The Gut-Brain Axis and the Microbiome in Anxiety Disorders, Post-Traumatic Stress Disorder and Obsessive-Compulsive Disorder


Cite item

Full Text

Abstract

A large body of research supports the role of stress in several psychiatric disorders in which anxiety is a prominent symptom. Other research has indicated that the gut microbiome-immune system- brain axis is involved in a large number of disorders and that this axis is affected by various stressors. The focus of the current review is on the following stress-related disorders: generalized anxiety disorder, panic disorder, social anxiety disorder, post-traumatic stress disorder and obsessivecompulsive disorder. Descriptions of systems interacting in the gut-brain axis, microbiome-derived molecules and of pro- and prebiotics are given. Preclinical and clinical studies on the relationship of the gut microbiome to the psychiatric disorders mentioned above are reviewed. Many studies support the role of the gut microbiome in the production of symptoms in these disorders and suggest the potential for pro- and prebiotics for their treatment, but there are also contradictory findings and concerns about the limitations of some of the research that has been done. Matters to be considered in future research include longer-term studies with factors such as sex of the subjects, drug use, comorbidity, ethnicity/ race, environmental effects, diet, and exercise taken into account; appropriate compositions of pro- and prebiotics; the translatability of studies on animal models to clinical situations; and the effects on the gut microbiome of drugs currently used to treat these disorders. Despite these challenges, this is a very active area of research that holds promise for more effective, precision treatment of these stressrelated disorders in the future.

About the authors

Marnie MacKay

Department of Psychiatry, Neurochemical Research Unit, University of Alberta

Email: info@benthamscience.net

Bohan Yang

Department of Psychiatry, Neurochemical Research Unit, University of Alberta

Email: info@benthamscience.net

Serdar Dursun

Department of Psychiatry, Neurochemical Research Unit, University of Alberta

Email: info@benthamscience.net

Glen Baker

Department of Psychiatry, Neurochemical Research Unit, University of Alberta

Author for correspondence.
Email: info@benthamscience.net

References

  1. Foster, J.A.; McVey Neufeld, K.A. Gut–brain axis: How the microbiome influences anxiety and depression. Trends Neurosci., 2013, 36(5), 305-312. doi: 10.1016/j.tins.2013.01.005 PMID: 23384445
  2. Sylvia, K.E.; Demas, G.E. A gut feeling: Microbiome-brain-immune interactions modulate social and affective behaviors. Horm. Behav., 2018, 99, 41-49. doi: 10.1016/j.yhbeh.2018.02.001 PMID: 29427583
  3. Caspani, G.; Kennedy, S.; Foster, J.A.; Swann, J. Gut microbial metabolites in depression: Understanding the biochemical mechanisms. Microb. Cell, 2019, 6(10), 454-481. doi: 10.15698/mic2019.10.693 PMID: 31646148
  4. McEwen, B.S. Protection and damage from acute and chronic stress: Allostasis and allostatic overload and relevance to the pathophysiology of psychiatric disorders. Ann. N. Y. Acad. Sci., 2004, 1032(1), 1-7. doi: 10.1196/annals.1314.001 PMID: 15677391
  5. Peirce, J.M.; Alviña, K. The role of inflammation and the gut microbiome in depression and anxiety. J. Neurosci. Res., 2019, 97(10), 1223-1241. doi: 10.1002/jnr.24476 PMID: 31144383
  6. Butler, M.I.; Morkl, S.; Sandhu, K.V.; Cryan, J.F.; Dinan, T.G. The gut microbiome and mental health; what shall we tell our patients? Can. J. Psychiatry, 2019, 64(11), 737-760. doi: 10.1177/0706743719874168 PMID: 31530002
  7. Flux, M.C.; Lowry, C.A. Finding intestinal fortitude: Integrating the microbiome into a holistic view of depression mechanisms, treatment, and resilience. Neurobiol. Dis., 2020, 135, 104578. doi: 10.1016/j.nbd.2019.104578 PMID: 31454550
  8. Powell, N.; Walker, M.M.; Talley, N.J. The mucosal immune system: Master regulator of bidirectional gut–brain communications. Nat. Rev. Gastroenterol. Hepatol., 2017, 14(3), 143-159. doi: 10.1038/nrgastro.2016.191 PMID: 28096541
  9. Farzi, A.; Fröhlich, E.E.; Holzer, P. Gut microbiota and the neuroendocrine system. Neurotherapeutics, 2018, 15(1), 5-22. doi: 10.1007/s13311-017-0600-5 PMID: 29380303
  10. Kelly, C.J.; Zheng, L.; Campbell, E.L.; Saeedi, B.; Scholz, C.C.; Bayless, A.J.; Wilson, K.E.; Glover, L.E.; Kominsky, D.J.; Magnuson, A.; Weir, T.L.; Ehrentraut, S.F.; Pickel, C.; Kuhn, K.A.; Lanis, J.M.; Nguyen, V.; Taylor, C.T.; Colgan, S.P. Crosstalk between microbiota-derived short-chain fatty acids and intestinal epithelial HIF augments tissue barrier function. Cell Host Microbe, 2015, 17(5), 662-671. doi: 10.1016/j.chom.2015.03.005 PMID: 25865369
  11. Cryan, J.F.; Dinan, T.G. Mind-altering microorganisms: The impact of the gut microbiota on brain and behaviour. Nat. Rev. Neurosci., 2012, 13(10), 701-712. doi: 10.1038/nrn3346 PMID: 22968153
  12. Liang, S.; Wu, X.; Jin, F. Gut-brain psychology: Rethinking psychology from the microbiota-gut-brain axis. Front. Integr. Neurosci., 2018, 12, 33. doi: 10.3389/fnint.2018.00033 PMID: 30271330
  13. Malan-Muller, S.; Valles-Colomer, M.; Raes, J.; Lowry, C.A.; Seedat, S.; Hemmings, S.M.J. The gut microbiome and mental health: Implications for anxiety- and trauma-related disorders. OMICS, 2018, 22(2), 90-107. doi: 10.1089/omi.2017.0077 PMID: 28767318
  14. Hayes, C.L.; Peters, B.J.; Foster, J.A. Microbes and mental health: Can the microbiome help explain clinical heterogeneity in psychiatry? Front. Neuroendocrinol., 2020, 58, 100849. doi: 10.1016/j.yfrne.2020.100849 PMID: 32497560
  15. Ouabbou, S.; He, Y.; Butler, K.; Tsuang, M. Inflammation in mental disorders: Is the microbiota the missing link? Neurosci. Bull., 2020, 36(9), 1071-1084. doi: 10.1007/s12264-020-00535-1 PMID: 32592144
  16. Foster, J.A. Is anxiety associated with the gut microbiota? Mod. Trends Psychiat., 2021, 32, 68-73. doi: 10.1159/000510418 PMID: 34032646
  17. Simpson, C.A.; Diaz-Arteche, C.; Eliby, D.; Schwartz, O.S.; Simmons, J.G.; Cowan, C.S.M. The gut microbiota in anxiety and depression – A systematic review. Clin. Psychol. Rev., 2021, 83, 101943. doi: 10.1016/j.cpr.2020.101943 PMID: 33271426
  18. Tannock, G.W.; Savage, D.C. Influences of dietary and environmental stress on microbial populations in the murine gastrointestinal tract. Infect. Immun., 1974, 9(3), 591-598. doi: 10.1128/iai.9.3.591-598.1974 PMID: 4593471
  19. Bailey, M.T.; Dowd, S.E.; Galley, J.D.; Hufnagle, A.R.; Allen, R.G.; Lyte, M. Exposure to a social stressor alters the structure of the intestinal microbiota: Implications for stressor-induced immunomodulation. Brain Behav. Immun., 2011, 25(3), 397-407. doi: 10.1016/j.bbi.2010.10.023 PMID: 21040780
  20. Cussotto, S.; Sandhu, K.V.; Dinan, T.G.; Cryan, J.F. The neuroendocrinology of the microbiota-gut-brain axis: A behavioural perspective. Front. Neuroendocrinol., 2018, 51, 80-101. doi: 10.1016/j.yfrne.2018.04.002 PMID: 29753796
  21. Jaworska-Andryszewska, P.; Rybakowski, J.K. Childhood trauma in mood disorders: Neurobiological mechanisms and implications for treatment. Pharmacol. Rep., 2019, 71(1), 112-120. doi: 10.1016/j.pharep.2018.10.004 PMID: 30544098
  22. Madison, A.; Kiecolt-Glaser, J.K. Stress, depression, diet, and the gut microbiota: Human–bacteria interactions at the core of psychoneuroimmunology and nutrition. Curr. Opin. Behav. Sci., 2019, 28, 105-110. doi: 10.1016/j.cobeha.2019.01.011 PMID: 32395568
  23. Misiak, B. Łoniewski, I.; Marlicz, W.; Frydecka, D.; Szulc, A.; Rudzki, L.; Samochowiec,The HPA axis dysregulation in severe mental illness: Can we shift the blame to gut microbiota? Prog. Neuropsychopharmacol. Biol. Psychiatry, 2020, 102, 109951. doi: 10.1016/j.pnpbp.2020.109951 PMID: 32335265
  24. Rinninella, E.; Raoul, P.; Cintoni, M.; Franceschi, F.; Miggiano, G.; Gasbarrini, A.; Mele, M. What is the healthy gut microbiota composition? A changing ecosystem across age, environment, diet, and diseases. Microorganisms, 2019, 7(1), 14. doi: 10.3390/microorganisms7010014 PMID: 30634578
  25. Cryan, J.F.; O’Riordan, K.J.; Cowan, C.S.M.; Sandhu, K.V.; Bastiaanssen, T.F.S.; Boehme, M.; Codagnone, M.G.; Cussotto, S.; Fulling, C.; Golubeva, A.V.; Guzzetta, K.E.; Jaggar, M.; Long-Smith, C.M.; Lyte, J.M.; Martin, J.A.; Molinero-Perez, A.; Moloney, G.; Morelli, E.; Morillas, E.; O’Connor, R.; Cruz-Pereira, J.S.; Peterson, V.L.; Rea, K.; Ritz, N.L.; Sherwin, E.; Spichak, S.; Teichman, E.M.; van de Wouw, M.; Ventura-Silva, A.P.; Wallace-Fitzsimons, S.E.; Hyland, N.; Clarke, G.; Dinan, T.G. The microbiota-gut-brain axis. Physiol. Rev., 2019, 99(4), 1877-2013. doi: 10.1152/physrev.00018.2018 PMID: 31460832
  26. Foster, J.A. Modulating brain function with microbiota. Science, 2022, 376(6596), 936-937. doi: 10.1126/science.abo4220 PMID: 35617384
  27. Choden, T.; Cohen, N.A. The gut microbiome and the immune system. Explor. Med., 2022, 3, 219-233. doi: 10.37349/emed.2022.00087
  28. Rudzki, L.; Maes, M. The microbiota-gut-immune-glia (MGIG) axis in major depression. Mol. Neurobiol., 2020, 57(10), 4269-4295. doi: 10.1007/s12035-020-01961-y PMID: 32700250
  29. Gareau, M.G. Microbial endocrinology: The microbiota-gut-brain axis in health and disease. Adv. Exp. Med. Biol., 2014, 817, 39-71.
  30. Bravo, J.A.; Forsythe, P.; Chew, M.V.; Escaravage, E.; Savignac, H.M.; Dinan, T.G.; Bienenstock, J.; Cryan, J.F. Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc. Natl. Acad. Sci. USA, 2011, 108(38), 16050-16055. doi: 10.1073/pnas.1102999108 PMID: 21876150
  31. Baganz, N.L.; Blakely, R.D. A dialogue between the immune system and brain, spoken in the language of serotonin. ACS Chem. Neurosci., 2013, 4(1), 48-63. doi: 10.1021/cn300186b PMID: 23336044
  32. Auteri, M.; Zizzo, M.G.; Serio, R. GABA and GABA receptors in the gastrointestinal tract: From motility to inflammation. Pharmacol. Res., 2015, 93, 11-21. doi: 10.1016/j.phrs.2014.12.001 PMID: 25526825
  33. Desbonnet, L.; Garrett, L.; Clarke, G.; Bienenstock, J.; Dinan, T.G. The probiotic Bifidobacteria infantis: An assessment of potential antidepressant properties in the rat. J. Psychiatr. Res., 2008, 43(2), 164-174. doi: 10.1016/j.jpsychires.2008.03.009 PMID: 18456279
  34. Breit, S.; Kupferberg, A.; Rogler, G.; Hasler, G. Vagus nerve as modulator of the brain-gut axis in psychiatric and inflammatory disorders. Front. Psychiatry, 2018, 9, 44. doi: 10.3389/fpsyt.2018.00044 PMID: 29593576
  35. Pourhamzeh, M.; Moravej, F.G.; Arabi, M.; Shahriari, E.; Mehrabi, S.; Ward, R.; Ahadi, R.; Joghataei, M.T. The roles of serotonin in neuropsychiatric disorders. Cell. Mol. Neurobiol., 2022, 42(6), 1671-1692. doi: 10.1007/s10571-021-01064-9 PMID: 33651238
  36. Anderson, G.; Maes, M. Local melatonin regulates inflammation resolution: A common factor in neurodegenerative, psychiatric and systemic inflammatory disorders. CNS Neurol. Disord. Drug Targets, 2014, 13(5), 817-827. doi: 10.2174/1871527313666140711091400 PMID: 25012620
  37. Anderson, G.; Reiter, R.J. COVID-19 pathophysiology: Interactions of gut microbiome, melatonin, vitamin D, stress, kynurenine and the alpha 7 nicotinic receptor: Treatment implications. Melatonin Res., 2020, 3(3), 322-345. doi: 10.32794/mr11250066
  38. Badawy, A.A.B. Tryptophan availability for kynurenine pathway metabolism across the life span: Control mechanisms and focus on aging, exercise, diet and nutritional supplements. Neuropharmacology, 2017, 112(Pt B), 248-263. doi: 10.1016/j.neuropharm.2015.11.015 PMID: 26617070
  39. Le Floc’h, N.; Otten, W.; Merlot, E. Tryptophan metabolism, from nutrition to potential therapeutic applications. Amino Acids, 2011, 41(5), 1195-1205. doi: 10.1007/s00726-010-0752-7 PMID: 20872026
  40. Richard, D.M.; Dawes, M.A.; Mathias, C.W.; Acheson, A.; Hill-Kapturczak, N.; Dougherty, D.M. L-Tryptophan: Basic metabolic functions, behavioral research and therapeutic indications. Int. J. Tryptophan Res., 2009, 2, IJTR.S2129. doi: 10.4137/IJTR.S2129 PMID: 20651948
  41. Waclawiková, B.; El Aidy, S. Role of microbiota and tryptophan metabolites in the remote effect of intestinal inflammation on brain and depression. Pharmaceuticals (Basel), 2018, 11(3), 63. doi: 10.3390/ph11030063 PMID: 29941795
  42. Ruddick, J.P.; Evans, A.K.; Nutt, D.J.; Lightman, S.L.; Rook, G.A.W.; Lowry, C.A. Tryptophan metabolism in the central nervous system: Medical implications. Expert Rev. Mol. Med., 2006, 8(20), 1-27. doi: 10.1017/S1462399406000068 PMID: 16942634
  43. Rothhammer, V.; Mascanfroni, I.D.; Bunse, L.; Takenaka, M.C.; Kenison, J.E.; Mayo, L.; Chao, C.C.; Patel, B.; Yan, R.; Blain, M.; Alvarez, J.I.; Kébir, H.; Anandasabapathy, N.; Izquierdo, G.; Jung, S.; Obholzer, N.; Pochet, N.; Clish, C.B.; Prinz, M.; Prat, A.; Antel, J.; Quintana, F.J. Type I interferons and microbial metabolites of tryptophan modulate astrocyte activity and central nervous system inflammation via the aryl hydrocarbon receptor. Nat. Med., 2016, 22(6), 586-597. doi: 10.1038/nm.4106 PMID: 27158906
  44. Generoso, J.S.; Giridharan, V.V.; Lee, J.; Macedo, D.; Barichello, T. The role of the microbiota-gut-brain axis in neuropsychiatric disorders. Br. J. Psychiatry, 2021, 43(3), 293-305. doi: 10.1590/1516-4446-2020-0987 PMID: 32667590
  45. Serger, E.; Luengo-Gutierrez, L.; Chadwick, J.S.; Kong, G.; Zhou, L.; Crawford, G.; Danzi, M.C.; Myridakis, A.; Brandis, A.; Bello, A.T.; Müller, F.; Sanchez-Vassopoulos, A.; De Virgiliis, F.; Liddell, P.; Dumas, M.E.; Strid, J.; Mani, S.; Dodd, D.; Di Giovanni, S. The gut metabolite indole-3 propionate promotes nerve regeneration and repair. Nature, 2022, 607(7919), 585-592. doi: 10.1038/s41586-022-04884-x PMID: 35732737
  46. Wei, G.Z.; Martin, K.A.; Xing, P.Y.; Agrawal, R.; Whiley, L.; Wood, T.K.; Hejndorf, S.; Ng, Y.Z.; Low, J.Z.Y.; Rossant, J.; Nechanitzky, R.; Holmes, E.; Nicholson, J.K.; Tan, E.K.; Matthews, P.M.; Pettersson, S. Tryptophan-metabolizing gut microbes regulate adult neurogenesis via the aryl hydrocarbon receptor. Proc. Natl. Acad. Sci. USA, 2021, 118(27), e2021091118. doi: 10.1073/pnas.2021091118 PMID: 34210797
  47. Stilling, R.M.; van de Wouw, M.; Clarke, G.; Stanton, C.; Dinan, T.G.; Cryan, J.F. The neuropharmacology of butyrate: The bread and butter of the microbiota-gut-brain axis? Neurochem. Int., 2016, 99, 110-132. doi: 10.1016/j.neuint.2016.06.011 PMID: 27346602
  48. O’Riordan, K.J.; Collins, M.K.; Moloney, G.M.; Knox, E.G.; Aburto, M.R.; Fülling, C.; Morley, S.J.; Clarke, G.; Schellekens, H.; Cryan, J.F. Short chain fatty acids: Microbial metabolites for gut-brain axis signalling. Mol. Cell. Endocrinol., 2022, 546, 111572. doi: 10.1016/j.mce.2022.111572 PMID: 35066114
  49. Schroeder, F.A.; Lin, C.L.; Crusio, W.E.; Akbarian, S. Antidepressant-like effects of the histone deacetylase inhibitor, sodium butyrate, in the mouse. Biol. Psychiatry, 2007, 62(1), 55-64. doi: 10.1016/j.biopsych.2006.06.036 PMID: 16945350
  50. Wang, C.; Zheng, D.; Weng, F.; Jin, Y.; He, L. Sodium butyrate ameliorates the cognitive impairment of Alzheimer’s disease by regulating the metabolism of astrocytes. Psychopharmacology (Berl.), 2022, 239(1), 215-227. doi: 10.1007/s00213-021-06025-0 PMID: 34812899
  51. Anderson, G.; Maes, M. Gut dysbiosis dysregulates central and systemic homeostasis via suboptimal mitochondrial function: Assessment, treatment and classification implications. Curr. Top. Med. Chem., 2020, 20(7), 524-539. doi: 10.2174/1568026620666200131094445 PMID: 32003689
  52. Markus, R.P.; Fernandes, P.A.; Kinker, G.S.; da Silveira Cruz-Machado, S.; Marçola, M. Immune-pineal axis - acute inflammatory responses coordinate melatonin synthesis by pinealocytes and phagocytes. Br. J. Pharmacol., 2018, 175(16), 3239-3250. doi: 10.1111/bph.14083 PMID: 29105727
  53. Muxel, S.M. Pires-Lapa, M.A.; Monteiro, A.W.A.; Cecon, E.; Tamura, E.K.; Floeter-Winter, L.M.; Markus, R.P. NF-κB drives the synthesis of melatonin in RAW 264.7 macrophages by inducing the transcription of the arylalkylamine-N-acetyltransferase (AA-NAT) gene. PLoS One, 2012, 7(12), e52010. doi: 10.1371/journal.pone.0052010 PMID: 23284853
  54. Lach, G.; Schellekens, H.; Dinan, T.G.; Cryan, J.F. Anxiety, depression, and the microbiome: A role for gut peptides. Neurotherapeutics, 2018, 15(1), 36-59. doi: 10.1007/s13311-017-0585-0 PMID: 29134359
  55. Aresti Sanz, J.; El Aidy, S. Microbiota and gut neuropeptides: A dual action of antimicrobial activity and neuroimmune response. Psychopharmacology (Berl.), 2019, 236(5), 1597-1609. doi: 10.1007/s00213-019-05224-0 PMID: 30997526
  56. Needham, B.D.; Funabashi, M.; Adame, M.D.; Wang, Z.; Boktor, J.C.; Haney, J.; Wu, W.L.; Rabut, C.; Ladinsky, M.S.; Hwang, S.J.; Guo, Y.; Zhu, Q.; Griffiths, J.A.; Knight, R.; Bjorkman, P.J.; Shapiro, M.G.; Geschwind, D.H.; Holschneider, D.P.; Fischbach, M.A.; Mazmanian, S.K. A gut-derived metabolite alters brain activity and anxiety behaviour in mice. Nature, 2022, 602(7898), 647-653. doi: 10.1038/s41586-022-04396-8 PMID: 35165440
  57. Mayneris-Perxachs, J.; Castells-Nobau, A.; Arnoriaga-Rodríguez, M.; Martin, M.; de la Vega-Correa, L.; Zapata, C.; Burokas, A.; Blasco, G.; Coll, C.; Escrichs, A.; Biarnés, C.; Moreno-Navarrete, J.M.; Puig, J.; Garre-Olmo, J.; Ramos, R.; Pedraza, S.; Brugada, R.; Vilanova, J.C.; Serena, J.; Gich, J.; Ramió-Torrentà, L.; Pérez-Brocal, V.; Moya, A.; Pamplona, R.; Sol, J.; Jové, M.; Ricart, W.; Portero-Otin, M.; Deco, G.; Maldonado, R.; Fernández-Real, J.M. Microbiota alterations in proline metabolism impact depression. Cell Metab., 2022, 34(5), 681-701.e10. doi: 10.1016/j.cmet.2022.04.001 PMID: 35508109
  58. Louis, P.; Flint, H.J.; Michel, C. How to manipulate the microbiota. Prebiotics. Adv. Exp. Med. Biol., 2016, 902, 119-142. doi: 10.1007/978-3-319-31248-4_9 PMID: 27161355
  59. Dinan, T.G.; Stanton, C.; Cryan, J.F. Psychobiotics: A novel class of psychotropic. Biol. Psychiatry, 2013, 74(10), 720-726. doi: 10.1016/j.biopsych.2013.05.001 PMID: 23759244
  60. Allen, A.P.; Hutch, W.; Borre, Y.E.; Kennedy, P.J.; Temko, A.; Boylan, G.; Murphy, E.; Cryan, J.F.; Dinan, T.G.; Clarke, G. Bifidobacterium longum 1714 as a translational psychobiotic: Modulation of stress, electrophysiology and neurocognition in healthy volunteers. Transl. Psychiatry, 2016, 6(11), e939. doi: 10.1038/tp.2016.191 PMID: 27801892
  61. Bambury, A.; Sandhu, K.; Cryan, J.F.; Dinan, T.G. Finding the needle in the haystack: Systematic identification of psychobiotics. Br. J. Pharmacol., 2018, 175(24), 4430-4438. doi: 10.1111/bph.14127 PMID: 29243233
  62. Tremblay, A.; Lingrand, L.; Maillard, M.; Feuz, B.; Tompkins, T.A. The effects of psychobiotics on the microbiota-gut-brain axis in early-life stress and neuropsychiatric disorders. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2021, 105, 110142. doi: 10.1016/j.pnpbp.2020.110142 PMID: 33069817
  63. Burokas, A.; Arboleya, S.; Moloney, R.D.; Peterson, V.L.; Murphy, K.; Clarke, G.; Stanton, C.; Dinan, T.G.; Cryan, J.F. Targeting the microbiota gut-brain axis: Prebiotics have have anxiolytic and antidepressant-like effects and reverse the impact of chronic stress in mice. Biol. Psychiatry, 2017, 82(7), 472-487. doi: 10.1016/j.biopsych.2016.12.031 PMID: 28242013
  64. Savignac, H.M.; Couch, Y.; Stratford, M.; Bannerman, D.M.; Tzortzis, G.; Anthony, D.C.; Burnet, P.W.J. Prebiotic administration normalizes lipopolysaccharide (LPS)-induced anxiety and cortical 5-HT2A receptor and IL1-β levels in male mice. Brain Behav. Immun., 2016, 52, 120-131. doi: 10.1016/j.bbi.2015.10.007 PMID: 26476141
  65. Hosseinifard, E.S.; Morshedi, M.; Bavafa-Valenlia, K.; Saghafi-Asl, M. The novel insight into anti-inflammatory and anxiolytic effects of psychobiotics in diabetic rats: Possible link between gut microbiota and brain regions. Eur. J. Nutr., 2019, 58(8), 3361-3375. doi: 10.1007/s00394-019-01924-7 PMID: 30826905
  66. Gall, A.J.; Griffin, G.D. Anxiolytic effects of administration of a commercially available prebiotic blend of galacto-oligosaccharides and beta glucans in Sprague-Dawley rats. Benef. Microbes, 2021, 12(4), 341-349. doi: 10.3920/BM2020.0169 PMID: 34169805
  67. Lalonde, R.; Strazielle, C. Probiotic effects on anxiety-like behavior in animal models. Rev. Neurosci., 2022, 33(6), 691-701. doi: 10.1515/revneuro-2021-0173 PMID: 35381125
  68. Kambe, J.; Watcharin, S.; Makioka-Itaya, Y.; Inoue, R.; Watanabe, G.; Yamaguchi, H.; Nagaoka, K. Heat-killed Enterococcus fecalis (EC-12) supplement alters the expression of neurotransmitter receptor genes in the prefrontal cortex and alleviates anxiety-like behavior in mice. Neurosci. Lett., 2020, 720, 134753. doi: 10.1016/j.neulet.2020.134753 PMID: 31931033
  69. Luna, R.A.; Foster, J.A. Gut brain axis: Diet microbiota interactions and implications for modulation of anxiety and depression. Curr. Opin. Biotechnol., 2015, 32, 35-41. doi: 10.1016/j.copbio.2014.10.007 PMID: 25448230
  70. Foster, J.A.; Rinaman, L.; Cryan, J.F. Stress & the gut-brain axis: Regulation by the microbiome. Neurobiol. Stress, 2017, 7, 124-136. doi: 10.1016/j.ynstr.2017.03.001 PMID: 29276734
  71. Marotta, A.; Sarno, E.; Del Casale, A.; Pane, M.; Mogna, L.; Amoruso, A.; Felis, G.E.; Fiorio, M. Effects of probiotics on cognitive reactivity, mood, and sleep quality. Front. Psychiatry, 2019, 10, 164. doi: 10.3389/fpsyt.2019.00164 PMID: 30971965
  72. Yang, H.; Zhao, X.; Tang, S.; Huang, H.; Zhao, X.; Ning, Z.; Fu, X.; Zhang, C. Probiotics reduce psychological stress in patients before laryngeal cancer surgery. Asia Pac. J. Clin. Oncol., 2016, 12(1), e92-e96. doi: 10.1111/ajco.12120 PMID: 24571169
  73. Akkasheh, G.; Kashani-Poor, Z.; Tajabadi-Ebrahimi, M.; Jafari, P.; Akbari, H.; Taghizadeh, M.; Memarzadeh, M.R.; Asemi, Z.; Esmaillzadeh, A. Clinical and metabolic response to probiotic administration in patients with major depressive disorder: A randomized, double-blind, placebo-controlled trial. Nutrition, 2016, 32(3), 315-320. doi: 10.1016/j.nut.2015.09.003 PMID: 26706022
  74. Rao, A.V.; Bested, A.C.; Beaulne, T.M.; Katzman, M.A.; Iorio, C.; Berardi, J.M.; Logan, A.C. A randomized, double-blind, placebo-controlled pilot study of a probiotic in emotional symptoms of chronic fatigue syndrome. Gut Pathog., 2009, 1(1), 6. doi: 10.1186/1757-4749-1-6 PMID: 19338686
  75. Liu, R.T.; Walsh, R.F.L.; Sheehan, A.E. Prebiotics and probiotics for depression and anxiety: A systematic review and meta-analysis of controlled clinical trials. Neurosci. Biobehav. Rev., 2019, 102, 13-23. doi: 10.1016/j.neubiorev.2019.03.023 PMID: 31004628
  76. Noonan, S.; Zaveri, M.; Macaninch, E.; Martyn, K. Food & mood: A review of supplementary prebiotic and probiotic interventions in the treatment of anxiety and depression in adults. BMJ Nutrition, Prev. Health, 2020, 3, e000053.
  77. Chao, L.; Liu, C.; Sutthawongwadee, S.; Li, Y.; Lv, W.; Chen, W.; Yu, L.; Zhou, J.; Guo, A.; Li, Z.; Guo, S. Effects of probiotics on depressive or anxiety variables in healthy participants under stress conditions or with a depressive or anxiety diagnosis: A meta-analysis of randomized controlled trials. Front. Neurol., 2020, 11, 421. doi: 10.3389/fneur.2020.00421 PMID: 32528399
  78. Papalini, S.; Michels, F.; Kohn, N.; Wegman, J.; van Hemert, S.; Roelofs, K.; Arias-Vasquez, A.; Aarts, E. Stress matters: Randomized controlled trial on the effect of probiotics on neurocognition. Neurobiol. Stress, 2019, 10, 100141. doi: 10.1016/j.ynstr.2018.100141 PMID: 30937347
  79. Soldi, S.; Tagliacarne, S.C.; Valsecchi, C.; Perna, S.; Rondanelli, M.; Ziviani, L.; Milleri, S.; Annoni, A.; Castellazzi, A. Effect of a multistrain probiotic (Lactoflorene® Plus) on inflammatory parameters and microbiota composition in subjects with stress-related symptoms. Neurobiol. Stress, 2019, 10, 100138. doi: 10.1016/j.ynstr.2018.11.001 PMID: 30937345
  80. Haghighat, N.; Rajabi, S.; Mohammadshahi, M. Effect of synbiotic and probiotic supplementation on serum brain-derived neurotrophic factor level, depression and anxiety symptoms in hemodialysis patients: A randomized, double-blinded, clinical trial. Nutr. Neurosci., 2021, 24(6), 490-499. doi: 10.1080/1028415X.2019.1646975 PMID: 31379269
  81. Taylor, A.M.; Thompson, S.V.; Edwards, C.G.; Musaad, S.M.A.; Khan, N.A.; Holscher, H.D. Associations among diet, the gastrointestinal microbiota, and negative emotional states in adults. Nutr. Neurosci., 2020, 23(12), 983-992. doi: 10.1080/1028415X.2019.1582578 PMID: 30794085
  82. Johnstone, N.; Milesi, C.; Burn, O.; van den Bogert, B.; Nauta, A.; Hart, K.; Sowden, P.; Burnet, P.W.J.; Cohen, K.K. Anxiolytic effects of a galacto-oligosaccharides prebiotic in healthy females (18-25 years) with corresponding changes in gut bacterial composition. Sci. Rep., 2021, 11(1), 8302. doi: 10.1038/s41598-021-87865-w PMID: 33859330
  83. Taylor, A.M.; Holscher, H.D. A review of dietary and microbial connections to depression, anxiety, and stress. Nutr. Neurosci., 2020, 23(3), 237-250. doi: 10.1080/1028415X.2018.1493808 PMID: 29985786
  84. Smith, K.S.; Greene, M.W.; Babu, J.R.; Frugé, A.D. Psychobiotics as treatment for anxiety, depression, and related symptoms: A systematic review. Nutr. Neurosci., 2021, 24(12), 963-977. doi: 10.1080/1028415X.2019.1701220 PMID: 31858898
  85. Marazziti, D.; Buccianelli, B.; Palermo, S.; Parra, E.; Arone, A.; Beatino, M.; Massa, L.; Carpita, B.; Barberi, F.; Mucci, F.; Dell’Osso, L. The microbiota/microbiome and the gut–brain axis: How much do they matter in psychiatry? Life (Basel), 2021, 11(8), 760. doi: 10.3390/life11080760 PMID: 34440519
  86. Snigdha, S.; Ha, K.; Tsai, P.; Dinan, T.G.; Bartos, J.D.; Shahid, M. Probiotics: Potential novel therapeutics for microbiota-gut-brain axis dysfunction across gender and lifespan. Pharmacol. Ther., 2022, 231, 107978. doi: 10.1016/j.pharmthera.2021.107978 PMID: 34492236
  87. Navarro-Tapia, E.; Almeida-Toledano, L.; Sebastiani, G.; Serra-Delgado, M.; García-Algar, Ó.; Andreu-Fernández, V. Effects of microbiota imbalance in anxiety and eating disorders: Probiotics as novel therapeutic approaches. Int. J. Mol. Sci., 2021, 22(5), 2351. doi: 10.3390/ijms22052351 PMID: 33652962
  88. Le Morvan de Sequeira, C.; Hengstberger, C.; Enck, P.; Mack, I. Effect of probiotics on psychiatric symptoms and central nervous system functions in human health and disease: A systematic review and meta-analysis. Nutrients, 2022, 14(3), 621. doi: 10.3390/nu14030621 PMID: 35276981
  89. Zhou, L.; Foster, J.A. Psychobiotics and the gut-brain axis: In the pursuit of happiness. Neuropsychiatr. Dis. Treat., 2015, 11, 715-723. PMID: 25834446
  90. Foster, J.A. Decoding microbiome research for clinical psychiatry. Can. J. Psychiatry, 2020, 65(1), 19-20. doi: 10.1177/0706743719890725 PMID: 31777272
  91. Sudo, N.; Chida, Y.; Aiba, Y.; Sonoda, J.; Oyama, N.; Yu, X.N.; Kubo, C.; Koga, Y. Postnatal microbial colonization programs the hypothalamic-pituitary-adrenal system for stress response in mice. J. Physiol., 2004, 558(1), 263-275. doi: 10.1113/jphysiol.2004.063388 PMID: 15133062
  92. Heijtz, R.D.; Wang, S.; Anuar, F.; Qian, Y.; Björkholm, B.; Samuelsson, A.; Hibberd, M.L.; Forssberg, H.; Pettersson, S. Normal gut microbiota modulates brain development and behavior. Proc. Natl. Acad. Sci. USA, 2011, 108(7), 3047-3052. doi: 10.1073/pnas.1010529108 PMID: 21282636
  93. Neufeld, K.A.M.; Kang, N.; Bienenstock, J.; Foster, J.A. Effects of intestinal microbiota on anxiety-like behavior. Commun. Integr. Biol., 2011, 4(4), 492-494. doi: 10.4161/cib.15702 PMID: 21966581
  94. Neufeld, K.M.; Kang, N.; Bienenstock, J.; Foster, J.A. Reduced anxiety-like behavior and central neurochemical change in germ-free mice. Neurogastroenterol. Motil., 2011, 23(3), 255-e119, e119. doi: 10.1111/j.1365-2982.2010.01620.x PMID: 21054680
  95. Bercik, P.; Denou, E.; Collins, J.; Jackson, W.; Lu, J.; Jury, J.; Deng, Y.; Blennerhassett, P.; Macri, J.; McCoy, K.D.; Verdu, E.F.; Collins, S.M. The intestinal microbiota affect central levels of brain-derived neurotropic factor and behavior in mice. Gastroenterology, 2011, 141(2), 599-609.e3, 609.e1-609.e3. doi: 10.1053/j.gastro.2011.04.052 PMID: 21683077
  96. Clarke, G.; Grenham, S.; Scully, P.; Fitzgerald, P.; Moloney, R.D.; Shanahan, F.; Dinan, T.G.; Cryan, J.F. The microbiome-gut-brain axis during early life regulates the hippocampal serotonergic system in a sex-dependent manner. Mol. Psychiatry, 2013, 18(6), 666-673. doi: 10.1038/mp.2012.77 PMID: 22688187
  97. Desbonnet, L.; Clarke, G.; Traplin, A.; O’Sullivan, O.; Crispie, F.; Moloney, R.D.; Cotter, P.D.; Dinan, T.G.; Cryan, J.F. Gut microbiota depletion from early adolescence in mice: Implications for brain and behaviour. Brain Behav. Immun., 2015, 48, 165-173. doi: 10.1016/j.bbi.2015.04.004 PMID: 25866195
  98. Reid, B.M.; Horne, R.; Donzella, B.; Szamosi, J.C.; Coe, C.L.; Foster, J.A.; Gunnar, M.R. Microbiota‐immune alterations in adolescents following early life adversity: A proof of concept study. Dev. Psychobiol., 2021, 63(5), 851-863. doi: 10.1002/dev.22061 PMID: 33249563
  99. Jang, H.M.; Lee, K.E.; Lee, H.J.; Kim, D.H. Immobilization stress-induced Escherichia coli causes anxiety by inducing NF-κB activation through gut microbiota disturbance. Sci. Rep., 2018, 8(1), 13897. doi: 10.1038/s41598-018-31764-0 PMID: 30224732
  100. De Palma, G.; Lynch, M.D.J.; Lu, J.; Dang, V.T.; Deng, Y.; Jury, J.; Umeh, G.; Miranda, P.M.; Pigrau Pastor, M.; Sidani, S.; Pinto-Sanchez, M.I.; Philip, V.; McLean, P.G.; Hagelsieb, M.G.; Surette, M.G.; Bergonzelli, G.E.; Verdu, E.F.; Britz-McKibbin, P.; Neufeld, J.D.; Collins, S.M.; Bercik, P. Transplantation of fecal microbiota from patients with irritable bowel syndrome alters gut function and behavior in recipient mice. Sci. Transl. Med., 2017, 9(379), eaaf6397. doi: 10.1126/scitranslmed.aaf6397 PMID: 28251905
  101. Jin, X.; Zhang, Y.; Celniker, S.E.; Xia, Y.; Mao, J.H.; Snijders, A.M.; Chang, H. Gut microbiome partially mediates and coordinates the effects of genetics on anxiety-like behavior in Collaborative Cross mice. Sci. Rep., 2021, 11(1), 270. doi: 10.1038/s41598-020-79538-x PMID: 33431988
  102. Dandekar, M.P.; Palepu, M.S.K.; Satti, S.; Jaiswal, Y.; Singh, A.A.; Dash, S.P.; Gajula, S.N.R.; Sonti, R. Multi-strain probiotic formulation reverses maternal separation and chronic unpredictable mild stress-generated anxiety- and depression-like phenotypes by modulating gut microbiome-brain activity in rats. ACS Chem. Neurosci., 2022, 13(13), 1948-1965. doi: 10.1021/acschemneuro.2c00143 PMID: 35735411
  103. Chen, Y.; Bai, J.; Wu, D.; Yu, S.; Qiang, X.; Bai, H.; Wang, H.; Peng, Z. Association between fecal microbiota and generalized anxiety disorder: Severity and early treatment response. J. Affect. Disord., 2019, 259, 56-66. doi: 10.1016/j.jad.2019.08.014 PMID: 31437702
  104. Jiang, H.; Zhang, X.; Yu, Z.; Zhang, Z.; Deng, M.; Zhao, J.; Ruan, B. Altered gut microbiota profile in patients with generalized anxiety disorder. J. Psychiatr. Res., 2018, 104, 130-136. doi: 10.1016/j.jpsychires.2018.07.007 PMID: 30029052
  105. Mason, B.L.; Li, Q.; Minhajuddin, A.; Czysz, A.H.; Coughlin, L.A.; Hussain, S.K.; Koh, A.Y.; Trivedi, M.H. Reduced anti-inflammatory gut microbiota are associated with depression and anhedonia. J. Affect. Disord., 2020, 266, 394-401. doi: 10.1016/j.jad.2020.01.137 PMID: 32056905
  106. Nikolova, V.L.; Smith, M.R.B.; Hall, L.J.; Cleare, A.J.; Stone, J.M.; Young, A.H. Perturbations in gut microbiota composition in psychiatric disorders: A review and meta-analysis. JAMA Psychiatry, 2021, 78(12), 1343-1354. doi: 10.1001/jamapsychiatry.2021.2573 PMID: 34524405
  107. Guo, T.L.; Chen, Y.; Xu, H.S.; McDonough, C.M.; Huang, G. Gut microbiome in neuroendocrine and neuroimmune interactions: The case of genistein. Toxicol. Appl. Pharmacol., 2020, 402, 115130. doi: 10.1016/j.taap.2020.115130 PMID: 32673657
  108. Cheng, Y.; Wang, Y.; Zhang, W.; Yin, J.; Dong, J.; Liu, J. Relationship between intestinal flora, inflammation, BDNF gene polymorphism and generalized anxiety disorder: A clinical investigation. Medicine, 2022, 101, 29-e28910.
  109. Gualtieri, P.; Marchetti, M.; Cioccoloni, G.; De Lorenzo, A.; Romano, L.; Cammarano, A.; Colica, C.; Condò, R.; Di Renzo, L. Psychobiotics regulate the anxiety symptoms in carriers of allele a of il-1 beta gene: A randomized, placebo-controlled clinical trial. Mediators Inflamm., 2020, 2020, 1-11. doi: 10.1155/2020/2346126 PMID: 32377159
  110. Vitellio, P.; Chira, A.; De Angelis, M.; Dumitrascu, D.L.; Portincasa, P. Probiotics in psychosocial stress and anxiety: A systematic review. J. Gastrointestin. Liver Dis., 2020, 29(1), 77-83. doi: 10.15403/jgld-352 PMID: 32176751
  111. Schmidt, K.; Cowen, P.J.; Harmer, C.J.; Tzortzis, G.; Errington, S.; Burnet, P.W.J. Prebiotic intake reduces the waking cortisol response and alters emotional bias in healthy volunteers. Psychopharmacology (Berl.), 2015, 232(10), 1793-1801. doi: 10.1007/s00213-014-3810-0 PMID: 25449699
  112. Messaoudi, M.; Violle, N.; Bisson, J.F.; Desor, D.; Javelot, H.; Rougeot, C. Beneficial psychological effects of a probiotic formulation (Lactobacillus helveticus R0052 and Bifidobacterium longum R0175) in healthy human volunteers. Gut Microbes, 2011, 2(4), 256-261. doi: 10.4161/gmic.2.4.16108 PMID: 21983070
  113. Pirbaglou, M.; Katz, J.; de Souza, R.J.; Stearns, J.C.; Motamed, M.; Ritvo, P. Probiotic supplementation can positively affect anxiety and depressive symptoms: a systematic review of randomized controlled trials. Nutr. Res., 2016, 36(9), 889-898. doi: 10.1016/j.nutres.2016.06.009 PMID: 27632908
  114. Slykerman, R.F.; Hood, F.; Wickens, K.; Thompson, J.M.D.; Barthow, C.; Murphy, R.; Kang, J.; Rowden, J.; Stone, P.; Crane, J.; Stanley, T.; Abels, P.; Purdie, G.; Maude, R.; Mitchell, E.A. Effect of Lactobacillus rhamnosus HN001 in pregnancy on postpartum symptoms of depression and anxiety: A randomized double-blind placebo-controlled trial. EBioMedicine, 2017, 24, 159-165. doi: 10.1016/j.ebiom.2017.09.013 PMID: 28943228
  115. Yang, B.; Wei, J.; Ju, P.; Chen, J. Effects of regulating intestinal microbiota on anxiety symptoms: A systematic review. Gen. Psychiatr., 2019, 32(2), e100056. doi: 10.1136/gpsych-2019-100056 PMID: 31179435
  116. Eskandarzadeh, S.; Effatpanah, M.; Khosravi-Darani, K.; Askari, R.; Hosseini, A.F.; Reisian, M.; Jazayeri, S. Efficacy of a multispecies probiotic as adjunctive therapy in generalized anxiety disorder: A double blind, randomized, placebo-controlled trial. Nutr. Neurosci., 2021, 24(2), 102-108. doi: 10.1080/1028415X.2019.1598669 PMID: 31516094
  117. Chinna Meyyappan, A.; Forth, E.; Wallace, C.J.K.; Milev, R. Effect of fecal microbiota transplant on symptoms of psychiatric disorders: A systematic review. BMC Psychiatry, 2020, 20(1), 299. doi: 10.1186/s12888-020-02654-5 PMID: 32539741
  118. Kessler, R.C.; Petukhova, M.; Sampson, N.A.; Zaslavsky, A.M.; Wittchen, H.U. Twelve-month and lifetime prevalence and lifetime morbid risk of anxiety and mood disorders in the United States. Int. J. Methods Psychiatr. Res., 2012, 21(3), 169-184. doi: 10.1002/mpr.1359 PMID: 22865617
  119. Quagliato, L.A.; Freire, R.C.; Nardi, A.E. Elevated peripheral kynurenine/tryptophan ratio predicts poor short-term auditory memory in panic disorder patients. J. Psychiatr. Res., 2019, 113, 159-164. doi: 10.1016/j.jpsychires.2019.03.027 PMID: 30959226
  120. Lapin, I.P. Stimulant and convulsive effects of kynurenines injected into brain ventricles in mice. J. Neural Transm. (Vienna), 1978, 42(1), 37-43. doi: 10.1007/BF01262727 PMID: 641543
  121. Mok, M.H.S.; Fricker, A.C.; Weil, A.; Kew, J.N.C. Electrophysiological characterisation of the actions of kynurenic acid at ligand-gated ion channels. Neuropharmacology, 2009, 57(3), 242-249. doi: 10.1016/j.neuropharm.2009.06.003 PMID: 19523966
  122. Butler, M.I.; Long-Smith, C.; Moloney, G.M.; Morkl, S.; O’Mahony, S.M.; Cryan, J.F.; Clarke, G.; Dinan, T.G. The immune-kynurenine pathway in social anxiety disorder. Brain Behav. Immun., 2022, 99, 317-326. doi: 10.1016/j.bbi.2021.10.020 PMID: 34758380
  123. Quagliato, L.A.; Nardi, A.E. Cytokine alterations in panic disorder: A systematic review. J. Affect. Disord., 2018, 228, 91-96. doi: 10.1016/j.jad.2017.11.094 PMID: 29241050
  124. Fernández-Serrano, A.B.; Moya-Faz, F.J.; Giner Alegría, C.A.; Fernández Rodríguez, J.C. Negative correlation between IL‐1β IL‐12 and TNF‐γ and cortisol levels in patients with panic disorder. Brain Behav., 2022, 12(6), e2624. doi: 10.1002/brb3.2624 PMID: 35588458
  125. Xie, Z.; Jiang, W.; Deng, M.; Wang, W.; Xie, X.; Feng, X.; Shi, Y.; Zhang, X.; Song, D.; Yuan, Z.; Wang, Y. Alterations of oral microbiota in patients with panic disorder. Bioengineered, 2021, 12(1), 9103-9112. doi: 10.1080/21655979.2021.1994738 PMID: 34666612
  126. Simpson, C.A.; Adler, C.; du Plessis, M.R.; Landau, E.R.; Dashper, S.G.; Reynolds, E.C.; Schwartz, O.S.; Simmons, J.G. Oral microbiome composition, but not diversity, is associated with adolescent anxiety and depression symptoms. Physiol. Behav., 2020, 226, 113126. doi: 10.1016/j.physbeh.2020.113126 PMID: 32777312
  127. Kuc, D.; Zgrajka, W.; Parada-Turska, J.; Urbanik-Sypniewska, T.; Turski, W.A. Micromolar concentration of kynurenic acid in rat small intestine. Amino Acids, 2008, 35(2), 503-505. doi: 10.1007/s00726-007-0631-z PMID: 18235993
  128. Hayaishi, O.; Taniuchi, H.; Tashiro, M.; Kuno, S. Studies on the metabolism of kynurenic acid. I. The formation of L-glutamic acid, D- and L-alanine, and acetic acid from kynurenic acid by Pseudomonas extracts. J. Biol. Chem., 1961, 236(9), 2492-2497. doi: 10.1016/S0021-9258(18)64026-8 PMID: 13712440
  129. Kaihara, M.; Price, J.M. The metabolism of quinaldic acid, kynurenic acid, and xanthurenic acid in the rabbit. J. Biol. Chem., 1962, 237(5), 1727-1729. doi: 10.1016/S0021-9258(19)83769-9 PMID: 14453131
  130. Dagley, S.; Johnson, P.A. Microbial oxidation of kynurenic, xanthurenic and picolinic acids. Biochim. Biophys. Acta, 1963, 78(4), 577-587. doi: 10.1016/0006-3002(63)91023-0 PMID: 14089438
  131. American Psychiatric Association (APA). Diagnostic and Statistical Manual of Mental Disorders, 5th ed; American Psychiatric Association Publishing: Washington, DC, 2013.
  132. Liberzon, I.; Krstov, M.; Young, E.A. Stress-restress: Effects on ACTH and fast feedback. Psychoneuroendocrinology, 1997, 22(6), 443-453. doi: 10.1016/S0306-4530(97)00044-9 PMID: 9364622
  133. Zhou, Q.; Sun, T.; Wu, F.; Li, F.; Liu, Y.; Li, W.; Dai, N.; Tan, L.; Li, T.; Song, Y. Correlation of gut microbiota and neurotransmitters in a rat model of post-traumatic stress disorder. J. Trad. Chinese Med. Sci, 2020.
  134. Wilson, C.B.; Ebenezer, P.J.; McLaughlin, L.D.; Francis, J. Predator exposure/psychosocial stress animal model of post-traumatic stress disorder modulates neurotransmitters in the rat hippocampus and prefrontal cortex. PLoS One, 2014, 9(2), e89104. doi: 10.1371/journal.pone.0089104 PMID: 24551226
  135. Leclercq, S.; Forsythe, P.; Bienenstock, J. Posttraumatic stress disorder: Does the gut microbiome hold the key? Can. J. Psychiatry, 2016, 61(4), 204-213. doi: 10.1177/0706743716635535 PMID: 27254412
  136. Hemmings, S.M.J.; Malan-Müller, S.; van den Heuvel, L.L.; Demmitt, B.A.; Stanislawski, M.A.; Smith, D.G.; Bohr, A.D.; Stamper, C.E.; Hyde, E.R.; Morton, J.T.; Marotz, C.A.; Siebler, P.H.; Braspenning, M.; Van Criekinge, W.; Hoisington, A.J.; Brenner, L.A.; Postolache, T.T.; McQueen, M.B.; Krauter, K.S.; Knight, R.; Seedat, S.; Lowry, C.A. The microbiome in posttraumatic stress disorder and trauma-exposed controls: An exploratory study. Psychosom. Med., 2017, 79(8), 936-946. doi: 10.1097/PSY.0000000000000512 PMID: 28700459
  137. Gao, F.; Guo, R.; Ma, Q.; Li, Y.; Wang, W.; Fan, Y.; Ju, Y.; Zhao, B.; Gao, Y.; Qian, L.; Yang, Z.; He, X.; Jin, X.; Liu, Y.; Peng, Y.; Chen, C.; Chen, Y.; Gao, C.; Zhu, F.; Ma, X. Stressful events induce long-term gut microbiota dysbiosis and associated post-traumatic stress symptoms in healthcare workers fighting against COVID-19. J. Affect. Disord., 2022, 303, 187-195. doi: 10.1016/j.jad.2022.02.024 PMID: 35157946
  138. Raskind, M.A.; Peskind, E.R.; Chow, B.; Harris, C.; Davis-Karim, A.; Holmes, H.A.; Hart, K.L.; McFall, M.; Mellman, T.A.; Reist, C.; Romesser, J.; Rosenheck, R.; Shih, M.C.; Stein, M.B.; Swift, R.; Gleason, T.; Lu, Y.; Huang, G.D. Trial of prazosin for post-traumatic stress disorder in military veterans. N. Engl. J. Med., 2018, 378(6), 507-517. doi: 10.1056/NEJMoa1507598 PMID: 29414272
  139. Amos, T.; Stein, D.J.; Ipser, J.C. Pharmacological interventions for preventing post-traumatic stress disorder (PTSD). Cochrane Libr., 2014, (7), CD006239. doi: 10.1002/14651858.CD006239.pub2 PMID: 25001071
  140. Baker, J.F.; Cates, M.E.; Luthin, D.R. D-cycloserine in the treatment of posttraumatic stress disorder. Ment. Health Clin., 2017, 7(2), 88-94. doi: 10.9740/mhc.2017.03.088 PMID: 29955504
  141. Brunet, A.; Poundja, J.; Tremblay, J.; Bui, É.; Thomas, É.; Orr, S.P.; Azzoug, A.; Birmes, P.; Pitman, R.K. Trauma reactivation under the influence of propranolol decreases posttraumatic stress symptoms and disorder: 3 open-label trials. J. Clin. Psychopharmacol., 2011, 31(4), 547-550. doi: 10.1097/JCP.0b013e318222f360 PMID: 21720237
  142. Feder, A.; Costi, S.; Rutter, S.B.; Collins, A.B.; Govindarajulu, U.; Jha, M.K.; Horn, S.R.; Kautz, M.; Corniquel, M.; Collins, K.A.; Bevilacqua, L.; Glasgow, A.M.; Brallier, J.; Pietrzak, R.H.; Murrough, J.W.; Charney, D.S. A randomized controlled trial of repeated ketamine administration for chronic posttraumatic stress disorder. Am. J. Psychiatry, 2021, 178(2), 193-202. doi: 10.1176/appi.ajp.2020.20050596 PMID: 33397139
  143. Mithoefer, M.C.; Mithoefer, A.T.; Feduccia, A.A.; Jerome, L.; Wagner, M.; Wymer, J.; Holland, J.; Hamilton, S.; Yazar-Klosinski, B.; Emerson, A.; Doblin, R. 3,4-methylenedioxy-methamphetamine (MDMA)-assisted psychotherapy for post-traumatic stress disorder in military veterans, firefighters, and police officers: A randomised, double-blind, dose-response, phase 2 clinical trial. Lancet Psychiatry, 2018, 5(6), 486-497. doi: 10.1016/S2215-0366(18)30135-4 PMID: 29728331
  144. Mithoefer, M.C.; Feduccia, A.A.; Jerome, L.; Mithoefer, A.; Wagner, M.; Walsh, Z.; Hamilton, S.; Yazar-Klosinski, B.; Emerson, A.; Doblin, R. MDMA-assisted psychotherapy for treatment of PTSD: Study design and rationale for phase 3 trials based on pooled analysis of six phase 2 randomized controlled trials. Psychopharmacology (Berl.), 2019, 236(9), 2735-2745. doi: 10.1007/s00213-019-05249-5 PMID: 31065731
  145. Mitchell, J.M.; Bogenschutz, M.; Lilienstein, A.; Harrison, C.; Kleiman, S.; Parker-Guilbert, K.; Ot’alora, G. M.; Garas, W.; Paleos, C.; Gorman, I.; Nicholas, C.; Mithoefer, M.; Carlin, S.; Poulter, B.; Mithoefer, A.; Quevedo, S.; Wells, G.; Klaire, S.S.; van der Kolk, B.; Tzarfaty, K.; Amiaz, R.; Worthy, R.; Shannon, S.; Woolley, J.D.; Marta, C.; Gelfand, Y.; Hapke, E.; Amar, S.; Wallach, Y.; Brown, R.; Hamilton, S.; Wang, J.B.; Coker, A.; Matthews, R.; de Boer, A.; Yazar-Klosinski, B.; Emerson, A.; Doblin, R. MDMA-assisted therapy for severe PTSD: A randomized, double-blind, placebo-controlled phase 3 study. Nat. Med., 2021, 27(6), 1025-1033. doi: 10.1038/s41591-021-01336-3 PMID: 33972795
  146. Young, M.B.; Andero, R.; Ressler, K.J.; Howell, L.L. 3,4-Methylenedioxymethamphetamine facilitates fear extinction learning. Transl. Psychiatry, 2015, 5(9), e634. doi: 10.1038/tp.2015.138 PMID: 26371762
  147. Young, M.B.; Norrholm, S.D.; Khoury, L.M.; Jovanovic, T.; Rauch, S.A.M.; Reiff, C.M.; Dunlop, B.W.; Rothbaum, B.O.; Howell, L.L. Inhibition of serotonin transporters disrupts the enhancement of fear memory extinction by 3,4-methylenedioxy-methamphetamine (MDMA). Psychopharmacology (Berl.), 2017, 234(19), 2883-2895. doi: 10.1007/s00213-017-4684-8 PMID: 28741031
  148. Ridge, E.A.; Pachhain, S.; Choudhury, S.R.; Bodnar, S.R.; Larsen, R.A.; Phuntumart, V.; Sprague, J.E. The influence of the host microbiome on 3,4-methylenedioxymethamphetamine (MDMA)-induced hyperthermia and vice versa. Sci. Rep., 2019, 9(1), 4313. doi: 10.1038/s41598-019-40803-3 PMID: 30867489
  149. Mellon, S.H.; Gautam, A.; Hammamieh, R.; Jett, M.; Wolkowitz, O.M. Metabolism, metabolomics, and inflammation in posttraumatic stress disorder. Biol. Psychiatry, 2018, 83(10), 866-875. doi: 10.1016/j.biopsych.2018.02.007 PMID: 29628193
  150. Bersani, F.S.; Mellon, S.H.; Lindqvist, D.; Kang, J.I.; Rampersaud, R.; Somvanshi, P.R.; Doyle, F.J., III; Hammamieh, R.; Jett, M.; Yehuda, R.; Marmar, C.R.; Wolkowitz, O.M. Novel Pharmacological targets for combat PTSD—metabolism, inflammation, the gut microbiome, and mitochondrial dysfunction. Mil. Med., 2020, 185(Suppl. 1), 311-318. doi: 10.1093/milmed/usz260 PMID: 32074311
  151. Wallace, C.J.K.; Milev, R.V. The efficacy, safety, and tolerability of probiotics on depression: Clinical results from an open-label pilot study. Front. Psychiatry, 2021, 12(12), 618279. doi: 10.3389/fpsyt.2021.618279 PMID: 33658952
  152. Majeed, M.; Nagabhushanam, K.; Arumugam, S.; Majeed, S.; Ali, F. Bacillus coagulans MTCC 5856 for the management of major depression with irritable bowel syndrome: A randomised, double-blind, placebo controlled, multi-centre, pilot clinical study. Food Nutr. Res., 2018, 62. doi: 10.29219/fnr.v62.1218 PMID: 29997457
  153. Gualtieri, P.; Marchetti, M.; Cioccoloni, G.; De Lorenzo, A.; Romano, L.; Cammarano, A.; Colica, C.; Condò, R.; Di Renzo, L. Psychobiotics regulate the anxiety symptoms in carriers of Allele A of IL-1β gene: A randomized, placebo-controlled clinical trial. Mediators Inflamm., 2020, 2020, 1-11. doi: 10.1155/2020/2346126 PMID: 32377159
  154. Brenner, L.A.; Stearns-Yoder, K.A.; Stamper, C.E.; Hoisington, A.J.; Brostow, D.P.; Hoffmire, C.A.; Forster, J.E.; Donovan, M.L.; Ryan, A.T.; Postolache, T.T.; Lowry, C.A. Rationale, design, and methods: A randomized placebo-controlled trial of an immunomodulatory probiotic intervention for Veterans with PTSD. Contemp. Clin. Trials Commun., 2022, 28(100960), 100960. doi: 10.1016/j.conctc.2022.100960 PMID: 35812820
  155. Troyer, E.A.; Kohn, J.N.; Ecklu-Mensah, G.; Aleti, G.; Rosenberg, D.R.; Hong, S. Searching for host immune-microbiome mechanisms in obsessive-compulsive disorder: A narrative literature review and future directions. Neurosci. Biobehav. Rev., 2021, 125, 517-534. doi: 10.1016/j.neubiorev.2021.02.034 PMID: 33639178
  156. Pérez-Vigil, A.; Fernández de la Cruz, L.; Brander, G.; Isomura, K.; Gromark, C.; Mataix-Cols, D. The link between autoimmune diseases and obsessive-compulsive and tic disorders: A systematic review. Neurosci. Biobehav. Rev., 2016, 71, 542-562. doi: 10.1016/j.neubiorev.2016.09.025 PMID: 27687817
  157. Lamothe, H.; Baleyte, J.M.; Smith, P.; Pelissolo, A.; Mallet, L. Individualized immunological data for precise classification of OCD patients. Brain Sci., 2018, 8(8), 149. doi: 10.3390/brainsci8080149 PMID: 30096863
  158. Marazziti, D.; Mucci, F.; Fontenelle, L.F. Immune system and obsessive-compulsive disorder. Psychoneuroendocrinology, 2018, 93, 39-44. doi: 10.1016/j.psyneuen.2018.04.013 PMID: 29689421
  159. Gerentes, M.; Pelissolo, A.; Rajagopal, K.; Tamouza, R.; Hamdani, N. Obsessive-compulsive disorder: Autoimmunity and neuroinflammation. Curr. Psychiatry Rep., 2019, 21(8), 78. doi: 10.1007/s11920-019-1062-8 PMID: 31367805
  160. Swedo, S.E.; Frankovich, J.; Murphy, T.K. Overview of treatment of pediatric acute-onset neuropsychiatric syndrome. J. Child Adolesc. Psychopharmacol., 2017, 27(7), 562-565. doi: 10.1089/cap.2017.0042 PMID: 28722464
  161. Hoffman, K.L.; Cano-Ramírez, H. Pediatric neuropsychiatric syndromes associated with infection and microbiome alterations: Clinical findings, possible role of the mucosal epithelium, and strategies for the development of new animal models. Expert Opin. Drug Discov., 2022, 17(7), 717-731. doi: 10.1080/17460441.2022.2074396 PMID: 35543072
  162. Turna, J.; Grosman Kaplan, K.; Anglin, R.; Patterson, B.; Soreni, N.; Bercik, P.; Surette, M.G.; Van Ameringen, M. The gut microbiome and inflammation in obsessive‐compulsive disorder patients compared to age‐ and sex‐matched controls: A pilot study. Acta Psychiatr. Scand., 2020, 142(4), 337-347. doi: 10.1111/acps.13175 PMID: 32307692
  163. Scheepers, I.M.; Cryan, J.F.; Bastiaanssen, T.F.S.; Rea, K.; Clarke, G.; Jaspan, H.B.; Harvey, B.H.; Hemmings, S.M.J.; Santana, L.; Sluis, R.; Malan-Müller, S.; Wolmarans, D.W. Natural compulsive‐like behaviour in the deer mouse (Peromyscus maniculatus bairdii) is associated with altered gut microbiota composition. Eur. J. Neurosci., 2020, 51(6), 1419-1427. doi: 10.1111/ejn.14610 PMID: 31663195
  164. Domènech, L.; Willis, J.; Alemany-Navarro, M.; Morell, M.; Real, E.; Escaramís, G.; Bertolín, S.; Sánchez, C.D.; Balcells, S.; Segalàs, C.; Estivill, X.; Menchón, J.M.; Gabaldón, T.; Alonso, P.; Rabionet, R. Changes in the stool and oropharyngeal microbiome in obsessive-compulsive disorder. Sci. Rep., 2022, 12(1), 1448. doi: 10.1038/s41598-022-05480-9 PMID: 35087123
  165. Quagliariello, A.; Del Chierico, F.; Russo, A.; Reddel, S.; Conte, G.; Lopetuso, L.R.; Ianiro, G.; Dallapiccola, B.; Cardona, F.; Gasbarrini, A.; Putignani, L. Gut microbiota profiling and gut-brain crosstalk in children affected by pediatric acute-onset neuropsychiatric syndrome and pediatric autoimmune neuropsychiatric disorders associated with streptococcal infections. Front. Microbiol., 2018, 9, 675. doi: 10.3389/fmicb.2018.00675 PMID: 29686658
  166. Stojanov, S.; Berlec, A.; Štrukelj, B. The influence of probiotics on the firmicutes/bacteroidetes ratio in the treatment of obesity and inflammatory bowel disease. Microorganisms, 2020, 8(11), 1715. doi: 10.3390/microorganisms8111715 PMID: 33139627
  167. Rees, J.C. Obsessive–compulsive disorder and gut microbiota dysregulation. Med. Hypotheses, 2014, 82(2), 163-166. doi: 10.1016/j.mehy.2013.11.026 PMID: 24332563
  168. Cox, C.J.; Zuccolo, A.J.; Edwards, E.V.; Mascaro-Blanco, A.; Alvarez, K.; Stoner, J.; Chang, K.; Cunningham, M.W. Antineuronal antibodies in a heterogeneous group of youth and young adults with tics and obsessive-compulsive disorder. J. Child Adolesc. Psychopharmacol., 2015, 25(1), 76-85. doi: 10.1089/cap.2014.0048 PMID: 25658702
  169. Calaprice, D.; Tona, J.; Murphy, T.K. Treatment of pediatric acute-onset neuropsychiatric disorder in a large survey population. J. Child Adolesc. Psychopharmacol., 2018, 28(2), 92-103. doi: 10.1089/cap.2017.0101 PMID: 28832181
  170. Kantak, P.A.; Bobrow, D.N.; Nyby, J.G. Obsessive–compulsive-like behaviors in house mice are attenuated by a probiotic (Lactobacillus rhamnosus GG). Behav. Pharmacol., 2014, 25(1), 71-79. doi: 10.1097/FBP.0000000000000013 PMID: 24257436
  171. Sanikhani, N.S.; Modarressi, M.H.; Jafari, P.; Vousooghi, N.; Shafei, S.; Akbariqomi, M.; Heidari, R.; Lavasani, P.S.; Yazarlou, F.; Motevaseli, E.; Ghafouri-Fard, S. The effect of Lactobacillus casei consumption in improvement of obsessive–compulsive disorder: An animal study. Probiotics Antimicrob. Proteins, 2020, 12(4), 1409-1419. doi: 10.1007/s12602-020-09642-x PMID: 32124236
  172. Kobliner, V.; Mumper, E.; Baker, S.M. Reduction in obsessive-compuslisive disorder and self- injurious behavior with Saccharomyces boulardii in a child with autism: A case report. Integr. Med. (Encinitas), 2018, 17(6), 38-41. PMID: 31043927
  173. Halverson, T.; Alagiakrishnan, K. Gut microbes in neurocognitive and mental health disorders. Ann. Med., 2020, 52(8), 423-443. doi: 10.1080/07853890.2020.1808239 PMID: 32772900
  174. Lukić I.; Getselter, D.; Ziv, O.; Oron, O.; Reuveni, E.; Koren, O.; Elliott, E. Antidepressants affect gut microbiota and Ruminococcus flavefaciens is able to abolish their effects on depressive-like behavior. Transl. Psychiatry, 2019, 9(1), 133. doi: 10.1038/s41398-019-0466-x PMID: 30967529
  175. Morais, L.H.; Felice, D.; Golubeva, A.V.; Moloney, G.; Dinan, T.G.; Cryan, J.F. Strain differences in the susceptibility to the gut–brain axis and neurobehavioural alterations induced by maternal immune activation in mice. Behav. Pharmacol., 2018, 29(2 and 3), 181-198. doi: 10.1097/FBP.0000000000000374 PMID: 29462110
  176. Zhang, X.; Lei, B.; Yuan, Y.; Zhang, L.; Hu, L.; Jin, S.; Kang, B.; Liao, X.; Sun, W.; Xu, F.; Zhong, Y.; Hu, J.; Qi, H. Brain control of humoral immune responses amenable to behavioural modulation. Nature, 2020, 581(7807), 204-208. doi: 10.1038/s41586-020-2235-7 PMID: 32405000
  177. Hashimoto, K. Molecular mechanisms of the rapid-acting and long-lasting antidepressant actions of (R)-ketamine. Biochem. Pharmacol., 2020, 177, 113935. doi: 10.1016/j.bcp.2020.113935 PMID: 32224141
  178. Wei, Y.; Wang, T.; Liao, L.; Fan, X.; Chang, L.; Hashimoto, K. Brain-spleen axis in health and diseases: A review and future perspective. Brain Res. Bull., 2022, 182, 130-140. doi: 10.1016/j.brainresbull.2022.02.008 PMID: 35157987
  179. Silva, Y.P.; Bernardi, A.; Frozza, R.L. The role of short-chain fatty acids from gut microbiota in gut-brain communication. Front. Endocrinol. (Lausanne), 2020, 11, 25. doi: 10.3389/fendo.2020.00025 PMID: 32082260
  180. Sanmarco, L.M.; Wheeler, M.A.; Gutiérrez-Vázquez, C.; Polonio, C.M.; Linnerbauer, M.; Pinho-Ribeiro, F.A.; Li, Z.; Giovannoni, F.; Batterman, K.V.; Scalisi, G.; Zandee, S.E.J.; Heck, E.S.; Alsuwailm, M.; Rosene, D.L.; Becher, B.; Chiu, I.M.; Prat, A.; Quintana, F.J. Gut-licensed IFNγ+ NK cells drive LAMP1+TRAIL+ anti-inflammatory astrocytes. Nature, 2021, 590(7846), 473-479. doi: 10.1038/s41586-020-03116-4 PMID: 33408417
  181. Erny, D.; Prinz, M. How microbiota shape microglial phenotypes and epigenetics. Glia, 2020, 68(8), 1655-1672. doi: 10.1002/glia.23822 PMID: 32181523
  182. Mohr, A.E.; Jäger, R.; Carpenter, K.C.; Kerksick, C.M.; Purpura, M.; Townsend, J.R.; West, N.P.; Black, K.; Gleeson, M.; Pyne, D.B.; Wells, S.D.; Arent, S.M.; Kreider, R.B.; Campbell, B.I.; Bannock, L.; Scheiman, J.; Wissent, C.J.; Pane, M.; Kalman, D.S.; Pugh, J.N.; Ortega-Santos, C.P.; ter Haar, J.A.; Arciero, P.J.; Antonio, J. The athletic gut microbiota. J. Int. Soc. Sports Nutr., 2020, 17(1), 24. doi: 10.1186/s12970-020-00353-w PMID: 32398103
  183. Moloney, G.M.; Cryan, J.F.; Clarke, G. "Digging in the Dirt" faecal microRNAs as dietary biomarkers of host-microbe interactions. Hepatobiliary Surg. Nutr., 2022, 11(2), 292-294. doi: 10.21037/hbsn-21-551 PMID: 35464286
  184. Palacios-García, I.; Mhuireach, G.A.; Grasso-Cladera, A.; Cryan, J.F.; Parada, F.J. The 4E approach to the human microbiome: Nested interactions between the gut‐brain/body system within natural and built environments. BioEssays, 2022, 44(6), 2100249. doi: 10.1002/bies.202100249 PMID: 35338496
  185. Bear, T.L.K.; Dalziel, J.E.; Coad, J.; Roy, N.C.; Butts, C.A.; Gopal, P.K. The role of the gut microbiota in dietary interventions for depression and anxiety. Adv. Nutr., 2020, 11(4), 890-907. doi: 10.1093/advances/nmaa016 PMID: 32149335
  186. Dong, Z.; Shen, X.; Hao, Y.; Li, J.; Li, H.; Xu, H.; Yin, L.; Kuang, W. Gut microbiome: A potential indicator for differential diagnosis of major depressive disorder and general anxiety disorder. Front. Psychiatry, 2021, 12, 651536. doi: 10.3389/fpsyt.2021.651536 PMID: 34589003
  187. Davis, M.T.; Holmes, S.E.; Pietrzak, R.H.; Esterlis, I. Neurobiology of chronic stress-related psychiatric disorders: Evidence from molecular imaging studies. Chronic Stress (Thousand Oaks), 2017, 1, 1-21. doi: 10.1177/2470547017710916 PMID: 29862379
  188. Dhar, D. Impending mental health issues during coronavirus disease 2019 – time for personalized nutrition based on the gut microbiota to tide over the crisis? Front. Neurosci., 2022, 15, 831193. doi: 10.3389/fnins.2021.831193 PMID: 35110993
  189. Yeoh, Y.K.; Zuo, T.; Lui, G.C.Y.; Zhang, F.; Liu, Q.; Li, A.Y.L.; Chung, A.C.K.; Cheung, C.P.; Tso, E.Y.K.; Fung, K.S.C.; Chan, V.; Ling, L.; Joynt, G.; Hui, D.S.C.; Chow, K.M.; Ng, S.S.S.; Li, T.C.M.; Ng, R.W.Y.; Yip, T.C.F.; Wong, G.L.H.; Chan, F.K.L.; Wong, C.K.; Chan, P.K.S.; Ng, S.C. Gut microbiota composition reflects disease severity and dysfunctional immune responses in patients with COVID-19. Gut, 2021, 70(4), 698-706. doi: 10.1136/gutjnl-2020-323020 PMID: 33431578
  190. Chinna Meyyappan, A.; Forth, E.; Milev, R. Microbial ecosystem therapeutic-2 intervention in people with major depressive disorder and generalized anxiety disorder. Phase 1, open-label study. Interact. J. Med. Res., 2022, 11(1), e32234. doi: 10.2196/32234 PMID: 35060914
  191. Gupta, S.; Mullish, B.H.; Allegretti, J.R. Fecal microbiota transplantation: The evolving landscape. Am. J. Gastroenterol., 2021, 116(4), 647-656. doi: 10.14309/ajg.0000000000001075 PMID: 33982930
  192. Settanni, C.R.; Ianiro, G.; Bibbò, S.; Cammarota, G.; Gasbarrini, A. Gut microbiota alteration and modulation in psychiatric disorders: Current evidence on fecal microbiota transplantation. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2021, 109, 110258. doi: 10.1016/j.pnpbp.2021.110258 PMID: 33497754
  193. Insel, T.; Cuthbert, B.; Garvey, M.; Heinssen, R.; Pine, D.S.; Quinn, K.; Sanislow, C.; Wang, P.; Steinberg, J.; Wang, P. Research domain criteria (RDoC): Toward a new classification framework for research on mental disorders. Am. J. Psychiatry, 2010, 167(7), 748-751. doi: 10.1176/appi.ajp.2010.09091379 PMID: 20595427
  194. Cuthbert, B.N.; Insel, T.R. Toward the future of psychiatric diagnosis: The seven pillars of RDoC. BMC Med., 2013, 11(1), 126. doi: 10.1186/1741-7015-11-126 PMID: 23672542
  195. Clark, L.A.; Cuthbert, B.; Lewis-Fernández, R.; Narrow, W.E.; Reed, G.M. Three approaches to understanding and classifying mental disorder: ICD-11, DSM-5, and the National Institute of Mental Health’s research domain criteria (RDoC). Psychol. Sci. Public Interest, 2017, 18(2), 72-145. doi: 10.1177/1529100617727266 PMID: 29211974
  196. Maes, M.; Anderson, G. False dogmas in schizophrenia research; Toward the reification of pathway phenotypes and pathway classes. Front. Psychiatry, 2021, 12, 663985. doi: 10.3389/fpsyt.2021.663985 PMID: 34220578
  197. Stoyanov, D.; Maes, M.H.J. How to construct neuroscience-informed psychiatric classification? Towards nomothetic networks psychiatry. World J. Psychiatry, 2021, 11(1), 1-12. doi: 10.5498/wjp.v11.i1.1 PMID: 33511042
  198. Moloney, G.M.; Clarke, G.; Cryan, J.F. Gut-brain-axis and the microbiome. Microb. Health Dis., 2021, 4(3), e769.
  199. Marx, W.; Lane, M.; Hockey, M.; Aslam, H.; Berk, M.; Walder, K.; Borsini, A.; Firth, J.; Pariante, C.M.; Berding, K.; Cryan, J.F.; Clarke, G.; Craig, J.M.; Su, K.P.; Mischoulon, D.; Gomez-Pinilla, F.; Foster, J.A.; Cani, P.D.; Thuret, S.; Staudacher, H.M.; Sánchez-Villegas, A.; Arshad, H.; Akbaraly, T.; O’Neil, A.; Segasby, T.; Jacka, F.N. Diet and depression: Exploring the biological mechanisms of action. Mol. Psychiatry, 2021, 26(1), 134-150. doi: 10.1038/s41380-020-00925-x PMID: 33144709
  200. Ribeiro, G.; Ferri, A.; Clarke, G.; Cryan, J.F. Diet and the microbiota-gut-brain-axis: A primer for clinical nutrition. Curr. Opin. Clin. Nutr. Metab. Care, 2022, 25(6), 443-450. doi: 10.1097/MCO.0000000000000874 PMID: 36102353
  201. Schellekens, H.; Ribeiro, G.; Cuesta-Marti, C.; Cryan, J.F. The microbiome-gut-brain axis in nutritional neuroscience. Nutr. Neurosci., 2022, 1-13. doi: 10.1080/1028415X.2022.2128007 PMID: 36222323
  202. de Melo, L.G.P.; Nunes, S.O.V.; Anderson, G.; Vargas, H.O.; Barbosa, D.S.; Galecki, P.; Carvalho, A.F.; Maes, M. Shared metabolic and immune-inflammatory, oxidative and nitrosative stress pathways in the metabolic syndrome and mood disorders. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2017, 78, 34-50. doi: 10.1016/j.pnpbp.2017.04.027 PMID: 28438472

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers