.2147/PGPM.S146110 PMID: 30510440
  15. Menke, A. Is the HPA axis as target for depression outdated, or is there a new hope? Front. Psychiatry, 2019, 10, 101. doi: 10.3389/fpsyt.2019.00101 PMID: 30890970
  16. Mora, C.; Zonca, V.; Riva, M.A.; Cattaneo, A. Blood biomarkers and treatment response in major depression. Expert Rev. Mol. Diagn., 2018, 18(6), 513-529. doi: 10.1080/14737159.2018.1470927 PMID: 29701114
  17. Kadriu, B.; Greenwald, M.; Henter, I.D.; Gilbert, J.R.; Kraus, C.; Park, L.T.; Zarate, C.A., Jr Ketamine and serotonergic psychedelics: Common mechanisms underlying the effects of rapid-acting antidepressants. Int. J. Neuropsychopharmacol., 2021, 24(1), 8-21. doi: 10.1093/ijnp/pyaa087 PMID: 33252694
  18. Ionescu, D.F.; Fu, D.J.; Qiu, X.; Lane, R.; Lim, P.; Kasper, S.; Hough, D.; Drevets, W.C.; Manji, H.; Canuso, C.M. Esketamine nasal spray for rapid reduction of depressive symptoms in patients with major depressive disorder who have active suicide ideation with intent: Results of a Phase 3, double-blind, randomized study (ASPIRE II). Int. J. Neuropsychopharmacol., 2021, 24(1), 22-31. doi: 10.1093/ijnp/pyaa068 PMID: 32861217
  19. Sullivan, P.F.; Neale, M.C.; Kendler, K.S. Genetic epidemiology of major depression: Review and meta-analysis. Am. J. Psychiatry, 2000, 157(10), 1552-1562. doi: 10.1176/appi.ajp.157.10.1552 PMID: 11007705
  20. Klengel, T.; Binder, E.B. Epigenetics of stress-related psychiatric disorders and gene × environment interactions. Neuron, 2015, 86(6), 1343-1357. doi: 10.1016/j.neuron.2015.05.036 PMID: 26087162
  21. Binder, EB Dissecting the molecular mechanisms of gene x environment interactions: Implications for diagnosis and treatment of stress-related psychiatric disorders. Eur. J. Psychotraumatol., 2017, 8(sup5), 1412745. doi: 10.1080/20008198.2017.1412745
  22. Menke, A.; Binder, E.B. Epigenetic alterations in depression and antidepressant treatment. Dialogues Clin. Neurosci., 2014, 16(3), 395-404. doi: 10.31887/DCNS.2014.16.3/amenke PMID: 25364288
  23. Heim, C.; Nemeroff, C.B. The role of childhood trauma in the neurobiology of mood and anxiety disorders: Preclinical and clinical studies. Biol. Psychiatry, 2001, 49(12), 1023-1039. doi: 10.1016/S0006-3223(01)01157-X PMID: 11430844
  24. Hu, P.; Maita, I.; Phan, M.L.; Gu, E.; Kwok, C.; Dieterich, A.; Gergues, M.M.; Yohn, C.N.; Wang, Y.; Zhou, J.N.; Qi, X.R.; Swaab, D.F.; Pang, Z.P.; Lucassen, P.J.; Roepke, T.A.; Samuels, B.A. Early-life stress alters affective behaviors in adult mice through persistent activation of CRH-BDNF signaling in the oval bed nucleus of the stria terminalis. Transl. Psychiatry, 2020, 10(1), 396. doi: 10.1038/s41398-020-01070-3 PMID: 33177511
  25. Zimmermann, P.; Brückl, T.; Nocon, A.; Pfister, H.; Binder, E.B.; Uhr, M.; Lieb, R.; Moffitt, T.E.; Caspi, A.; Holsboer, F.; Ising, M. Interaction of FKBP5 gene variants and adverse life events in predicting depression onset: Results from a 10-year prospective community study. Am. J. Psychiatry, 2011, 168(10), 1107-1116. doi: 10.1176/appi.ajp.2011.10111577 PMID: 21865530
  26. Binder, E.B. The role of FKBP5, a co-chaperone of the glucocorticoid receptor in the pathogenesis and therapy of affective and anxiety disorders. Psychoneuroendocrinology, 2009, 34(Suppl. 1), S186-S195. doi: 10.1016/j.psyneuen.2009.05.021 PMID: 19560279
  27. McEwen, B.S. Physiology and neurobiology of stress and adaptation: Central role of the brain. Physiol. Rev., 2007, 87(3), 873-904. doi: 10.1152/physrev.00041.2006 PMID: 17615391
  28. Danese, A.J.; Lewis, S. Psychoneuroimmunology of early-life stress: The hidden wounds of childhood trauma? Neuropsychopharmacology, 2017, 42(1), 99-114. doi: 10.1038/npp.2016.198 PMID: 27629365
  29. Kuhlman, K.R.; Chiang, J.J.; Horn, S.; Bower, J.E. Developmental psychoneuroendocrine and psychoneuroimmune pathways from childhood adversity to disease. Neurosci. Biobehav. Rev., 2017, 80, 166-184. doi: 10.1016/j.neubiorev.2017.05.020 PMID: 28577879
  30. Kessler, R.C. The effects of stressful life events on depression. Annu. Rev. Psychol., 1997, 48(1), 191-214. doi: 10.1146/annurev.psych.48.1.191 PMID: 9046559
  31. Menke, A.; Nitschke, F.; Hellmuth, A.; Helmel, J.; Wurst, C.; Stonawski, S.; Blickle, M.; Weiß, C.; Weber, H.; Hommers, L.; Domschke, K.; Deckert, J. Stress impairs response to antidepressants via HPA axis and immune system activation. Brain Behav. Immun., 2021, 93, 132-140. doi: 10.1016/j.bbi.2020.12.033 PMID: 33422640
  32. Yang, J.Z.; Kang, C.Y.; Yuan, J.; Zhang, Y.; Wei, Y.J.; Xu, L.; Zhou, F.; Fan, X. Effect of adverse childhood experiences on hypothalamic–pituitary–adrenal (HPA) axis function and antidepressant efficacy in untreated first episode patients with major depressive disorder. Psychoneuroendocrinology, 2021, 134, 105432. doi: 10.1016/j.psyneuen.2021.105432 PMID: 34607174
  33. Knorr, U.; Vinberg, M.; Kessing, L.V.; Wetterslev, J. Salivary cortisol in depressed patients versus control persons: A systematic review and meta-analysis. Psychoneuroendocrinology, 2010, 35(9), 1275-1286. doi: 10.1016/j.psyneuen.2010.04.001 PMID: 20447770
  34. Stetler, C.; Miller, G.E. Depression and hypothalamic-pituitary-adrenal activation: A quantitative summary of four decades of research. Psychosom. Med., 2011, 73(2), 114-126. doi: 10.1097/PSY.0b013e31820ad12b PMID: 21257974
  35. Holsboer, F. Stress, hypercortisolism and corticosteroid receptors in depression: Implicatons for therapy. J. Affect. Disord., 2001, 62(1-2), 77-91. doi: 10.1016/S0165-0327(00)00352-9 PMID: 11172875
  36. Holsboer, F. The corticosteroid receptor hypothesis of depression. Neuropsychopharmacology, 2000, 23(5), 477-501. doi: 10.1016/S0893-133X(00)00159-7 PMID: 11027914
  37. Vale, W.; Spiess, J.; Rivier, C.; Rivier, J. Characterization of a 41-residue ovine hypothalamic peptide that stimulates secretion of corticotropin and beta-endorphin. Science, 1981, 213(4514), 1394-1397. doi: 10.1126/science.6267699 PMID: 6267699
  38. Schatzberg, A.F. Anna-Monika Award Lecture, DGPPN Kongress, 2013: The role of the hypothalamic–pituitary–adrenal (HPA) axis in the pathogenesis of psychotic major depression. World J. Biol. Psychiatry, 2015, 16(1), 2-11. doi: 10.3109/15622975.2014.916414 PMID: 24933348
  39. Qi, X.R.; Kamphuis, W.; Wang, S.; Wang, Q.; Lucassen, P.J.; Zhou, J.N.; Swaab, D.F. Aberrant stress hormone receptor balance in the human prefrontal cortex and hypothalamic paraventricular nucleus of depressed patients. Psychoneuroendocrinology, 2013, 38(6), 863-870. doi: 10.1016/j.psyneuen.2012.09.014 PMID: 23137715
  40. Qi, C.C.; Zhang, Z.; Fang, H.; Liu, J.; Zhou, N.; Ge, J.F.; Chen, F.H.; Xiang, C.B.; Zhou, J.N. Antidepressant effects of abscisic acid mediated by the downregulation of corticotrophin-releasing hormone gene expression in rats. Int. J. Neuropsychopharmacol., 2014, 18(4), pyu006. PMID: 25552429
  41. Hu, P.; van Dam, A.M.; Wang, Y.; Lucassen, P.J.; Zhou, J.N. Retinoic acid and depressive disorders: Evidence and possible neurobiological mechanisms. Neurosci. Biobehav. Rev., 2020, 112, 376-391. doi: 10.1016/j.neubiorev.2020.02.013 PMID: 32070693
  42. Rotondo, F.; Butz, H.; Syro, L.V.; Yousef, G.M.; Di Ieva, A.; Restrepo, L.M.; Quintanar-Stephano, A.; Berczi, I.; Kovacs, K. Arginine vasopressin (AVP): A review of its historical perspectives, current research and multifunctional role in the hypothalamo-hypophysial system. Pituitary, 2016, 19(4), 345-355. doi: 10.1007/s11102-015-0703-0 PMID: 26762848
  43. Pariante, C.M.; Miller, A.H. Glucocorticoid receptors in major depression: Relevance to pathophysiology and treatment. Biol. Psychiatry, 2001, 49(5), 391-404. doi: 10.1016/S0006-3223(00)01088-X PMID: 11274650
  44. Pariante, C.M. Glucocorticoid receptor function in vitro in patients with major depression. Stress, 2004, 7(4), 209-219. doi: 10.1080/10253890500069650 PMID: 16019586
  45. Young, E.A.; Lopez, J.F.; Murphy-Weinberg, V.; Watson, S.J.; Akil, H. Mineralocorticoid receptor function in major depression. Arch. Gen. Psychiatry, 2003, 60(1), 24-28. doi: 10.1001/archpsyc.60.1.24 PMID: 12511169
  46. McEwen, B.S. Protective and damaging effects of stress mediators. N. Engl. J. Med., 1998, 338(3), 171-179. doi: 10.1056/NEJM199801153380307 PMID: 9428819
  47. Leistner, C.; Menke, A. How to measure glucocorticoid receptor’s sensitivity in patients with stress-related psychiatric disorders. Psychoneuroendocrinology, 2018, 91, 235-260. doi: 10.1016/j.psyneuen.2018.01.023 PMID: 29449045
  48. Carroll, B.J.; Martin, F.I.R.; Davies, B. Resistance to suppression by dexamethasone of plasma 11-O.H.C.S. levels in severe depressive illness. BMJ, 1968, 3(5613), 285-287. doi: 10.1136/bmj.3.5613.285 PMID: 4385601
  49. Carroll, B.J.; Feinberg, M.; Greden, J.F.; Tarika, J.; Albala, A.A.; Haskett, R.F.; James, N.M.; Kronfol, Z.; Lohr, N.; Steiner, M.; de Vigne, J.P.; Young, E. A specific laboratory test for the diagnosis of melancholia. Standardization, validation, and clinical utility. Arch. Gen. Psychiatry, 1981, 38(1), 15-22. doi: 10.1001/archpsyc.1981.01780260017001 PMID: 7458567
  50. Nelson, J.C.; Davis, J.M. DST studies in psychotic depression: A meta-analysis. Am. J. Psychiatry, 1997, 154(11), 1497-1503. doi: 10.1176/ajp.154.11.1497 PMID: 9356556
  51. Nierenberg, A.A.; Feinstein, A.R. How to evaluate a diagnostic marker test. Lessons from the rise and fall of dexamethasone suppression test. JAMA, 1988, 259(11), 1699-1702. doi: 10.1001/jama.1988.03720110061036 PMID: 3278149
  52. Gervasoni, N.; Bertschy, G.; Osiek, C.; Perret, G.; Denis, R.; Golaz, J.; Rossier, M.F.; Bondolfi, G.; Aubry, J.M. Cortisol responses to combined dexamethasone/CRH test in outpatients with a major depressive episode. J. Psychiatr. Res., 2004, 38(6), 553-557. doi: 10.1016/j.jpsychires.2004.04.008 PMID: 15458850
  53. Carpenter, L.L.; Ross, N.S.; Tyrka, A.R.; Anderson, G.M.; Kelly, M.; Price, L.H. Dex/CRH test cortisol response in outpatients with major depression and matched healthy controls. Psychoneuroendocrinology, 2009, 34(8), 1208-1213. doi: 10.1016/j.psyneuen.2009.03.009 PMID: 19375869
  54. Holsboer, F.; Bender, W.; Benkert, O.; Klein, H.E.; Schmauss, M. Diagnostic value of dexamethasone suppression test in depression. Lancet, 1980, 316(8196), 706. doi: 10.1016/S0140-6736(80)92755-5 PMID: 6106823
  55. Arana, G.W.; Baldessarini, R.J.; Ornsteen, M. The dexamethasone suppression test for diagnosis and prognosis in psychiatry. Commentary and review. Arch. Gen. Psychiatry, 1985, 42(12), 1193-1204. doi: 10.1001/archpsyc.1985.01790350067012 PMID: 3000317
  56. Bardeleben, U.; Holsboer, F. Cortisol response to a combined dexamethasone-human corticotrophin-releasing hormone challenge in patients with depression. J. Neuroendocrinol., 1989, 1(6), 485-488. doi: 10.1111/j.1365-2826.1989.tb00150.x PMID: 19210420
  57. Heuser, I.; Yassouridis, A.; Holsboer, F. The combined dexamethasone/CRH test: A refined laboratory test for psychiatric disorders. J. Psychiatr. Res., 1994, 28(4), 341-356. doi: 10.1016/0022-3956(94)90017-5 PMID: 7877114
  58. Modell, S.; Yassouridis, A.; Huber, J.; Holsboer, F. Corticosteroid receptor function is decreased in depressed patients. Neuroendocrinology, 1997, 65(3), 216-222. doi: 10.1159/000127275 PMID: 9088003
  59. Kunugi, H.; Ida, I.; Owashi, T.; Kimura, M.; Inoue, Y.; Nakagawa, S.; Yabana, T.; Urushibara, T.; Kanai, R.; Aihara, M.; Yuuki, N.; Otsubo, T.; Oshima, A.; Kudo, K.; Inoue, T.; Kitaichi, Y.; Shirakawa, O.; Isogawa, K.; Nagayama, H.; Kamijima, K.; Nanko, S.; Kanba, S.; Higuchi, T.; Mikuni, M. Assessment of the dexamethasone/CRH test as a state-dependent marker for hypothalamic-pituitary-adrenal (HPA) axis abnormalities in major depressive episode: A multicenter study. Neuropsychopharmacology, 2006, 31(1), 212-220. doi: 10.1038/sj.npp.1300868 PMID: 16123748
  60. Ising, M.; Horstmann, S.; Kloiber, S.; Lucae, S.; Binder, E.B.; Kern, N.; Künzel, H.E.; Pfennig, A.; Uhr, M.; Holsboer, F. Combined dexamethasone/corticotropin releasing hormone test predicts treatment response in major depression - a potential biomarker? Biol. Psychiatry, 2007, 62(1), 47-54. doi: 10.1016/j.biopsych.2006.07.039 PMID: 17123470
  61. Zobel, A.W.; Nickel, T.; Sonntag, A.; Uhr, M.; Holsboer, F.; Ising, M. Cortisol response in the combined dexamethasone/CRH test as predictor of relapse in patients with remitted depression. J. Psychiatr. Res., 2001, 35(2), 83-94. doi: 10.1016/S0022-3956(01)00013-9 PMID: 11377437
  62. Appelhof, B.C.; Huyser, J.; Verweij, M.; Brouwer, J.P.; van Dyck, R.; Fliers, E.; Hoogendijk, W.J.G.; Tijssen, J.G.P.; Wiersinga, W.M.; Schene, A.H. Glucocorticoids and relapse of major depression (dexamethasone/corticotropin-releasing hormone test in relation to relapse of major depression). Biol. Psychiatry, 2006, 59(8), 696-701. doi: 10.1016/j.biopsych.2005.09.008 PMID: 16368077
  63. Coryell, W.; Schlesser, M. The dexamethasone suppression test and suicide prediction. Am. J. Psychiatry, 2001, 158(5), 748-753. doi: 10.1176/appi.ajp.158.5.748 PMID: 11329397
  64. Hennings, J.M.; Ising, M.; Uhr, M.; Holsboer, F.; Lucae, S. Recurrent suicide attempts affect normalization of HPA axis dysregulation after recovery from major depression. Front. Psychiatry, 2022, 13, 937582. doi: 10.3389/fpsyt.2022.937582 PMID: 36032226
  65. Menke, A.; Arloth, J.; Best, J.; Namendorf, C.; Gerlach, T.; Czamara, D.; Lucae, S.; Dunlop, B.W.; Crowe, T.M.; Garlow, S.J.; Nemeroff, C.B.; Ritchie, J.C.; Craighead, W.E.; Mayberg, H.S.; Rex-Haffner, M.; Binder, E.B.; Uhr, M. Time-dependent effects of dexamethasone plasma concentrations on glucocorticoid receptor challenge tests. Psychoneuroendocrinology, 2016, 69, 161-171. doi: 10.1016/j.psyneuen.2016.04.003 PMID: 27107207
  66. Leistner, C.; Menke, A. Hypothalamic–pituitary–adrenal axis and stress. Handb. Clin. Neurol., 2020, 175, 55-64. doi: 10.1016/B978-0-444-64123-6.00004-7 PMID: 33008543
  67. Menke, A.; Arloth, J.; Pütz, B.; Weber, P.; Klengel, T.; Mehta, D.; Gonik, M.; Rex-Haffner, M.; Rubel, J.; Uhr, M.; Lucae, S.; Deussing, J.M.; Müller-Myhsok, B.; Holsboer, F.; Binder, E.B. Dexamethasone stimulated gene expression in peripheral blood is a sensitive marker for glucocorticoid receptor resistance in depressed patients. Neuropsychopharmacology, 2012, 37(6), 1455-1464. doi: 10.1038/npp.2011.331 PMID: 22237309
  68. Menke, A.; Rex-Haffner, M.; Klengel, T.; Binder, E.B.; Mehta, D. Peripheral blood gene expression: It all boils down to the RNA collection tubes. BMC Res. Notes, 2012, 5(1), 1. doi: 10.1186/1756-0500-5-1 PMID: 22214347
  69. Menke, A.; Arloth, J.; Gerber, M.; Rex-Haffner, M.; Uhr, M.; Holsboer, F.; Binder, E.B.; Holsboer-Trachsler, E.; Beck, J. Dexamethasone stimulated gene expression in peripheral blood indicates glucocorticoid-receptor hypersensitivity in job-related exhaustion. Psychoneuroendocrinology, 2014, 44, 35-46. doi: 10.1016/j.psyneuen.2014.02.013 PMID: 24767618
  70. Menke, A.; Lehrieder, D.; Fietz, J.; Leistner, C.; Wurst, C.; Stonawski, S.; Reitz, J.; Lechner, K.; Busch, Y.; Weber, H.; Deckert, J.; Domschke, K. Childhood trauma dependent anxious depression sensitizes HPA axis function. Psychoneuroendocrinology, 2018, 98, 22-29. doi: 10.1016/j.psyneuen.2018.07.025 PMID: 30086534
  71. Rampp, C.; Eichelkraut, A.; Best, J.; Czamara, D.; Rex-Haffner, M.; Uhr, M.; Binder, E.B.; Menke, A. Sex-related differential response to dexamethasone in endocrine and immune measures in depressed in-patients and healthy controls. J. Psychiatr. Res., 2018, 98, 107-115. doi: 10.1016/j.jpsychires.2017.12.020 PMID: 29331929
  72. Arloth, J.; Bogdan, R.; Weber, P.; Frishman, G.; Menke, A.; Wagner, K.V.; Balsevich, G.; Schmidt, M.V.; Karbalai, N.; Czamara, D.; Altmann, A.; Trümbach, D.; Wurst, W.; Mehta, D.; Uhr, M.; Klengel, T.; Erhardt, A.; Carey, C.E.; Conley, E.D.; Ruepp, A.; Müller-Myhsok, B.; Hariri, A.R.; Binder, E.B.; Ripke, S.; Wray, N.R.; Lewis, C.M.; Hamilton, S.P.; Weissman, M.M.; Breen, G.; Byrne, E.M.; Blackwood, D.H.R.; Boomsma, D.I.; Cichon, S.; Heath, A.C.; Holsboer, F.; Lucae, S.; Madden, P.A.F.; Martin, N.G.; McGuffin, P.; Muglia, P.; Noethen, M.M.; Penninx, B.P.; Pergadia, M.L.; Potash, J.B.; Rietschel, M.; Lin, D.; Müller-Myhsok, B.; Shi, J.; Steinberg, S.; Grabe, H.J.; Lichtenstein, P.; Magnusson, P.; Perlis, R.H.; Preisig, M.; Smoller, J.W.; Stefansson, K.; Uher, R.; Kutalik, Z.; Tansey, K.E.; Teumer, A.; Viktorin, A.; Barnes, M.R.; Bettecken, T.; Binder, E.B.; Breuer, R.; Castro, V.M.; Churchill, S.E.; Coryell, W.H.; Craddock, N.; Craig, I.W.; Czamara, D.; De Geus, E.J.; Degenhardt, F.; Farmer, A.E.; Fava, M.; Frank, J.; Gainer, V.S.; Gallagher, P.J.; Gordon, S.D.; Goryachev, S.; Gross, M.; Guipponi, M.; Henders, A.K.; Herms, S.; Hickie, I.B.; Hoefels, S.; Hoogendijk, W.; Hottenga, J.J.; Iosifescu, D.V.; Ising, M.; Jones, I.; Jones, L.; Jung-Ying, T.; Knowles, J.A.; Kohane, I.S.; Kohli, M.A.; Korszun, A.; Landen, M.; Lawson, W.B.; Lewis, G.; MacIntyre, D.; Maier, W.; Mattheisen, M.; McGrath, P.J.; McIntosh, A.; McLean, A.; Middeldorp, C.M.; Middleton, L.; Montgomery, G.M.; Murphy, S.N.; Nauck, M.; Nolen, W.A.; Nyholt, D.R.; O’Donovan, M.; Oskarsson, H.; Pedersen, N.; Scheftner, W.A.; Schulz, A.; Schulze, T.G.; Shyn, S.I.; Sigurdsson, E.; Slager, S.L.; Smit, J.H.; Stefansson, H.; Steffens, M.; Thorgeirsson, T.; Tozzi, F.; Treutlein, J.; Uhr, M.; van den Oord, E.J.C.G.; Van Grootheest, G.; Völzke, H.; Weilburg, J.B.; Willemsen, G.; Zitman, F.G.; Neale, B.; Daly, M.; Levinson, D.F.; Sullivan, P.F. Genetic differences in the immediate transcriptome response to stress predict risk-related brain function and psychiatric disorders. Neuron, 2015, 86(5), 1189-1202. doi: 10.1016/j.neuron.2015.05.034 PMID: 26050039
  73. Wiechmann, T.; Röh, S.; Sauer, S.; Czamara, D.; Arloth, J.; Ködel, M.; Beintner, M.; Knop, L.; Menke, A.; Binder, E.B.; Provençal, N. Identification of dynamic glucocorticoid-induced methylation changes at the FKBP5 locus. Clin. Epigenetics, 2019, 11(1), 83. doi: 10.1186/s13148-019-0682-5 PMID: 31122292
  74. Smith, S.M.; Vale, W.W. The role of the hypothalamic-pituitary-adrenal axis in neuroendocrine responses to stress. Dialogues Clin. Neurosci., 2006, 8(4), 383-395. doi: 10.31887/DCNS.2006.8.4/ssmith PMID: 17290797
  75. de Kloet, E.R.; Joëls, M.; Holsboer, F. Stress and the brain: From adaptation to disease. Nat. Rev. Neurosci., 2005, 6(6), 463-475. doi: 10.1038/nrn1683 PMID: 15891777
  76. Schatzberg, A.F.; Keller, J.; Tennakoon, L.; Lembke, A.; Williams, G.; Kraemer, F.B.; Sarginson, J.E.; Lazzeroni, L.C.; Murphy, G.M. HPA axis genetic variation, cortisol and psychosis in major depression. Mol. Psychiatry, 2014, 19(2), 220-227. doi: 10.1038/mp.2013.129 PMID: 24166410
  77. Keller, J.; Flores, B.; Gomez, R.G.; Solvason, H.B.; Kenna, H.; Williams, G.H.; Schatzberg, A.F. Cortisol circadian rhythm alterations in psychotic major depression. Biol. Psychiatry, 2006, 60(3), 275-281. doi: 10.1016/j.biopsych.2005.10.014 PMID: 16458262
  78. Dwyer, J.B.; Aftab, A.; Radhakrishnan, R.; Widge, A.; Rodriguez, C.I.; Carpenter, L.L.; Nemeroff, C.B.; McDonald, W.M.; Kalin, N.H. Hormonal treatments for major depressive disorder: State of the art. Am. J. Psychiatry, 2020, 177(8), 686-705. doi: 10.1176/appi.ajp.2020.19080848 PMID: 32456504
  79. Ding, Y.; Wei, Z.; Yan, H.; Guo, W. Efficacy of treatments targeting hypothalamic-pituitary-adrenal systems for major depressive disorder: A meta-analysis. Front. Pharmacol., 2021, 12, 732157. doi: 10.3389/fphar.2021.732157 PMID: 34566653
  80. Aguilera, G.; Rabadan-Diehl, C. Vasopressinergic regulation of the hypothalamic–pituitary–adrenal axis: Implications for stress adaptation. Regul. Pept., 2000, 96(1-2), 23-29. doi: 10.1016/S0167-0115(00)00196-8 PMID: 11102648
  81. Peter, J.; Burbach, H.; Adan, R.A.H.; Lolait, S.J.; van Leeuwen, F.W.; Mezey, E.; Palkovits, M.; Barberis, C. Molecular neurobiology and pharmacology of the Vasopressin/Oxytocin receptor family. Cell. Mol. Neurobiol., 1995, 15(5), 573-595. doi: 10.1007/BF02071318 PMID: 8719042
  82. Rabadan-Diehl, C.; Lolait, S.J.; Aguilera, G. Regulation of pituitary vasopressin V1b receptor mRNA during stress in the rat. J. Neuroendocrinol., 1995, 7(12), 903-910. doi: 10.1111/j.1365-2826.1995.tb00734.x PMID: 8745267
  83. Meynen, G.; Unmehopa, U.A.; van Heerikhuize, J.J.; Hofman, M.A.; Swaab, D.F.; Hoogendijk, W.J.G. Increased arginine vasopressin mRNA expression in the human hypothalamus in depression: A preliminary report. Biol. Psychiatry, 2006, 60(8), 892-895. doi: 10.1016/j.biopsych.2005.12.010 PMID: 16499879
  84. Holsboer, F.; Ising, M. Hypothalamic stress systems in mood disorders. Handb. Clin. Neurol., 2021, 182, 33-48. doi: 10.1016/B978-0-12-819973-2.00003-4 PMID: 34266603
  85. Chaki, S. Vasopressin V1B receptor antagonists as potential antidepressants. Int. J. Neuropsychopharmacol., 2021, 24(6), 450-463. doi: 10.1093/ijnp/pyab013 PMID: 33733667
  86. Griebel, G.; Beeské, S.; Stahl, S.M. The vasopressin V(1b) receptor antagonist SSR149415 in the treatment of major depressive and generalized anxiety disorders: Results from 4 randomized, double-blind, placebo-controlled studies. J. Clin. Psychiatry, 2012, 73(11), 1403-1411. doi: 10.4088/JCP.12m07804 PMID: 23146246
  87. Katz, D.A.; Locke, C.; Greco, N.; Liu, W.; Tracy, K.A. Hypothalamic-pituitary-adrenal axis and depression symptom effects of an arginine vasopressin type 1B receptor antagonist in a one-week randomized Phase 1b trial. Brain Behav., 2017, 7(3), e00628. doi: 10.1002/brb3.628 PMID: 28293470
  88. Kamiya, M.; Sabia, H.D.; Marella, J.; Fava, M.; Nemeroff, C.B.; Umeuchi, H.; Iijima, M.; Chaki, S.; Nishino, I. Efficacy and safety of TS-121, a novel vasopressin V1B receptor antagonist, as adjunctive treatment for patients with major depressive disorder: A randomized, double-blind, placebo-controlled study. J. Psychiatr. Res., 2020, 128, 43-51. doi: 10.1016/j.jpsychires.2020.05.017 PMID: 32521250
  89. Watson, S.; Gallagher, P.; Porter, R.J.; Smith, M.S.; Herron, L.J.; Bulmer, S.; Young, A.H.; Ferrier, I.N. A randomized trial to examine the effect of mifepristone on neuropsychological performance and mood in patients with bipolar depression. Biol. Psychiatry, 2012, 72(11), 943-949. doi: 10.1016/j.biopsych.2012.05.029 PMID: 22770649
  90. Belanoff, J.K.; Flores, B.H.; Kalezhan, M.; Sund, B.; Schatzberg, A.F. Rapid reversal of psychotic depression using mifepristone. J. Clin. Psychopharmacol., 2001, 21(5), 516-521. doi: 10.1097/00004714-200110000-00009 PMID: 11593077
  91. Flores, B.H.; Kenna, H.; Keller, J.; Solvason, H.B.; Schatzberg, A.F. Clinical and biological effects of mifepristone treatment for psychotic depression. Neuropsychopharmacology, 2006, 31(3), 628-636. doi: 10.1038/sj.npp.1300884 PMID: 16160710
  92. DeBattista, C.; Belanoff, J.; Glass, S.; Khan, A.; Horne, R.L.; Blasey, C.; Carpenter, L.L.; Alva, G. Mifepristone versus placebo in the treatment of psychosis in patients with psychotic major depression. Biol. Psychiatry, 2006, 60(12), 1343-1349. doi: 10.1016/j.biopsych.2006.05.034 PMID: 16889757
  93. Belanoff, J.K.; Rothschild, A.J.; Cassidy, F.; DeBattista, C.; Baulieu, E.E.; Schold, C.; Schatzberg, A.F. An open label trial of C-1073 (mifepristone) for psychotic major depression. Biol. Psychiatry, 2002, 52(5), 386-392. doi: 10.1016/S0006-3223(02)01432-4 PMID: 12242054
  94. Simpson, G.M.; Sheshai, A.E.; Loza, N.; Kingsbury, S.J.; Fayek, M.; Rady, A.; Fawzy, W. An 8-week open-label trial of a 6-day course of mifepristone for the treatment of psychotic depression. J. Clin. Psychiatry, 2005, 66(5), 598-602. doi: 10.4088/JCP.v66n0509 PMID: 15889946
  95. Blasey, C.M.; DeBattista, C.; Roe, R.; Block, T.; Belanoff, J.K. A multisite trial of mifepristone for the treatment of psychotic depression: A site-by-treatment interaction. Contemp. Clin. Trials, 2009, 30(4), 284-288. doi: 10.1016/j.cct.2009.03.001 PMID: 19318138
  96. Block, T.S.; Kushner, H.; Kalin, N.; Nelson, C.; Belanoff, J.; Schatzberg, A. Combined analysis of mifepristone for psychotic depression: Plasma levels associated with clinical response. Biol. Psychiatry, 2018, 84(1), 46-54. doi: 10.1016/j.biopsych.2018.01.008 PMID: 29523415
  97. Holsboer, F. CRHR1 antagonists as novel treatment strategies. CNS Spectr., 2001, 6(7), 590-594. doi: 10.1017/S1092852900002133 PMID: 15573022
  98. Zhou, J.N.; Fang, H. Transcriptional regulation of corticotropin-releasing hormone gene in stress response. IBRO Rep., 2018, 5, 137-146. doi: 10.1016/j.ibror.2018.08.003 PMID: 30591954
  99. Holsboer, F. The rationale for corticotropin-releasing hormone receptor (CRH-R) antagonists to treat depression and anxiety. J. Psychiatr. Res., 1999, 33(3), 181-214. doi: 10.1016/S0022-3956(98)90056-5 PMID: 10367986
  100. Owens, M.J.; Nemeroff, C.B. Physiology and pharmacology of corticotropin-releasing factor. Pharmacol. Rev., 1991, 43(4), 425-473. PMID: 1775506
  101. Zobel, A.W.; Nickel, T.; Künzel, H.E.; Ackl, N.; Sonntag, A.; Ising, M.; Holsboer, F. Effects of the high-affinity corticotropin-releasing hormone receptor 1 antagonist R121919 in major depression: the first 20 patients treated. J. Psychiatr. Res., 2000, 34(3), 171-181. doi: 10.1016/S0022-3956(00)00016-9 PMID: 10867111
  102. Binneman, B.; Feltner, D.; Kolluri, S.; Shi, Y.; Qiu, R.; Stiger, T. A 6-week randomized, placebo-controlled trial of CP-316,311 (a selective CRH1 antagonist) in the treatment of major depression. Am. J. Psychiatry, 2008, 165(5), 617-620. doi: 10.1176/appi.ajp.2008.07071199 PMID: 18413705
  103. Spierling, S.R.; Zorrilla, E.P. Don’t stress about CRF: Assessing the translational failures of CRF1antagonists. Psychopharmacology, 2017, 234(9-10), 1467-1481. doi: 10.1007/s00213-017-4556-2 PMID: 28265716
  104. Schwandt, M.L.; Cortes, C.R.; Kwako, L.E.; George, D.T.; Momenan, R.; Sinha, R.; Grigoriadis, D.E.; Pich, E.M.; Leggio, L.; Heilig, M. The CRF1 antagonist verucerfont in anxious alcohol-dependent women: Translation of neuroendocrine, but not of anti-craving effects. Neuropsychopharmacology, 2016, 41(12), 2818-2829. doi: 10.1038/npp.2016.61 PMID: 27109623
  105. Dunlop, B.W.; Rothbaum, B.O.; Binder, E.B.; Duncan, E.; Harvey, P.D.; Jovanovic, T.; Kelley, M.E.; Kinkead, B.; Kutner, M.; Iosifescu, D.V.; Mathew, S.J.; Neylan, T.C.; Kilts, C.D.; Nemeroff, C.B.; Mayberg, H.S. Evaluation of a corticotropin releasing hormone type 1 receptor antagonist in women with posttraumatic stress disorder: study protocol for a randomized controlled trial. Trials, 2014, 15(1), 240. doi: 10.1186/1745-6215-15-240 PMID: 24950747
  106. Dunlop, B.W.; Binder, E.B.; Iosifescu, D.; Mathew, S.J.; Neylan, T.C.; Pape, J.C.; Carrillo-Roa, T.; Green, C.; Kinkead, B.; Grigoriadis, D.; Rothbaum, B.O.; Nemeroff, C.B.; Mayberg, H.S. Corticotropin-releasing factor receptor 1 antagonism is ineffective for women with posttraumatic stress disorder. Biol. Psychiatry, 2017, 82(12), 866-874. doi: 10.1016/j.biopsych.2017.06.024 PMID: 28793974
  107. Binder, E.B.; Salyakina, D.; Lichtner, P.; Wochnik, G.M.; Ising, M.; Pütz, B.; Papiol, S.; Seaman, S.; Lucae, S.; Kohli, M.A.; Nickel, T.; Künzel, H.E.; Fuchs, B.; Majer, M.; Pfennig, A.; Kern, N.; Brunner, J.; Modell, S.; Baghai, T.; Deiml, T.; Zill, P.; Bondy, B.; Rupprecht, R.; Messer, T.; Köhnlein, O.; Dabitz, H.; Brückl, T.; Müller, N.; Pfister, H.; Lieb, R.; Mueller, J.C.; Lõhmussaar, E.; Strom, T.M.; Bettecken, T.; Meitinger, T.; Uhr, M.; Rein, T.; Holsboer, F.; Muller-Myhsok, B. Polymorphisms in FKBP5 are associated with increased recurrence of depressive episodes and rapid response to antidepressant treatment. Nat. Genet., 2004, 36(12), 1319-1325. doi: 10.1038/ng1479 PMID: 15565110
  108. Matosin, N.; Halldorsdottir, T.; Binder, E.B. Understanding the molecular mechanisms underpinning gene by environment interactions in psychiatric disorders: The FKBP5 Model. Biol. Psychiatry, 2018, 83(10), 821-830. doi: 10.1016/j.biopsych.2018.01.021 PMID: 29573791
  109. Martins, J.; Yusupov, N.; Binder, E.B.; Brückl, T.M.; Czamara, D. Early adversity as the prototype gene × environment interaction in mental disorders? Pharmacol. Biochem. Behav., 2022, 215, 173371. doi: 10.1016/j.pbb.2022.173371 PMID: 35271857
  110. Klengel, T.; Mehta, D.; Anacker, C.; Rex-Haffner, M.; Pruessner, J.C.; Pariante, C.M.; Pace, T.W.W.; Mercer, K.B.; Mayberg, H.S.; Bradley, B.; Nemeroff, C.B.; Holsboer, F.; Heim, C.M.; Ressler, K.J.; Rein, T.; Binder, E.B. Allele-specific FKBP5 DNA demethylation mediates gene–childhood trauma interactions. Nat. Neurosci., 2013, 16(1), 33-41. doi: 10.1038/nn.3275 PMID: 23201972
  111. Tatro, E.T.; Everall, I.P.; Masliah, E.; Hult, B.J.; Lucero, G.; Chana, G.; Soontornniyomkij, V.; Achim, C.L. Differential expression of immunophilins FKBP51 and FKBP52 in the frontal cortex of HIV-infected patients with major depressive disorder. J. Neuroimmune Pharmacol., 2009, 4(2), 218-226. doi: 10.1007/s11481-009-9146-6 PMID: 19199039
  112. Chen, H.; Wang, N.; Zhao, X.; Ross, C.A.; O’Shea, K.S.; McInnis, M.G. Gene expression alterations in bipolar disorder postmortem brains. Bipolar Disord., 2013, 15(2), 177-187. doi: 10.1111/bdi.12039 PMID: 23360497
  113. Sinclair, D.; Fillman, S.G.; Webster, M.J.; Weickert, C.S. Dysregulation of glucocorticoid receptor co-factors FKBP5, BAG1 and PTGES3 in prefrontal cortex in psychotic illness. Sci. Rep., 2013, 3(1), 3539. doi: 10.1038/srep03539 PMID: 24345775
  114. Young, K.A.; Thompson, P.M.; Cruz, D.A.; Williamson, D.E.; Selemon, L.D. BA11 FKBP5 expression levels correlate with dendritic spine density in postmortem PTSD and controls. Neurobiol. Stress, 2015, 2, 67-72. doi: 10.1016/j.ynstr.2015.07.002 PMID: 26844242
  115. Hawn, S.E.; Sheerin, C.M.; Lind, M.J.; Hicks, T.A.; Marraccini, M.E.; Bountress, K.; Bacanu, S.A.; Nugent, N.R.; Amstadter, A.B. GxE effects of FKBP5 and traumatic life events on PTSD: A meta-analysis. J. Affect. Disord., 2019, 243, 455-462. doi: 10.1016/j.jad.2018.09.058 PMID: 30273884
  116. Kim, H.J.; Jin, H.J. Polymorphisms in the FKBP5 gene are associated with attention deficit and hyperactivity disorder in Korean children. Behav. Brain Res., 2021, 414, 113508. doi: 10.1016/j.bbr.2021.113508 PMID: 34352291
  117. Lobo, J.J.; Ayoub, L.J.; Moayedi, M.; Linnstaedt, S.D. Hippocampal volume, FKBP5 genetic risk alleles, and childhood trauma interact to increase vulnerability to chronic multisite musculoskeletal pain. Sci. Rep., 2022, 12(1), 6511. doi: 10.1038/s41598-022-10411-9 PMID: 35444168
  118. Bortsov, A.V.; Smith, J.E.; Diatchenko, L.; Soward, A.C.; Ulirsch, J.C.; Rossi, C.; Swor, R.A.; Hauda, W.E.; Peak, D.A.; Jones, J.S.; Holbrook, D.; Rathlev, N.K.; Foley, K.A.; Lee, D.C.; Collette, R.; Domeier, R.M.; Hendry, P.L.; McLean, S.A. Polymorphisms in the glucocorticoid receptor co-chaperone FKBP5 predict persistent musculoskeletal pain after traumatic stress exposure. Pain, 2013, 154(8), 1419-1426. doi: 10.1016/j.pain.2013.04.037 PMID: 23707272
  119. Strączkowski, M.; Stefanowicz, M.; Matulewicz, N.; Nikołajuk, A.; Karczewska-Kupczewska, M. Relation of adipose tissue and skeletal muscle FKBP5 expression with insulin sensitivity and the regulation of FKBP5 by insulin and free fatty acids. Endocrine, 2022, 76(3), 536-542. doi: 10.1007/s12020-022-03018-7 PMID: 35212883
  120. Smedlund, K.B.; Sanchez, E.R.; Hinds, T.D., Jr FKBP51 and the molecular chaperoning of metabolism. Trends Endocrinol. Metab., 2021, 32(11), 862-874. doi: 10.1016/j.tem.2021.08.003 PMID: 34481731
  121. Ising, M.; Maccarrone, G.; Brückl, T.; Scheuer, S.; Hennings, J.; Holsboer, F.; Turck, C.; Uhr, M.; Lucae, S. FKBP5 gene expression predicts antidepressant treatment outcome in depression. Int. J. Mol. Sci., 2019, 20(3), 485. doi: 10.3390/ijms20030485 PMID: 30678080
  122. Schmidt, M.V.; Paez-Pereda, M.; Holsboer, F.; Hausch, F. The prospect of FKBP51 as a drug target. ChemMedChem, 2012, 7(8), 1351-1359. doi: 10.1002/cmdc.201200137 PMID: 22581765
  123. Gaali, S.; Gopalakrishnan, R.; Wang, Y.; Kozany, C.; Hausch, F. The chemical biology of immunophilin ligands. Curr. Med. Chem., 2011, 18(35), 5355-5379. doi: 10.2174/092986711798194342 PMID: 22087830
  124. Blackburn, E.A.; Walkinshaw, M.D. Targeting FKBP isoforms with small-molecule ligands. Curr. Opin. Pharmacol., 2011, 11(4), 365-371. doi: 10.1016/j.coph.2011.04.007 PMID: 21803654
  125. Kolos, J.M.; Voll, A.M.; Bauder, M.; Hausch, F. FKBP Ligands—Where We Are and Where to Go? Front. Pharmacol., 2018, 9, 1425. doi: 10.3389/fphar.2018.01425 PMID: 30568592
  126. Gaali, S.; Kirschner, A.; Cuboni, S.; Hartmann, J.; Kozany, C.; Balsevich, G.; Namendorf, C.; Fernandez-Vizarra, P.; Sippel, C.; Zannas, A.S.; Draenert, R.; Binder, E.B.; Almeida, O.F.X.; Rühter, G.; Uhr, M.; Schmidt, M.V.; Touma, C.; Bracher, A.; Hausch, F. Selective inhibitors of the FK506-binding protein 51 by induced fit. Nat. Chem. Biol., 2015, 11(1), 33-37. doi: 10.1038/nchembio.1699 PMID: 25436518
  127. Balsevich, G.; Häusl, A.S.; Meyer, C.W.; Karamihalev, S.; Feng, X.; Pöhlmann, M.L.; Dournes, C.; Uribe-Marino, A.; Santarelli, S.; Labermaier, C.; Hafner, K.; Mao, T.; Breitsamer, M.; Theodoropoulou, M.; Namendorf, C.; Uhr, M.; Paez-Pereda, M.; Winter, G.; Hausch, F.; Chen, A.; Tschöp, M.H.; Rein, T.; Gassen, N.C.; Schmidt, M.V. Stress-responsive FKBP51 regulates AKT2-AS160 signaling and metabolic function. Nat. Commun., 2017, 8(1), 1725. doi: 10.1038/s41467-017-01783-y PMID: 29170369
  128. Bauder, M.; Meyners, C.; Purder, P.L.; Merz, S.; Sugiarto, W.O.; Voll, A.M.; Heymann, T.; Hausch, F. Structure-based design of high-affinity macrocyclic FKBP51 inhibitors. J. Med. Chem., 2021, 64(6), 3320-3349. doi: 10.1021/acs.jmedchem.0c02195 PMID: 33666419
  129. Hartmann, J.; Bajaj, T.; Klengel, C.; Chatzinakos, C.; Ebert, T.; Dedic, N.; McCullough, K.M.; Lardenoije, R.; Joëls, M.; Meijer, O.C.; McCann, K.E.; Dudek, S.M.; Sarabdjitsingh, R.A.; Daskalakis, N.P.; Klengel, T.; Gassen, N.C.; Schmidt, M.V.; Ressler, K.J. Mineralocorticoid receptors dampen glucocorticoid receptor sensitivity to stress via regulation of FKBP5. Cell Rep., 2021, 35(9), 109185. doi: 10.1016/j.celrep.2021.109185 PMID: 34077736
  130. Zhao, J.; Verwer, R.W.H.; Gao, S.F.; Qi, X.R.; Lucassen, P.J.; Kessels, H.W.; Swaab, D.F. Prefrontal alterations in GABAergic and glutamatergic gene expression in relation to depression and suicide. J. Psychiatr. Res., 2018, 102, 261-274. doi: 10.1016/j.jpsychires.2018.04.020 PMID: 29753198
  131. Wu, X.; Balesar, R.; Lu, J.; Farajnia, S.; Zhu, Q.; Huang, M.; Bao, A.M.; Swaab, D.F. Increased glutamic acid decarboxylase expression in the hypothalamic suprachiasmatic nucleus in depression. Brain Struct. Funct., 2017, 222(9), 4079-4088. doi: 10.1007/s00429-017-1442-y PMID: 28608287
  132. Hashimoto, K. Rapid‐acting antidepressant ketamine, its metabolites and other candidates: A historical overview and future perspective. Psychiatry Clin. Neurosci., 2019, 73(10), 613-627. doi: 10.1111/pcn.12902 PMID: 31215725
  133. Fukumoto, K.; Toki, H.; Iijima, M.; Hashihayata, T.; Yamaguchi, J.; Hashimoto, K.; Chaki, S. Antidepressant Potential of (R)-Ketamine in Rodent Models: Comparison with (S)-. Ketamine. J. Pharmacol. Exp. Ther., 2017, 361(1), 9-16. doi: 10.1124/jpet.116.239228 PMID: 28115553
  134. Zanos, P.; Moaddel, R.; Morris, P.J.; Georgiou, P.; Fischell, J.; Elmer, G.I.; Alkondon, M.; Yuan, P.; Pribut, H.J.; Singh, N.S.; Dossou, K.S.S.; Fang, Y.; Huang, X.P.; Mayo, C.L.; Wainer, I.W.; Albuquerque, E.X.; Thompson, S.M.; Thomas, C.J.; Zarate, C.A., Jr; Gould, T.D. NMDAR inhibition-independent antidepressant actions of ketamine metabolites. Nature, 2016, 533(7604), 481-486. doi: 10.1038/nature17998 PMID: 27144355
  135. Anderzhanova, E.; Hafner, K.; Genewsky, A.J.; Soliman, A.; Pöhlmann, M.L.; Schmidt, M.V.; Blum, R.; Wotjak, C.T.; Gassen, N.C. The stress susceptibility factor FKBP51 controls S-ketamine-evoked release of mBDNF in the prefrontal cortex of mice. Neurobiol. Stress, 2020, 13, 100239. doi: 10.1016/j.ynstr.2020.100239 PMID: 33344695
  136. Gassen, N.C.; Hartmann, J.; Zannas, A.S.; Kretzschmar, A.; Zschocke, J.; Maccarrone, G.; Hafner, K.; Zellner, A.; Kollmannsberger, L.K.; Wagner, K.V.; Mehta, D.; Kloiber, S.; Turck, C.W.; Lucae, S.; Chrousos, G.P.; Holsboer, F.; Binder, E.B.; Ising, M.; Schmidt, M.V.; Rein, T. FKBP51 inhibits GSK3β and augments the effects of distinct psychotropic medications. Mol. Psychiatry, 2016, 21(2), 277-289. doi: 10.1038/mp.2015.38 PMID: 25849320
  137. Cattaneo, A.; Riva, M.A. STRESS-induced mechanisms in mental illness: A role for glucocorticoid signalling. J. Steroid Biochem. Mol. Biol., 2016, 160, 169-174. PMID: 26241031
  138. Cattaneo, A.; Macchi, F.; Plazzotta, G.; Veronica, B.; Bocchio-Chiavetto, L.; Riva, M.A.; Pariante, C.M. Inflammation and neuronal plasticity: A link between childhood trauma and depression pathogenesis. Front. Cell. Neurosci., 2015, 9, 40. doi: 10.3389/fncel.2015.00040 PMID: 25873859
  139. Ficek, J.; Zygmunt, M.; Piechota, M.; Hoinkis, D.; Rodriguez Parkitna, J.; Przewlocki, R.; Korostynski, M. Molecular profile of dissociative drug ketamine in relation to its rapid antidepressant action. BMC Genomics, 2016, 17(1), 362. doi: 10.1186/s12864-016-2713-3 PMID: 27188165

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers