Deciphering the Metabolome under Stress: Insights from Rodent Models


Цитировать

Полный текст

Аннотация

Despite intensive research efforts to understand the molecular underpinnings of psychological stress and stress responses, the underlying molecular mechanisms remain largely elusive. Towards this direction, a plethora of stress rodent models have been established to investigate the effects of exposure to different stressors. To decipher affected molecular pathways in a holistic manner in these models, metabolomics approaches addressing altered, small molecule signatures upon stress exposure in a high-throughput, quantitative manner provide insightful information on stress-induced systemic changes in the brain. In this review, we discuss stress models in mice and rats, followed by mass spectrometry (MS) and nuclear magnetic resonance (NMR) metabolomics studies. We particularly focus on acute, chronic and early life stress paradigms, highlight how stress is assessed at the behavioral and molecular levels and focus on metabolomic outcomes in the brain and peripheral material such as plasma and serum. We then comment on common metabolomics patterns across different stress models and underline the need for unbiased -omics methodologies and follow-up studies of metabolomics outcomes to disentangle the complex pathobiology of stress and pertinent psychopathologies.

Об авторах

Maria Papageorgiou

Laboratory of Biochemistry, Department of Biological Applications and Technology, School of Health Sciences, University of Ioannina

Email: info@benthamscience.net

Daniela Theodoridou

Laboratory of Biology, Faculty of Medicine, School of Health Sciences, University of Ioannina

Email: info@benthamscience.net

Markus Nussbaumer

Laboratory of Biochemistry, Department of Biological Applications and Technology, School of Health Sciences, University of Ioannin

Email: info@benthamscience.net

Maria Syrrou

Laboratory of Biology, Faculty of Medicine, School of Health Sciences, University of Ioannina

Email: info@benthamscience.net

Michaela Filiou

Laboratory of Biochemistry, Department of Biological Applications and Technology, School of Health Science, University of Ioannina

Автор, ответственный за переписку.
Email: info@benthamscience.net

Список литературы

  1. Filiou, M.D.; Sandi, C. Anxiety and brain mitochondria: A bidirectional crosstalk. Trends Neurosci., 2019, 42(9), 573-588. doi: 10.1016/j.tins.2019.07.002 PMID: 31362874
  2. Chrousos, G.P. Stress and disorders of the stress system. Nat. Rev. Endocrinol., 2009, 5(7), 374-381. doi: 10.1038/nrendo.2009.106 PMID: 19488073
  3. Yip, K.S. Taoism and its impact on mental health of the Chinese communities. Int. J. Soc. Psychiatry, 2004, 50(1), 25-42. doi: 10.1177/0020764004038758 PMID: 15143845
  4. Pascoe, M.C.; Thompson, D.R.; Jenkins, Z.M.; Ski, C.F. Mindfulness mediates the physiological markers of stress: Systematic review and meta-analysis. J. Psychiatr. Res., 2017, 95, 156-178. doi: 10.1016/j.jpsychires.2017.08.004 PMID: 28863392
  5. Maddux, R.E.; Daukantaité, D.; Tellhed, U. The effects of yoga on stress and psychological health among employees: an 8- and 16-week intervention study. Anxiety Stress Coping, 2018, 31(2), 121-134. doi: 10.1080/10615806.2017.1405261 PMID: 29166771
  6. Liu, W.; Ge, T.; Leng, Y.; Pan, Z.; Fan, J.; Yang, W.; Cui, R. The role of neural plasticity in depression: From hippocampus to prefrontal cortex. Neural Plast., 2017, 2017, 1-11. doi: 10.1155/2017/6871089 PMID: 28246558
  7. Feyissa, A.M.; Chandran, A.; Stockmeier, C.A.; Karolewicz, B. Reduced levels of NR2A and NR2B subunits of NMDA receptor and PSD-95 in the prefrontal cortex in major depression. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2009, 33(1), 70-75. doi: 10.1016/j.pnpbp.2008.10.005 PMID: 18992785
  8. Patchev, V.K.; Patchev, A.V. Experimental models of stress. Dialogues Clin. Neurosci., 2006, 8(4), 417-432. doi: 10.31887/DCNS.2006.8.4/vpatchev PMID: 17290800
  9. Adhikari, A. Distributed circuits underlying anxiety. Front. Behav. Neurosci., 2014, 8, 112. doi: 10.3389/fnbeh.2014.00112 PMID: 24744710
  10. Chen, Y.; Baram, T.Z. Toward understanding how early-life stress reprograms cognitive and emotional brain networks. Neuropsychopharmacology, 2016, 41(1), 197-206. doi: 10.1038/npp.2015.181 PMID: 26105143
  11. Papadopoulou, Z.; Vlaikou, A.M.; Theodoridou, D.; Markopoulos, G.S.; Tsoni, K.; Agakidou, E.; Drosou-Agakidou, V.; Turck, C.W.; Filiou, M.D.; Syrrou, M. Stressful newborn memories: Pre-Conceptual, in utero, and postnatal events. Front. Psychiatry, 2019, 10, 220. doi: 10.3389/fpsyt.2019.00220 PMID: 31057437
  12. Buynitsky, T.; Mostofsky, D.I. Restraint stress in biobehavioral research: Recent developments. Neurosci. Biobehav. Rev., 2009, 33(7), 1089-1098. doi: 10.1016/j.neubiorev.2009.05.004 PMID: 19463853
  13. Can, A.; Dao, D.T.; Arad, M.; Terrillion, C.E.; Piantadosi, S.C.; Gould, T.D. The mouse forced swim test. J. Vis. Exp., 2012, (59), e3638. PMID: 22314943
  14. de Kloet, E.R.; Molendijk, M.L. Coping with the forced swim stressor: Towards understanding an adaptive mechanism. Neural Plast., 2016, 2016, 1-13. doi: 10.1155/2016/6503162 PMID: 27034848
  15. Slattery, D.A.; Cryan, J.F. Using the rat forced swim test to assess antidepressant-like activity in rodents. Nat. Protoc., 2012, 7(6), 1009-1014. doi: 10.1038/nprot.2012.044 PMID: 22555240
  16. Armario, A.; Gavaldà, A.; Martí, J. Comparison of the behavioural and endocrine response to forced swimming stress in five inbred strains of rats. Psychoneuroendocrinology, 1995, 20(8), 879-890. doi: 10.1016/0306-4530(95)00018-6 PMID: 8834094
  17. Bohacek, J.; Manuella, F.; Roszkowski, M.; Mansuy, I.M. Hippocampal gene expression induced by cold swim stress depends on sex and handling. Psychoneuroendocrinology, 2015, 52, 1-12. doi: 10.1016/j.psyneuen.2014.10.026 PMID: 25459888
  18. Gould, T.D. Mood and Anxiety Related Phenotypes in Mice; Humana Totowa: NJ, 2009, XII, p. 334. doi: 10.1007/978-1-60761-303-9
  19. Fujii, S.; Kaushik, M.K.; Zhou, X.; Korkutata, M.; Lazarus, M. Acute social defeat stress increases sleep in mice. Front. Neurosci., 2019, 13, 322. doi: 10.3389/fnins.2019.00322 PMID: 31001080
  20. Monteiro, S.; Roque, S.; de Sá-Calçada, D.; Sousa, N.; Correia-Neves, M.; Cerqueira, J.J. An efficient chronic unpredictable stress protocol to induce stress-related responses in C57BL/6 mice. Front. Psychiatry, 2015, 6, 6. doi: 10.3389/fpsyt.2015.00006 PMID: 25698978
  21. Willner, P. Reliability of the chronic mild stress model of depression: A user survey. Neurobiol. Stress, 2017, 6, 68-77. doi: 10.1016/j.ynstr.2016.08.001 PMID: 28229110
  22. Munhoz, C.; Madrigal, J.L.M.; García-Bueno, B.; Pradillo, J.M.; Moro, M.A.; Lizasoain, I.; Lorenzo, P.; Scavone, C.; Leza, J.C. TNF-alpha accounts for short-term persistence of oxidative status in rat brain after two weeks of repeated stress. Eur. J. Neurosci., 2004, 20(4), 1125-1130. doi: 10.1111/j.1460-9568.2004.03560.x PMID: 15305883
  23. Glavin, G.B.; Paré, W.P.; Sandbak, T.; Bakke, H.K.; Murison, R. Restraint stress in biomedical research: An update. Neurosci. Biobehav. Rev., 1994, 18(2), 223-249. doi: 10.1016/0149-7634(94)90027-2 PMID: 8058215
  24. Hollis, F.; Kabbaj, M. Social defeat as an animal model for depression. ILAR J., 2014, 55(2), 221-232. doi: 10.1093/ilar/ilu002 PMID: 25225302
  25. Golden, S.A.; Covington, H.E., III; Berton, O.; Russo, S.J. A standardized protocol for repeated social defeat stress in mice. Nat. Protoc., 2011, 6(8), 1183-1191. doi: 10.1038/nprot.2011.361 PMID: 21799487
  26. Badowska-Szalewska, E.; Klejbor, I.; Cecot, T.; Spodnik, J.H. Moryś J. Changes in NGF/c-Fos double staining in the structures of the limbic system in juvenile and aged rats exposed to forced swim test. Acta Neurobiol. Exp., 2009, 69(4), 448-458. PMID: 20048762
  27. Gardner, K.L.; Thrivikraman, K.V.; Lightman, S.L.; Plotsky, P.M.; Lowry, C.A. Early life experience alters behavior during social defeat: Focus on serotonergic systems. Neuroscience, 2005, 136(1), 181-191. doi: 10.1016/j.neuroscience.2005.07.042 PMID: 16182451
  28. Alves, R.L.; Portugal, C.C.; Summavielle, T.; Barbosa, F.; Magalhães, A. Maternal separation effects on mother rodents’ behaviour: A systematic review. Neurosci. Biobehav. Rev., 2020, 117, 98-109. doi: 10.1016/j.neubiorev.2019.09.008 PMID: 31499082
  29. Pryce, C.R.; Feldon, J. Long-term neurobehavioural impact of the postnatal environment in rats: Manipulations, effects and mediating mechanisms. Neurosci. Biobehav. Rev., 2003, 27(1-2), 57-71. doi: 10.1016/S0149-7634(03)00009-5 PMID: 12732223
  30. Rice, C.J.; Sandman, C.A.; Lenjavi, M.R.; Baram, T.Z. A novel mouse model for acute and long-lasting consequences of early life stress. Endocrinology, 2008, 149(10), 4892-4900. doi: 10.1210/en.2008-0633 PMID: 18566122
  31. Spencer, R.L.; Deak, T. A users guide to HPA axis research. Physiol. Behav., 2017, 178, 43-65. doi: 10.1016/j.physbeh.2016.11.014 PMID: 27871862
  32. Tsigos, C.; Chrousos, G.P. Hypothalamic–pituitary–adrenal axis, neuroendocrine factors and stress. J. Psychosom. Res., 2002, 53(4), 865-871. doi: 10.1016/S0022-3999(02)00429-4 PMID: 12377295
  33. Krontira, A.C.; Cruceanu, C.; Binder, E.B. Glucocorticoids as mediators of adverse outcomes of prenatal stress. Trends Neurosci., 2020, 43(6), 394-405. doi: 10.1016/j.tins.2020.03.008 PMID: 32459992
  34. Haller, J.; Aliczki, M.; Gyimesine Pelczer, K. Classical and novel approaches to the preclinical testing of anxiolytics: A critical evaluation. Neurosci. Biobehav. Rev., 2013, 37(10), 2318-2330. doi: 10.1016/j.neubiorev.2012.09.001 PMID: 22981935
  35. Pellow, S.; Chopin, P.; File, S.E.; Briley, M. Validation of open: Closed arm entries in an elevated plus-maze as a measure of anxiety in the rat. J. Neurosci. Methods, 1985, 14(3), 149-167. doi: 10.1016/0165-0270(85)90031-7 PMID: 2864480
  36. Walf, A.A.; Frye, C.A. The use of the elevated plus maze as an assay of anxiety-related behavior in rodents. Nat. Protoc., 2007, 2(2), 322-328. doi: 10.1038/nprot.2007.44 PMID: 17406592
  37. Kraeuter, A.K.; Guest, P.C.; Sarnyai, Z. The open field test for measuring locomotor activity and anxiety-like behavior. Methods Mol. Biol., 2019, 1916, 99-103. doi: 10.1007/978-1-4939-8994-2_9 PMID: 30535687
  38. Ramos, A.; Mormède, P. Stress and emotionality: A multidimensional and genetic approach. Neurosci. Biobehav. Rev., 1997, 22(1), 33-57. doi: 10.1016/S0149-7634(97)00001-8 PMID: 9491939
  39. Porsolt, R.D.; Le Pichon, M.; Jalfre, M. Depression: A new animal model sensitive to antidepressant treatments. Nature, 1977, 266(5604), 730-732. doi: 10.1038/266730a0 PMID: 559941
  40. Cryan, J.F.; Mombereau, C. In search of a depressed mouse: Utility of models for studying depression-related behavior in genetically modified mice. Mol. Psychiatry, 2004, 9(4), 326-357. doi: 10.1038/sj.mp.4001457 PMID: 14743184
  41. Toth, I.; Neumann, I.D. Animal models of social avoidance and social fear. Cell Tissue Res., 2013, 354(1), 107-118. doi: 10.1007/s00441-013-1636-4 PMID: 23760888
  42. Ducottet, C.; Griebel, G.; Belzung, C. Effects of the selective nonpeptide corticotropin-releasing factor receptor 1 antagonist antalarmin in the chronic mild stress model of depression in mice. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2003, 27(4), 625-631. doi: 10.1016/S0278-5846(03)00051-4 PMID: 12787849
  43. Monleon, S.; Parra, A.; Simon, V.M.; Brain, P.F.; D’Aquila, P.; Willner, P. Attenuation of sucrose consumption in mice by chronic mild stress and its restoration by imipramine. Psychopharmacology, 1995, 117(4), 453-457. doi: 10.1007/BF02246218 PMID: 7604147
  44. Harkin, A.; Houlihan, D.D.; Kelly, J.P. Reduction in preference for saccharin by repeated unpredictable stress in mice and its prevention by imipramine. J. Psychopharmacol., 2002, 16(2), 115-123. doi: 10.1177/026988110201600201 PMID: 12095069
  45. McEwen, B.S. Plasticity of the hippocampus: Adaptation to chronic stress and allostatic load. Ann. N. Y. Acad. Sci., 2001, 933(1), 265-277. doi: 10.1111/j.1749-6632.2001.tb05830.x PMID: 12000027
  46. Jones, B.C.; Sarrieau, A.; Reed, C.L.; Azar, M.R.; Mormède, P. Contribution of sex and genetics to neuroendocrine adaptation to stress in mice. Psychoneuroendocrinology, 1998, 23(5), 505-517. doi: 10.1016/S0306-4530(98)00014-6 PMID: 9802125
  47. Palme, R. Non-invasive measurement of glucocorticoids: Advances and problems. Physiol. Behav., 2019, 199, 229-243. doi: 10.1016/j.physbeh.2018.11.021 PMID: 30468744
  48. Ralph, C.R.; Tilbrook, A.J. Invited review: The usefulness of measuring glucocorticoids for assessing animal welfare. J. Anim. Sci., 2016, 94(2), 457-470. doi: 10.2527/jas.2015-9645 PMID: 27065116
  49. Anisman, H.; Hayley, S.; Kelly, O.; Borowski, T.; Merali, Z. Psychogenic, neurogenic, and systemic stressor effects on plasma corticosterone and behavior: Mouse strain-dependent outcomes. Behav. Neurosci., 2001, 115(2), 443-454. doi: 10.1037/0735-7044.115.2.443 PMID: 11345969
  50. Sheriff, M.J.; Dantzer, B.; Delehanty, B.; Palme, R.; Boonstra, R. Measuring stress in wildlife: Techniques for quantifying glucocorticoids. Oecologia, 2011, 166(4), 869-887. doi: 10.1007/s00442-011-1943-y PMID: 21344254
  51. Palme, R.; Rettenbacher, S.; Touma, C.; El-Bahr, S.M.; Möstl, E. Stress hormones in mammals and birds: Comparative aspects regarding metabolism, excretion, and noninvasive measurement in fecal samples. Ann. N. Y. Acad. Sci., 2005, 1040(1), 162-171. doi: 10.1196/annals.1327.021 PMID: 15891021
  52. Filiou, M.D.; Turck, C.W.; Martins-de-Souza, D. Quantitative proteomics for investigating psychiatric disorders. Proteomics Clin. Appl., 2011, 5(1-2), 38-49. doi: 10.1002/prca.201000060 PMID: 21280236
  53. Filiou, M.D.; Martins-de-Souza, D.; Guest, P.C.; Bahn, S.; Turck, C.W. To label or not to label: Applications of quantitative proteomics in neuroscience research. Proteomics, 2012, 12(4-5), 736-747. doi: 10.1002/pmic.201100350 PMID: 22247077
  54. Hernandez, L.M.; Kim, M.; Hoftman, G.D.; Haney, J.R.; de la Torre-Ubieta, L.; Pasaniuc, B.; Gandal, M.J. Transcriptomic insight into the polygenic mechanisms underlying psychiatric disorders. Biol. Psychiatry, 2021, 89(1), 54-64. doi: 10.1016/j.biopsych.2020.06.005 PMID: 32792264
  55. Geschwind, D.H.; Flint, J. Genetics and genomics of psychiatric disease. Science, 2015, 349(6255), 1489-1494. doi: 10.1126/science.aaa8954 PMID: 26404826
  56. von Ziegler, L.M.; Floriou-Servou, A.; Waag, R.; Das Gupta, R.R.; Sturman, O.; Gapp, K.; Maat, C.A.; Kockmann, T.; Lin, H.Y.; Duss, S.N.; Privitera, M.; Hinte, L.; von Meyenn, F.; Zeilhofer, H.U.; Germain, P.L.; Bohacek, J. Multiomic profiling of the acute stress response in the mouse hippocampus. Nat. Commun., 2022, 13(1), 1824. doi: 10.1038/s41467-022-29367-5 PMID: 35383160
  57. Floriou-Servou, A.; von Ziegler, L.; Waag, R.; Schläppi, C.; Germain, P.L.; Bohacek, J. The acute stress response in the multiomic era. Biol. Psychiatry, 2021, 89(12), 1116-1126. doi: 10.1016/j.biopsych.2020.12.031 PMID: 33722387
  58. Floriou-Servou, A.; von Ziegler, L.; Stalder, L.; Sturman, O.; Privitera, M.; Rassi, A.; Cremonesi, A.; Thöny, B.; Bohacek, J. Distinct proteomic, transcriptomic, and epigenetic stress responses in dorsal and ventral hippocampus. Biol. Psychiatry, 2018, 84(7), 531-541. doi: 10.1016/j.biopsych.2018.02.003 PMID: 29605177
  59. Lopes, S.; Teplytska, L.; Vaz-Silva, J.; Dioli, C.; Trindade, R.; Morais, M.; Webhofer, C.; Maccarrone, G.; Almeida, O.F.X.; Turck, C.W.; Sousa, N.; Sotiropoulos, I.; Filiou, M.D. Tau deletion prevents stress-induced dendritic atrophy in prefrontal cortex: Role of synaptic mitochondria. Cereb. Cortex, 2017, 27(4), 2580-2591. PMID: 27073221
  60. van der Kooij, M.A.; Rojas-Charry, L.; Givehchi, M.; Wolf, C.; Bueno, D.; Arndt, S.; Tenzer, S.; Mattioni, L.; Treccani, G.; Hasch, A.; Schmeisser, M.J.; Vianello, C.; Giacomello, M.; Methner, A. Chronic social stress disrupts the intracellular redistribution of brain hexokinase 3 induced by shifts in peripheral glucose levels. J. Mol. Med., 2022, 100(10), 1441-1453. doi: 10.1007/s00109-022-02235-x PMID: 35943566
  61. Patti, G.J.; Yanes, O.; Siuzdak, G. Metabolomics: the apogee of the omics trilogy. Nat. Rev. Mol. Cell Biol., 2012, 13(4), 263-269. doi: 10.1038/nrm3314 PMID: 22436749
  62. Griffiths, W.J.; Koal, T.; Wang, Y.; Kohl, M.; Enot, D.P.; Deigner, H.P. Targeted metabolomics for biomarker discovery. Angew. Chem. Int. Ed., 2010, 49(32), 5426-5445. doi: 10.1002/anie.200905579 PMID: 20629054
  63. Schrimpe-Rutledge, A.C.; Codreanu, S.G.; Sherrod, S.D.; McLean, J.A. Untargeted metabolomics strategies—challenges and emerging directions. J. Am. Soc. Mass Spectrom., 2016, 27(12), 1897-1905. doi: 10.1007/s13361-016-1469-y PMID: 27624161
  64. Johnson, C.H.; Ivanisevic, J.; Siuzdak, G. Metabolomics: Beyond biomarkers and towards mechanisms. Nat. Rev. Mol. Cell Biol., 2016, 17(7), 451-459. doi: 10.1038/nrm.2016.25 PMID: 26979502
  65. Emwas, A.H.; Roy, R.; McKay, R.T.; Tenori, L.; Saccenti, E.; Gowda, G.A.N.; Raftery, D.; Alahmari, F.; Jaremko, L.; Jaremko, M.; Wishart, D.S. NMR spectroscopy for metabolomics research. Metabolites, 2019, 9(7), 123. doi: 10.3390/metabo9070123 PMID: 31252628
  66. Alseekh, S.; Aharoni, A.; Brotman, Y.; Contrepois, K.; D’Auria, J.; Ewald, J.; Ewald, C. J.; Fraser, P.D.; Giavalisco, P.; Hall, R.D.; Heinemann, M.; Link, H.; Luo, J.; Neumann, S.; Nielsen, J.; Perez de Souza, L.; Saito, K.; Sauer, U.; Schroeder, F.C.; Schuster, S.; Siuzdak, G.; Skirycz, A.; Sumner, L.W.; Snyder, M.P.; Tang, H.; Tohge, T.; Wang, Y.; Wen, W.; Wu, S.; Xu, G.; Zamboni, N.; Fernie, A.R. Mass spectrometry-based metabolomics: A guide for annotation, quantification and best reporting practices. Nat. Methods, 2021, 18(7), 747-756. doi: 10.1038/s41592-021-01197-1 PMID: 34239102
  67. Humer, E.; Probst, T.; Pieh, C. Metabolomics in psychiatric disorders: What we learn from animal models. Metabolites, 2020, 10(2), 72. doi: 10.3390/metabo10020072 PMID: 32079262
  68. Turck, C.W.; Filiou, M.D. What have mass spectrometry-based proteomics and metabolomics (Not) taught us about psychiatric disorders? Mol. Neuropsychiatry, 2015, 1(2), 69-75. PMID: 27602358
  69. Humer, E.; Pieh, C.; Probst, T. Metabolomic biomarkers in anxiety disorders. Int. J. Mol. Sci., 2020, 21(13), 4784. doi: 10.3390/ijms21134784 PMID: 32640734
  70. Mellon, S.H.; Gautam, A.; Hammamieh, R.; Jett, M.; Wolkowitz, O.M. Metabolism, metabolomics, and inflammation in posttraumatic stress disorder. Biol. Psychiatry, 2018, 83(10), 866-875. doi: 10.1016/j.biopsych.2018.02.007 PMID: 29628193
  71. Bot, M.; Milaneschi, Y.; Al-Shehri, T.; Amin, N.; Garmaeva, S.; Onderwater, G.L.J.; Pool, R.; Thesing, C.S.; Vijfhuizen, L.S.; Vogelzangs, N.; Arts, I.C.W.; Demirkan, A.; van Duijn, C.; van Greevenbroek, M.; van der Kallen, C.J.H.; Köhler, S.; Ligthart, L.; van den Maagdenberg, A.M.J.M.; Mook-Kanamori, D.O.; de Mutsert, R.; Tiemeier, H.; Schram, M.T.; Stehouwer, C.D.A.; Terwindt, G.M.; Willems van Dijk, K.; Fu, J.; Zhernakova, A.; Beekman, M.; Slagboom, P.E.; Boomsma, D.I.; Penninx, B.W.J.H.; Beekman, M.; Suchiman, H.E.D.; Deelen, J.; Amin, N.; Beulens, J.W.; van der Bom, J.A.; Bomer, N.; Demirkan, A.; van Hilten, J.A.; Meessen, J.M.T.A.; Pool, R.; Moed, M.H.; Fu, J.; Onderwater, G.L.J.; Rutters, F.; So-Osman, C.; van der Flier, W.M.; van der Heijden, A.A.W.A.; van der Spek, A.; Asselbergs, F.W.; Boersma, E.; Elders, P.M.; Geleijnse, J.M.; Ikram, M.A.; Kloppenburg, M.; Meulenbelt, I.; Mooijaart, S.P.; Nelissen, R.G.H.H.; Netea, M.G.; Penninx, B.W.J.H.; Stehouwer, C.D.A.; Teunissen, C.E.; Terwindt, G.M.; ’t Hart, L.M.; van den Maagdenberg, A.M.J.M.; van der Harst, P.; van der Horst, I.C.C.; van der Kallen, C.J.H.; van Greevenbroek, M.M.J.; van Spil, W.E.; Wijmenga, C.; Zwinderman, A.H.; Zhernikova, A.; Jukema, J.W.; Sattar, N. Metabolomics Profile in Depression: A Pooled Analysis of 230 Metabolic Markers in 5283 Cases With Depression and 10,145 Controls. Biol. Psychiatry, 2020, 87(5), 409-418. doi: 10.1016/j.biopsych.2019.08.016 PMID: 31635762
  72. Filiou, M.D.; Teplytska, L.; Nussbaumer, M.; Otte, D.M.; Zimmer, A.; Turck, C.W. Multi-omics analysis reveals myelin, presynaptic and nicotinate alterations in the hippocampus of G72/G30 transgenic mice. J. Pers. Med., 2022, 12(2), 244. doi: 10.3390/jpm12020244 PMID: 35207732
  73. Filiou, M.D.; Zhang, Y.; Teplytska, L.; Reckow, S.; Gormanns, P.; Maccarrone, G.; Frank, E.; Kessler, M.S.; Hambsch, B.; Nussbaumer, M.; Bunck, M.; Ludwig, T.; Yassouridis, A.; Holsboer, F.; Landgraf, R.; Turck, C.W. Proteomics and metabolomics analysis of a trait anxiety mouse model reveals divergent mitochondrial pathways. Biol. Psychiatry, 2011, 70(11), 1074-1082. doi: 10.1016/j.biopsych.2011.06.009 PMID: 21791337
  74. Filiou, M.D.; Asara, J.M.; Nussbaumer, M.; Teplytska, L.; Landgraf, R.; Turck, C.W. Behavioral extremes of trait anxiety in mice are characterized by distinct metabolic profiles. J. Psychiatr. Res., 2014, 58, 115-122. doi: 10.1016/j.jpsychires.2014.07.019 PMID: 25124548
  75. Zhang, Y.; Filiou, M.D.; Reckow, S.; Gormanns, P.; Maccarrone, G.; Kessler, M.S. Proteomic and metabolomic profiling of a trait anxiety mouse model implicate affected pathways. Mol. Cell. Proteomics, 2011, 10(12), M111-M008110. doi: 10.1074/mcp.M111.008110
  76. Weckmann, K.; Deery, M.J.; Howard, J.A.; Feret, R.; Asara, J.M.; Dethloff, F.; Filiou, M.D.; Iannace, J.; Labermaier, C.; Maccarrone, G.; Webhofer, C.; Teplytska, L.; Lilley, K.; Müller, M.B.; Turck, C.W. Ketamine’s antidepressant effect is mediated by energy metabolism and antioxidant defense system. Sci. Rep., 2017, 7(1), 15788. doi: 10.1038/s41598-017-16183-x PMID: 29150633
  77. Weckmann, K.; Deery, M.J.; Howard, J.A.; Feret, R.; Asara, J.M.; Dethloff, F.; Filiou, M.D.; Labermaier, C.; Maccarrone, G.; Lilley, K.S.; Mueller, M.; Turck, C.W. Ketamine’s effects on the glutamatergic and gabaergic systems: a proteomics and metabolomics study in mice. Mol. Neuropsychiatry, 2019, 5(1), 42-51. PMID: 31019917
  78. Park, D.I.; Dournes, C.; Sillaber, I.; Uhr, M.; Asara, J.M.; Gassen, N.C.; Rein, T.; Ising, M.; Webhofer, C.; Filiou, M.D.; Müller, M.B.; Turck, C.W. Purine and pyrimidine metabolism: Convergent evidence on chronic antidepressant treatment response in mice and humans. Sci. Rep., 2016, 6(1), 35317. doi: 10.1038/srep35317 PMID: 27731396
  79. Park, D.I.; Dournes, C.; Sillaber, I.; Ising, M.; Asara, J.M.; Webhofer, C.; Filiou, M.D.; Müller, M.B.; Turck, C.W. Delineation of molecular pathway activities of the chronic antidepressant treatment response suggests important roles for glutamatergic and ubiquitin–proteasome systems. Transl. Psychiatry, 2017, 7(4), e1078. doi: 10.1038/tp.2017.39 PMID: 28375208
  80. Nussbaumer, M.; Asara, J.M.; Teplytska, L.; Murphy, M.P.; Logan, A.; Turck, C.W.; Filiou, M.D. Selective mitochondrial targeting exerts anxiolytic effects in vivo. Neuropsychopharmacology, 2016, 41(7), 1751-1758. doi: 10.1038/npp.2015.341 PMID: 26567514
  81. Du, Y.; Wei, J.; Zhang, Z.; Yang, X.; Wang, M.; Wang, Y.; Qi, X.; Zhao, L.; Tian, Y.; Guo, W.; Wang, Q.; Deng, W.; Li, M.; Lin, D.; Li, T.; Ma, X. Plasma metabolomics profiling of metabolic pathways affected by major depressive disorder. Front. Psychiatry, 2021, 12, 644555. doi: 10.3389/fpsyt.2021.644555 PMID: 34646171
  82. Larrieu, T.; Cherix, A.; Duque, A.; Rodrigues, J.; Lei, H.; Gruetter, R.; Sandi, C. Hierarchical status predicts behavioral vulnerability and nucleus accumbens metabolic profile following chronic social defeat stress. Curr. Biol., 2017, 27(14), 2202-2210.e4. doi: 10.1016/j.cub.2017.06.027 PMID: 28712571
  83. Son, H.; Baek, J.H.; Kang, J.S.; Jung, S.; Chung, H.J.; Kim, H.J. Acutely increased β-hydroxybutyrate plays a role in the prefrontal cortex to escape stressful conditions during the acute stress response. Biochem. Biophys. Res. Commun., 2021, 554, 19-24. doi: 10.1016/j.bbrc.2021.03.062 PMID: 33774275
  84. Picard, M.; McEwen, B.S. Psychological stress and mitochondria: A systematic review. Psychosom. Med., 2018, 80(2), 141-153. doi: 10.1097/PSY.0000000000000545 PMID: 29389736
  85. Picard, M.; McManus, M.J.; Gray, J.D.; Nasca, C.; Moffat, C.; Kopinski, P.K.; Seifert, E.L.; McEwen, B.S.; Wallace, D.C. Mitochondrial functions modulate neuroendocrine, metabolic, inflammatory, and transcriptional responses to acute psychological stress. Proc. Natl. Acad. Sci. USA, 2015, 112(48), E6614-E6623. doi: 10.1073/pnas.1515733112 PMID: 26627253
  86. Teague, C.R.; Dhabhar, F.S.; Barton, R.H.; Beckwith-Hall, B.; Powell, J.; Cobain, M.; Singer, B.; McEwen, B.S.; Lindon, J.C.; Nicholson, J.K.; Holmes, E. Metabonomic studies on the physiological effects of acute and chronic psychological stress in Sprague-Dawley rats. J. Proteome Res., 2007, 6(6), 2080-2093. doi: 10.1021/pr060412s PMID: 17474765
  87. Daikhin, Y.; Yudkoff, M. Ketone bodies and brain glutamate and GABA metabolism. Dev. Neurosci., 1998, 20(4-5), 358-364. doi: 10.1159/000017331 PMID: 9778572
  88. Nehlig, A. Brain uptake and metabolism of ketone bodies in animal models. Prostaglandins Leukot. Essent. Fatty Acids, 2004, 70(3), 265-275. doi: 10.1016/j.plefa.2003.07.006 PMID: 14769485
  89. Sze, Y.; Gill, A.C.; Brunton, P.J. Sex-dependent changes in neuroactive steroid concentrations in the rat brain following acute swim stress. J. Neuroendocrinol., 2018, 30(11), e12644. doi: 10.1111/jne.12644 PMID: 30194779
  90. Moreno-Rius, J. The cerebellum under stress. Front. Neuroendocrinol., 2019, 54, 100774. doi: 10.1016/j.yfrne.2019.100774 PMID: 31348932
  91. Iliou, A.; Vlaikou, A.M.; Nussbaumer, M.; Benaki, D.; Mikros, E.; Gikas, E.; Filiou, M.D. Exploring the metabolomic profile of cerebellum after exposure to acute stress. Stress, 2021, 24(6), 952-964. doi: 10.1080/10253890.2021.1973997 PMID: 34553679
  92. Bassett, S.A.; Young, W.; Fraser, K.; Dalziel, J.E.; Webster, J.; Ryan, L.; Fitzgerald, P.; Stanton, C.; Dinan, T.G.; Cryan, J.F.; Clarke, G.; Hyland, N.; Roy, N.C. Metabolome and microbiome profiling of a stress-sensitive rat model of gut-brain axis dysfunction. Sci. Rep., 2019, 9(1), 14026. doi: 10.1038/s41598-019-50593-3 PMID: 31575902
  93. Shi, B.; Tian, J.; Xiang, H.; Guo, X.; Zhang, L.; Du, G.; Qin, X.A. 1H-NMR plasma metabonomic study of acute and chronic stress models of depression in rats. Behav. Brain Res., 2013, 241, 86-91. doi: 10.1016/j.bbr.2012.11.036 PMID: 23219962
  94. Dulka, B.N.; Bourdon, A.K.; Clinard, C.T.; Muvvala, M.B.K.; Campagna, S.R.; Cooper, M.A. Metabolomics reveals distinct neurochemical profiles associated with stress resilience. Neurobiol. Stress, 2017, 7, 103-112. doi: 10.1016/j.ynstr.2017.08.001 PMID: 28828396
  95. Geng, C.; Guo, Y.; Wang, C.; Liao, D.; Han, W.; Zhang, J.; Jiang, P. Systematic impacts of chronic unpredictable mild stress on metabolomics in rats. Sci. Rep., 2020, 10(1), 700. doi: 10.1038/s41598-020-57566-x PMID: 31959868
  96. Geng, C.; Qiao, Y.; Guo, Y.; Han, W.; Wu, B.; Wang, C.; Zhang, J.; Chen, D.; Yang, M.; Jiang, P. Integrated metabolomics and lipidomics profiling of hippocampus reveal metabolite biomarkers in a rat model of chronic unpredictable mild stress-induced depression. Ann. Transl. Med., 2019, 7(23), 781. doi: 10.21037/atm.2019.11.21 PMID: 32042797
  97. Li, X.; Zhou, X.; Teng, T.; Fan, L.; Liu, X.; Xiang, Y.; Jiang, Y.; Xie, P.; Zhu, D. Multi-omics Analysis of the Amygdala in a Rat Chronic Unpredictable Mild Stress Model of Depression. Neuroscience, 2021, 463, 174-183. doi: 10.1016/j.neuroscience.2021.03.031 PMID: 33836246
  98. Zhang, Y.; Yuan, S.; Pu, J.; Yang, L.; Zhou, X.; Liu, L.; Jiang, X.; Zhang, H.; Teng, T.; Tian, L.; Xie, P. Integrated metabolomics and proteomics analysis of hippocampus in a rat model of depression. Neuroscience, 2018, 371, 207-220. doi: 10.1016/j.neuroscience.2017.12.001 PMID: 29237567
  99. Liu, L.; Zhou, X.; Zhang, Y.; Pu, J.; Yang, L.; Yuan, S.; Zhao, L.; Zhou, C.; Zhang, H.; Xie, P. Hippocampal metabolic differences implicate distinctions between physical and psychological stress in four rat models of depression. Transl. Psychiatry, 2018, 8(1), 4. doi: 10.1038/s41398-017-0018-1 PMID: 29317595
  100. Ling-hu, T.; Liu, S.; Gao, Y.; Han, Y.; Tian, J.; Qin, X. Stable isotope-resolved metabolomics reveals the abnormal brain glucose catabolism in depression based on chronic unpredictable mild stress rats. J. Proteome Res., 2021, 20(7), 3549-3558. doi: 10.1021/acs.jproteome.1c00155 PMID: 34077228
  101. Ni, Y.; Su, M.; Lin, J.; Wang, X.; Qiu, Y.; Zhao, A.; Chen, T.; Jia, W. Metabolic profiling reveals disorder of amino acid metabolism in four brain regions from a rat model of chronic unpredictable mild stress. FEBS Lett., 2008, 582(17), 2627-2636. doi: 10.1016/j.febslet.2008.06.040 PMID: 18586036
  102. Duan, L.; Fan, R.; Li, T.; Yang, Z.; Hu, E.; Yu, Z.; Tian, J.; Luo, W.; Zhang, C. Metabolomics analysis of the prefrontal cortex in a rat chronic unpredictable mild stress model of depression. Front. Psychiatry, 2022, 13, 815211. doi: 10.3389/fpsyt.2022.815211 PMID: 35370823
  103. Linghu, T.; Gao, Y.; Li, A.; Shi, B.; Tian, J.; Qin, X. A unique insight for energy metabolism disorders in depression based on chronic unpredictable mild stress rats using stable isotope-resolved metabolomics. J. Pharm. Biomed. Anal., 2020, 191, 113588. doi: 10.1016/j.jpba.2020.113588 PMID: 32927418
  104. Wu, Q.; Xia, D.M.; Lan, F.; Wang, Y.K.; Tan, X.; Sun, J.C.; Wang, W.Z.; Wang, R.; Peng, X.D.; Liu, M. UPLC–QTOF/MS‐based metabolomics reveals the mechanism of chronic unpredictable mild stress‐induced hypertension in rats. Biomed. Chromatogr., 2019, 33(10), e4619. doi: 10.1002/bmc.4619 PMID: 31177559
  105. Li, Z.; Gao, C.; Peng, J.; Liu, M.; Cong, B. Multi-omics analysis of pathological changes in the amygdala of rats subjected to chronic restraint stress. Behav. Brain Res., 2020, 392, 112735. doi: 10.1016/j.bbr.2020.112735 PMID: 32502515
  106. Liu, L.; Zhou, X.; Zhang, Y.; Liu, Y.; Yang, L.; Pu, J.; Zhu, D.; Zhou, C.; Xie, P. The identification of metabolic disturbances in the prefrontal cortex of the chronic restraint stress rat model of depression. Behav. Brain Res., 2016, 305, 148-156. doi: 10.1016/j.bbr.2016.03.005 PMID: 26947756
  107. Chen, S.; Lu, D.; Wang, W.; Chen, W.; Zhang, S.; Wei, S. Plasma metabolomic profiling of repeated restraint stress in rats. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2020, 1160, 122294. doi: 10.1016/j.jchromb.2020.122294 PMID: 32920479
  108. Hamilton, P.J.; Chen, E.Y.; Tolstikov, V.; Peña, C.J.; Picone, J.A.; Shah, P.; Panagopoulos, K.; Strat, A.N.; Walker, D.M.; Lorsch, Z.S.; Robinson, H.L.; Mervosh, N.L.; Kiraly, D.D.; Sarangarajan, R.; Narain, N.R.; Kiebish, M.A.; Nestler, E.J. Chronic stress and antidepressant treatment alter purine metabolism and beta oxidation within mouse brain and serum. Sci. Rep., 2020, 10(1), 18134. doi: 10.1038/s41598-020-75114-5 PMID: 33093530
  109. Dudek, K.A.; Dion-Albert, L.; Lebel, M.; LeClair, K.; Labrecque, S.; Tuck, E.; Ferrer Perez, C.; Golden, S.A.; Tamminga, C.; Turecki, G.; Mechawar, N.; Russo, S.J.; Menard, C. Molecular adaptations of the blood–brain barrier promote stress resilience vs. depression. Proc. Natl. Acad. Sci., 2020, 117(6), 3326-3336. doi: 10.1073/pnas.1914655117 PMID: 31974313
  110. Zhang, Y.; Lu, W.; Wang, Z.; Zhang, R.; Xie, Y.; Guo, S.; Jiao, L.; Hong, Y.; Di, Z.; Wang, G.; Aa, J. Reduced Neuronal cAMP in the nucleus accumbens damages blood-brain barrier integrity and promotes stress vulnerability. Biol. Psychiatry, 2020, 87(6), 526-537. doi: 10.1016/j.biopsych.2019.09.027 PMID: 31812254
  111. Wang, W.; Guo, H.; Zhang, S.X.; Li, J.; Cheng, K.; Bai, S.J.; Yang, D.Y.; Wang, H.Y.; Liang, Z.H.; Liao, L.; Sun, L.; Xie, P. Targeted metabolomic pathway analysis and validation revealed glutamatergic disorder in the prefrontal cortex among the chronic social defeat stress mice model of depression. J. Proteome Res., 2016, 15(10), 3784-3792. doi: 10.1021/acs.jproteome.6b00577 PMID: 27599184
  112. Xu, K.; He, Y.; Chen, X.; Tian, Y.; Cheng, K.; Zhang, L.; Wang, Y.; Yang, D.; Wang, H.; Wu, Z.; Li, Y.; Lan, T.; Dong, Z.; Xie, P. Validation of the targeted metabolomic pathway in the hippocampus and comparative analysis with the prefrontal cortex of social defeat model mice. J. Neurochem., 2019, 149(6), 799-810. doi: 10.1111/jnc.14641 PMID: 30520040
  113. Yang, L.N.; Pu, J.C.; Liu, L.X.; Wang, G.W.; Zhou, X.Y.; Zhang, Y.Q.; Liu, Y.Y.; Xie, P. Integrated metabolomics and proteomics analysis revealed second messenger system disturbance in hippocampus of chronic social defeat stress rat. Front. Neurosci., 2019, 13, 247. doi: 10.3389/fnins.2019.00247 PMID: 30983951
  114. Fan, L.; Yang, L.; Li, X.; Teng, T.; Xiang, Y.; Liu, X.; Jiang, Y.; Zhu, Y.; Zhou, X.; Xie, P. Proteomic and metabolomic characterization of amygdala in chronic social defeat stress rats. Behav. Brain Res., 2021, 412, 113407. doi: 10.1016/j.bbr.2021.113407 PMID: 34111472
  115. Cui, Y.; Cao, K.; Lin, H.; Cui, S.; Shen, C.; Wen, W.; Mo, H.; Dong, Z.; Bai, S.; Yang, L.; Shi, Y.; Zhang, R. Early-life stress induces depression-like behavior and synaptic-plasticity changes in a maternal separation rat model: Gender difference and metabolomics study. Front. Pharmacol., 2020, 11, 102. doi: 10.3389/fphar.2020.00102 PMID: 32174832
  116. Nitto, T.; Onodera, K. Linkage between coenzyme a metabolism and inflammation: Roles of pantetheinase. J. Pharmacol. Sci., 2013, 123(1), 1-8. doi: 10.1254/jphs.13R01CP PMID: 23978960
  117. Wojtczak, L.; Slyshenkov, V.S. Protection by pantothenic acid against apoptosis and cell damage by oxygen free radicals-the role of glutathione. Biofactors, 2003, 17(1-4), 61-73. doi: 10.1002/biof.5520170107 PMID: 12897429
  118. Milakfsky, L.; Hare, T.A.; Miller, J.M.; Vogel, W.H. Rat plasma levels of amino acids and related compounds during stress. Life Sci., 1985, 36(8), 753-761. doi: 10.1016/0024-3205(85)90195-X PMID: 3974409
  119. Zhao, S.; Khoo, S.; Ng, S.C.; Chi, A. Brain functional network and amino acid metabolism association in females with subclinical depression. Int. J. Environ. Res. Public Health, 2022, 19(6), 3321. doi: 10.3390/ijerph19063321 PMID: 35329007
  120. Meyer, J.H. Chapter 16 - Molecular imaging findings in bipolar disorder. In: Joao Quevedo AFC, Eduard Viet, editor; Neurobiology of bipolar disorder: Academic Press, 2021; p. 183-95.
  121. Pu, J.; Liu, Y.; Gui, S.; Tian, L.; Yu, Y.; Song, X.; Zhong, X.; Chen, X.; Chen, W.; Zheng, P.; Zhang, H.; Gong, X.; Liu, L.; Wu, J.; Wang, H.; Xie, P. Metabolomic changes in animal models of depression: A systematic analysis. Mol. Psychiatry, 2021, 26(12), 7328-7336. doi: 10.1038/s41380-021-01269-w PMID: 34471249
  122. Liu, L.Y.; Zhang, H.J.; Luo, L.Y.; Pu, J.B.; Liang, W.Q.; Zhu, C.Q.; Li, Y.P.; Wang, P.R.; Zhang, Y.Y.; Yang, C.Y.; Zhang, Z.J. Blood and urinary metabolomic evidence validating traditional Chinese medicine diagnostic classification of major depressive disorder. Chin. Med., 2018, 13(1), 53. doi: 10.1186/s13020-018-0211-z PMID: 30386416
  123. Rosso, I.M.; Crowley, D.J.; Silveri, M.M.; Rauch, S.L.; Jensen, J.E. Hippocampus glutamate and n-acetyl aspartate markers of excitotoxic neuronal compromise in posttraumatic stress disorder. Neuropsychopharmacology, 2017, 42(8), 1698-1705. doi: 10.1038/npp.2017.32 PMID: 28195577
  124. Duttaroy, A.K. Bioactive lipids and brain function: From their mechanistic roles to clinical trials; Evidence-based nutrition and clinical evidence of bioactive foods in human health and disease, 2021, p. 79-101.
  125. Oliveira, T.G.; Chan, R.B.; Bravo, F.V.; Miranda, A.; Silva, R.R.; Zhou, B.; Marques, F.; Pinto, V.; Cerqueira, J.J.; Di Paolo, G.; Sousa, N. The impact of chronic stress on the rat brain lipidome. Mol. Psychiatry, 2016, 21(1), 80-88. doi: 10.1038/mp.2015.14 PMID: 25754084
  126. Li, S.; Xu, Y.; Zheng, L.; Pang, H.; Zhang, Q.; Lou, L.; Huang, X. Sex difference in global burden of major depressive disorder: findings from the global burden of disease study 2019. Front. Psychiatry, 2022, 13, 789305. doi: 10.3389/fpsyt.2022.789305 PMID: 35264985
  127. Filiou, M.D.; Nussbaumer, M.; Teplytska, L.; Turck, C.W. Behavioral and Metabolome Differences between C57BL/6 and DBA/2 Mouse Strains: Implications for Their Use as Models for Depression- and Anxiety-Like Phenotypes. Metabolites, 2021, 11(2), 128. doi: 10.3390/metabo11020128 PMID: 33672326
  128. O’Mahony, C.M.; Clarke, G.; Gibney, S.; Dinan, T.G.; Cryan, J.F. Strain differences in the neurochemical response to chronic restraint stress in the rat: Relevance to depression. Pharmacol. Biochem. Behav., 2011, 97(4), 690-699. doi: 10.1016/j.pbb.2010.11.012 PMID: 21110995

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Bentham Science Publishers, 2024