Biobehavioral Interactions between Endocannabinoid and Hypothalamicpituitary- adrenal Systems in Psychosis: A Systematic Review


如何引用文章

全文:

详细

Background:The diathesis-stress paradigm and the cannabinoid-hypothesis have been proposed as possible pathophysiological models of schizophrenia. However, they have historically been studied independently of each other.

Objective:This PRISMA 2020-compliant systematic review aimed at reappraising the interplay between the hypothalamic-pituitary-adrenal (HPA) axis and the endocannabinoid (eCB) system in psychosis- spectrum disorder risk and outcome.

Methods:All pathophysiological and outcome clinical studies, concomitantly evaluating the two systems in psychosis-spectrum disorder risk and different stages of illness, were gathered from electronic databases (Pubmed, Web of Science, and Scopus), and discussed.

Results:41 eligible outputs were extracted, focusing on at least a biological measure (9 HPA-related studies: 4 eCB-interventional, 1 HPA-interventional, 1 both HPA-interventional and non-interventional, 3 non-interventional; 2 eCB-related studies: non-interventional), environmental measures only (29 studies: 1 eCB- interventional, 28 non-interventional), and genetic measures (1 study: non-interventional). Independent contributions of aberrancies in the two systems to the physiopathology and outcome of psychosis were confirmed. Also, concomitant alterations in the two systems, either genetically defined (e.g., CNR1 genetic variation), biologically determined (e.g., dysfunctional HPA axis or endocannabinoid signaling), or behaviorally imputed (e.g., cannabis use, stress exposure, and response), were consistently reported in psychosis. Further, a complex biobehavioral perturbation was revealed not only within each system (e.g., cannabis use affecting the eCB tone, stress exposure affecting the HPA axis), but also across the two systems (e.g., THC affecting the HPA axis, childhood trauma affecting the endocannabinoid signaling).

Conclusion:There is a need to concomitantly study the two systems’ mechanistic contribution to psychosis in order to establish more refined biological relevance.

作者简介

Marco Colizzi

Unit of Psychiatry, Department of Medicine (DAME), University of Udine

编辑信件的主要联系方式.
Email: info@benthamscience.net

Riccardo Bortoletto

Unit of Psychiatry, Department of Medicine (DAME),, University of Udine

Email: info@benthamscience.net

Giulia Antolini

Child and Adolescent Neuropsychiatry Unit, Maternal-Child Integrated Care Department, Integrated University Hospital of Verona

Email: info@benthamscience.net

Sagnik Bhattacharyya

Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience,, King’s College London

Email: info@benthamscience.net

Matteo Balestrieri

Unit of Psychiatry, Department of Medicine (DAME),, University of Udine

Email: info@benthamscience.net

Marco Solmi

Department of Psychiatry, University of Ottawa

编辑信件的主要联系方式.
Email: info@benthamscience.net

参考

  1. Duncan, G.E.; Sheitman, B.B.; Lieberman, J.A. An integrated view of pathophysiological models of schizophrenia. Brain Res. Brain Res. Rev., 1999, 29(2-3), 250-264. doi: 10.1016/S0165-0173(99)00002-8 PMID: 10209235
  2. Arango, C.; Dragioti, E.; Solmi, M.; Cortese, S.; Domschke, K.; Murray, R.M.; Jones, P.B.; Uher, R.; Carvalho, A.F.; Reichenberg, A.; Shin, J.I.I.; Andreassen, O.A.; Correll, C.U.; Fusar-Poli, P. Risk and protective factors for mental disorders beyond genetics: An evidence-based atlas. World Psychiatry, 2021, 20(3), 417-436. doi: 10.1002/wps.20894 PMID: 34505386
  3. Dragioti, E.; Radua, J.; Solmi, M.; Arango, C.; Oliver, D.; Cortese, S.; Jones, P.B.; Il Shin, J.; Correll, C.U.; Fusar-Poli, P. Global population attributable fraction of potentially modifiable risk factors for mental disorders: A meta-umbrella systematic review. Mol. Psychiatry, 2022, 27(8), 3510-3519. doi: 10.1038/s41380-022-01586-8 PMID: 35484237
  4. Lieberman, J.; Sheitman, B.B.; Kinon, B.J. Neurochemical sensitization in the pathophysiology of schizophrenia: deficits and dysfunction in neuronal regulation and plasticity. Neuropsychopharmacology, 1997, 17(4), 205-229. doi: 10.1016/S0893-133X(97)00045-6 PMID: 9326746
  5. Beards, S.; Gayer-Anderson, C.; Borges, S.; Dewey, M.E.; Fisher, H.L.; Morgan, C. Life events and psychosis: A review and meta-analysis. Schizophr. Bull., 2013, 39(4), 740-747. doi: 10.1093/schbul/sbt065 PMID: 23671196
  6. Moore, T.H.M.; Zammit, S.; Lingford-Hughes, A.; Barnes, T.R.E.; Jones, P.B.; Burke, M.; Lewis, G. Cannabis use and risk of psychotic or affective mental health outcomes: A systematic review. Lancet, 2007, 370(9584), 319-328. doi: 10.1016/S0140-6736(07)61162-3 PMID: 17662880
  7. Meehl, P.E. Schizotaxia, schizotypy, schizophrenia. Am. Psychol., 1962, 17(12), 827-838. doi: 10.1037/h0041029
  8. Appiah-Kusi, E.; Leyden, E.; Parmar, S.; Mondelli, V.; McGuire, P.; Bhattacharyya, S. Abnormalities in neuroendocrine stress response in psychosis: The role of endocannabinoids. Psychol. Med., 2016, 46(1), 27-45. doi: 10.1017/S0033291715001786 PMID: 26370602
  9. Day, R. Life events and schizophrenia: The "triggering" hypothesis. Acta Psychiatr. Scand., 1981, 64(2), 97-122. doi: 10.1111/j.1600-0447.1981.tb00765.x PMID: 7032227
  10. Corcoran, C.; Walker, E.; Huot, R.; Mittal, V.; Tessner, K.; Kestler, L.; Malaspina, D. The stress cascade and schizophrenia: Etiology and onset. Schizophr. Bull., 2003, 29(4), 671-692. doi: 10.1093/oxfordjournals.schbul.a007038 PMID: 14989406
  11. Walker, E.F.; Diforio, D. Schizophrenia: A neural diathesis-stress model. Psychol. Rev., 1997, 104(4), 667-685. doi: 10.1037/0033-295X.104.4.667 PMID: 9337628
  12. Pruessner, M.; Cullen, A.E.; Aas, M.; Walker, E.F. The neural diathesis-stress model of schizophrenia revisited: An update on recent findings considering illness stage and neurobiological and methodological complexities. Neurosci. Biobehav. Rev., 2017, 73, 191-218. doi: 10.1016/j.neubiorev.2016.12.013 PMID: 27993603
  13. Cullen, A.E.; Rai, S.; Vaghani, M.S.; Mondelli, V.; McGuire, P. Cortisol responses to naturally occurring psychosocial stressors across the psychosis spectrum: a systematic review and meta-analysis. Front. Psychiatry, 2020, 11, 513. doi: 10.3389/fpsyt.2020.00513 PMID: 32595532
  14. Murray, R.M.; Morrison, P.D.; Henquet, C.; Forti, M.D. Cannabis, the mind and society: The hash realities. Nat. Rev. Neurosci., 2007, 8(11), 885-895. doi: 10.1038/nrn2253 PMID: 17925811
  15. Zammit, S.; Moore, T.H.M.; Lingford-Hughes, A.; Barnes, T.R.E.; Jones, P.B.; Burke, M.; Lewis, G. Effects of cannabis use on outcomes of psychotic disorders: Systematic review. Br. J. Psychiatry, 2008, 193(5), 357-363. doi: 10.1192/bjp.bp.107.046375 PMID: 18978312
  16. Gage, S.H.; Jones, H.J.; Burgess, S.; Bowden, J.; Davey Smith, G.; Zammit, S.; Munafò, M.R. Assessing causality in associations between cannabis use and schizophrenia risk: A two-sample Mendelian randomization study. Psychol. Med., 2017, 47(5), 971-980. doi: 10.1017/S0033291716003172 PMID: 27928975
  17. Colizzi, M.; Murray, R. Cannabis and psychosis: what do we know and what should we do? Br. J. Psychiatry, 2018, 212(4), 195-196. doi: 10.1192/bjp.2018.1 PMID: 29557759
  18. Colizzi, M.; Bhattacharyya, S. Neurocognitive effects of cannabis: Lessons learned from human experimental studies. Prog. Brain Res.,, 2018, 242, 179-216. doi: 10.1016/bs.pbr.2018.08.010 PMID: 30471680
  19. Colizzi, M.; Bhattacharyya, S. Risk factors for psychosis: Paradigms, mechanisms, and prevention; Thompson, A.D; Broome, M.R., Ed.; Academic Press: Cambridge, USA, 2020, pp. 305-331.
  20. Minichino, A.; Senior, M.; Brondino, N.; Zhang, S.H.; Godlewska, B.R.; Burnet, P.W.J.; Cipriani, A.; Lennox, B.R. Measuring disturbance of the endocannabinoid system in psychosis. JAMA Psychiatry, 2019, 76(9), 914-923. doi: 10.1001/jamapsychiatry.2019.0970 PMID: 31166595
  21. Micale, V.; Drago, F. Endocannabinoid system, stress and HPA axis. Eur. J. Pharmacol., 2018, 834, 230-239. doi: 10.1016/j.ejphar.2018.07.039 PMID: 30036537
  22. Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; Chou, R.; Glanville, J.; Grimshaw, J.M.; Hróbjartsson, A.; Lalu, M.M.; Li, T.; Loder, E.W.; Mayo-Wilson, E.; McDonald, S.; McGuinness, L.A.; Stewart, L.A.; Thomas, J.; Tricco, A.C.; Welch, V.A.; Whiting, P.; Moher, D. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ, 2021, 372(71), n71. doi: 10.1136/bmj.n71 PMID: 33782057
  23. Colizzi, M.; McGuire, P.; Pertwee, R.G.; Bhattacharyya, S. Effect of cannabis on glutamate signalling in the brain: A systematic review of human and animal evidence. Neurosci. Biobehav. Rev., 2016, 64, 359-381. doi: 10.1016/j.neubiorev.2016.03.010 PMID: 26987641
  24. Colizzi, M.; Bortoletto, R.; Costa, R.; Bhattacharyya, S.; Balestrieri, M. The autism-psychosis continuum conundrum: Exploring the role of the endocannabinoid system. Int. J. Environ. Res. Public Health, 2022, 19(9), 5616. doi: 10.3390/ijerph19095616 PMID: 35565034
  25. West, S.; King, V.; Carey, T.S.; Lohr, K.N.; McKoy, N.; Sutton, S.F.; Lux, L. Systems to rate the strength of scientific evidence. Evid. Rep. Technol. Assess., 2002, (47), 1-11. PMID: 11979732
  26. D’Souza, D.C.; Abi-Saab, W.M.; Madonick, S.; Forselius-Bielen, K.; Doersch, A.; Braley, G.; Gueorguieva, R.; Cooper, T.B.; Krystal, J.H. Delta-9-tetrahydrocannabinol effects in schizophrenia: Implications for cognition, psychosis, and addiction. Biol. Psychiatry, 2005, 57(6), 594-608. doi: 10.1016/j.biopsych.2004.12.006 PMID: 15780846
  27. Appiah-Kusi, E.; Petros, N.; Wilson, R.; Colizzi, M.; Bossong, M.G.; Valmaggia, L.; Mondelli, V.; McGuire, P.; Bhattacharyya, S. Effects of short-term cannabidiol treatment on response to social stress in subjects at clinical high risk of developing psychosis. Psychopharmacology , 2020, 237(4), 1121-1130. doi: 10.1007/s00213-019-05442-6 PMID: 31915861
  28. Davies, C.; Appiah-Kusi, E.; Wilson, R.; Blest-Hopley, G.; Bossong, M.G.; Valmaggia, L.; Brammer, M.; Perez, J.; Allen, P.; Murray, R.M.; McGuire, P.; Bhattacharyya, S. Altered relationship between cortisol response to social stress and mediotemporal function during fear processing in people at clinical high risk for psychosis: A preliminary report. Eur. Arch. Psychiatry Clin. Neurosci., 2022, 272(3), 461-475. doi: 10.1007/s00406-021-01318-z PMID: 34480630
  29. Colizzi, M.; Weltens, N.; Lythgoe, D.J.; Williams, S.C.; Van Oudenhove, L.; Bhattacharyya, S. Differential sensitivity to the acute psychotomimetic effects of delta-9-tetrahydrocannabinol associated with its differential acute effects on glial function and cortisol. Psychol. Med., 2022, 52(11), 2024-2031. PMID: 33107418
  30. Monteleone, P.; Filippo, C.D.; Fabrazzo, M.; Milano, W.; Martiadis, V.; Corrivetti, G.; Monteleone, A.M.; Maj, M. Flattened cortisol awakening response in chronic patients with schizophrenia onset after cannabis exposure. Psychiatry Res., 2014, 215(2), 263-267. doi: 10.1016/j.psychres.2013.12.016 PMID: 24388728
  31. Labad, J.; Ortega, L.; Cabezas, Á.; Montalvo, I.; Arranz, S.; Algora, M.J.; Solé, M.; Martorell, L.; Vilella, E.; Sánchez-Gistau, V. Hypothalamic-pituitary-adrenal axis function and exposure to stress factors and cannabis use in recent-onset psychosis. World J. Biol. Psychiatry, 2020, 21(7), 564-571. doi: 10.1080/15622975.2019.1628301 PMID: 31244371
  32. Carol, E.E.; Spencer, R.L.; Mittal, V.A. The relationship between cannabis use and cortisol levels in youth at ultra high-risk for psychosis. Psychoneuroendocrinology, 2017, 83, 58-64. doi: 10.1016/j.psyneuen.2017.04.017 PMID: 28595088
  33. Schifani, C.; Pruessner, J.; Tseng, H.H.; Rao, N.; Tagore, A.; Wilson, A.A.; Houle, S.; Rusjan, P.M.; Mizrahi, R. Stress‐induced cortical dopamine response is altered in subjects at clinical high risk for psychosis using cannabis. Addict. Biol., 2020, 25(4), e12812. doi: 10.1111/adb.12812 PMID: 31389139
  34. Mizrahi, R.; Kenk, M.; Suridjan, I.; Boileau, I.; George, T.P.; McKenzie, K.; Wilson, A.A.; Houle, S.; Rusjan, P. Stress-induced dopamine response in subjects at clinical high risk for schizophrenia with and without concurrent cannabis use. Neuropsychopharmacology, 2014, 39(6), 1479-1489. doi: 10.1038/npp.2013.347 PMID: 24385130
  35. Newman-Taylor, K.; Richardson, T.; Lees, R.; Petrilli, K.; Bolderston, H.; Hindocha, C.; Freeman, T.P.; Bloomfield, M.A.P. Cognitive fusion as a candidate psychological vulnerability factor for psychosis: An experimental study of acute ∆9-tetrahydrocannabinol (THC) intoxication. Psychosis, 2021, 13(2), 167-174. doi: 10.1080/17522439.2020.1853203
  36. Baudin, G.; Godin, O.; Lajnef, M.; Aouizerate, B.; Berna, F.; Brunel, L.; Capdevielle, D.; Chereau, I.; Dorey, J.M.; Dubertret, C.; Dubreucq, J.; Faget, C.; Fond, G.; Gabayet, F.; Laouamri, H.; Lancon, C.; Le Strat, Y.; Tronche, A.M.; Misdrahi, D.; Rey, R.; Passerieux, C.; Schandrin, A.; Urbach, M.; Vidalhet, P.; Llorca, P.M.; Schürhoff, F.; Collaborators, F.A.C.E.S.F-S. Differential effects of childhood trauma and cannabis use disorders in patients suffering from schizophrenia. Schizophr. Res., 2016, 175(1-3), 161-167. doi: 10.1016/j.schres.2016.04.042 PMID: 27209524
  37. Newman-Taylor, K.; Richardson, T.; Sood, M.; Sopp, M.; Perry, E.; Bolderston, H. Cognitive mechanisms in cannabis-related paranoia; Initial testing and model proposal. Psychosis, 2020, 12(4), 314-327. doi: 10.1080/17522439.2020.1757742
  38. Lemvigh, C.; Brouwer, R.; Hilker, R.; Anhøj, S.; Baandrup, L.; Pantelis, C.; Glenthøj, B.; Fagerlund, B. The relative and interactive impact of multiple risk factors in schizophrenia spectrum disorders: A combined register-based and clinical twin study. Psychol. Med., 2021, 53(4), 1266-1276. doi: 10.1017/S0033291721002749 PMID: 35822354
  39. del Re, E.C.; Yassin, W.; Zeng, V.; Keedy, S.; Alliey-Rodriguez, N.; Ivleva, E.; Hill, S.; Rychagov, N.; McDowell, J.E.; Bishop, J.R.; Mesholam-Gately, R.; Merola, G.; Lizano, P.; Gershon, E.; Pearlson, G.; Sweeney, J.A.; Clementz, B.; Tamminga, C.; Keshavan, M. Characterization of childhood trauma, hippocampal mediation and Cannabis use in a large dataset of psychosis and non-psychosis individuals. . Schizophr Res., 2023, 255, 102-109. doi: 10.1016/j.schres.2023.03.029 PMID: 36989667
  40. De Pradier, M.; Gorwood, P.; Beaufils, B.; Adès, J.; Dubertret, C. Influence of the serotonin transporter gene polymorphism, cannabis and childhood sexual abuse on phenotype of bipolar disorder: A preliminary study. Eur. Psychiatry, 2010, 25(6), 323-327. doi: 10.1016/j.eurpsy.2009.10.002 PMID: 20434316
  41. Arranz, S.; Monferrer, N.; Jose Algora, M.; Cabezas, A.; Sole, M.; Vilella, E.; Labad, J.; Sanchez-Gistau, V. The relationship between the level of exposure to stress factors and cannabis in recent onset psychosis. Schizophr. Res., 2018, 201, 352-359. doi: 10.1016/j.schres.2018.04.040 PMID: 29743139
  42. Barrigón, M.L.; Diaz, F.J.; Gurpegui, M.; Ferrin, M.; Salcedo, M.D.; Moreno-Granados, J.; Cervilla, J.A.; Ruiz-Veguilla, M. Childhood trauma as a risk factor for psychosis: A sib-pair study. J. Psychiatr. Res., 2015, 70, 130-136. doi: 10.1016/j.jpsychires.2015.08.017 PMID: 26424432
  43. Sideli, L.; Fisher, H.L.; Murray, R.M.; Sallis, H.; Russo, M.; Stilo, S.A.; Paparelli, A.; Wiffen, B.D.R.; O’Connor, J.A.; Pintore, S.; Ferraro, L.; La Cascia, C.; La Barbera, D.; Morgan, C.; Di Forti, M. Interaction between cannabis consumption and childhood abuse in psychotic disorders: preliminary findings on the role of different patterns of cannabis use. Early Interv. Psychiatry, 2018, 12(2), 135-142. doi: 10.1111/eip.12285 PMID: 26560802
  44. Lu, Y.; Marshall, C.; Cadenhead, K.S.; Cannon, T.D.; Cornblatt, B.A.; McGlashan, T.H.; Perkins, D.O.; Seidman, L.J.; Tsuang, M.T.; Walker, E.F.; Woods, S.W.; Bearden, C.E.; Mathalon, D.; Addington, J. Perceptual abnormalities in clinical high risk youth and the role of trauma, cannabis use and anxiety. Psychiatry Res., 2017, 258, 462-468. doi: 10.1016/j.psychres.2017.08.045 PMID: 28886901
  45. Houston, J.E.; Murphy, J.; Adamson, G.; Stringer, M.; Shevlin, M. Childhood sexual abuse, early cannabis use, and psychosis: Testing an interaction model based on the National Comorbidity Survey. Schizophr. Bull., 2007, 34(3), 580-585. doi: 10.1093/schbul/sbm127 PMID: 18024467
  46. Harley, M.; Kelleher, I.; Clarke, M.; Lynch, F.; Arseneault, L.; Connor, D.; Fitzpatrick, C.; Cannon, M. Cannabis use and childhood trauma interact additively to increase the risk of psychotic symptoms in adolescence. Psychol. Med., 2010, 40(10), 1627-1634. doi: 10.1017/S0033291709991966 PMID: 19995476
  47. Konings, M.; Stefanis, N.; Kuepper, R.; de Graaf, R.; Have, M.; van Os, J.; Bakoula, C.; Henquet, C. Replication in two independent population-based samples that childhood maltreatment and cannabis use synergistically impact on psychosis risk. Psychol. Med., 2012, 42(1), 149-159. doi: 10.1017/S0033291711000973 PMID: 21676285
  48. Murphy, J.; Houston, J.E.; Shevlin, M.; Adamson, G. Childhood sexual trauma, cannabis use and psychosis: Statistically controlling for pre-trauma psychosis and psychopathology. Soc. Psychiatry Psychiatr. Epidemiol., 2013, 48(6), 853-861. doi: 10.1007/s00127-012-0592-8 PMID: 23052424
  49. Kuepper, R.; Henquet, C.; Lieb, R.; Wittchen, H.U.; van Os, J. Non-replication of interaction between cannabis use and trauma in predicting psychosis. Schizophr. Res., 2011, 131(1-3), 262-263. doi: 10.1016/j.schres.2011.06.012 PMID: 21745727
  50. Cougnard, A.; Marcelis, M.; Myin-Germeys, I.; De Graaf, R.; Vollebergh, W.; Krabbendam, L.; Lieb, R.; Wittchen, H.U.; Henquet, C.; Spauwen, J.; Van Os, J. Does normal developmental expression of psychosis combine with environmental risk to cause persistence of psychosis? A psychosis proneness–persistence model. Psychol. Med., 2007, 37(4), 513-527. doi: 10.1017/S0033291706009731 PMID: 17288646
  51. Houston, J.E.; Murphy, J.; Shevlin, M.; Adamson, G. Cannabis use and psychosis: Re-visiting the role of childhood trauma. Psychol. Med., 2011, 41(11), 2339-2348. doi: 10.1017/S0033291711000559 PMID: 21557896
  52. Daly, M. Letter to the Editor: Childhood trauma may combine synergistically with stimulant use rather than cannabis use to predict psychosis. In: Psychol. Med; , 2012; 42, pp. (2)445-446. doi: 10.1017/S0033291711002546 PMID: 22085776
  53. van Nierop, M.; van Os, J.; Gunther, N.; van Zelst, C.; de Graaf, R.; ten Have, M.; van Dorsselaer, S.; Bak, M.; Myin-Germeys, I.; van Winkel, R. Does social defeat mediate the association between childhood trauma and psychosis? Evidence from the NEMESIS-2 Study. Acta Psychiatr. Scand., 2014, 129(6), 467-476. doi: 10.1111/acps.12212 PMID: 24571736
  54. Morgan, C.; Reininghaus, U.; Reichenberg, A.; Frissa, S.; Hotopf, M.; Hatch, S.L. Adversity, cannabis use and psychotic experiences: Evidence of cumulative and synergistic effects. Br. J. Psychiatry, 2014, 204(5), 346-353. doi: 10.1192/bjp.bp.113.134452 PMID: 24627297
  55. Guloksuz, S.; van Nierop, M.; Lieb, R.; van Winkel, R.; Wittchen, H.U.; van Os, J. Evidence that the presence of psychosis in non-psychotic disorder is environment-dependent and mediated by severity of non-psychotic psychopathology. Psychol. Med., 2015, 45(11), 2389-2401. doi: 10.1017/S0033291715000380 PMID: 25804288
  56. Pries, L.K.; Guloksuz, S.; ten Have, M.; de Graaf, R.; van Dorsselaer, S.; Gunther, N.; Rauschenberg, C.; Reininghaus, U.; Radhakrishnan, R.; Bak, M.; Rutten, B.P.F.; van Os, J. Evidence that environmental and familial risks for psychosis additively impact a multidimensional subthreshold psychosis syndrome. Schizophr. Bull., 2018, 44(4), 710-719. doi: 10.1093/schbul/sby051 PMID: 29701807
  57. Frydecka, D.; Misiak, B.; Kotowicz, K.; Pionke, R. Krężołek, M.; Cechnicki, A.; Gawęda, Ł. The interplay between childhood trauma, cognitive biases, and cannabis use on the risk of psychosis in nonclinical young adults in Poland. Eur. Psychiatry, 2020, 63(1), e35. doi: 10.1192/j.eurpsy.2020.31 PMID: 32200775
  58. Kirli, U.; Binbay, T.; Alptekin, K.; Kayahan, B.; Elbi, H. The relationship between alcohol-cannabis use and stressful events with the development of incident clinical psychosis in a community-based prospective cohort. Turk Psikiyatr. Derg., 2021, 32(4), 235-245. doi: 10.5080/u26410 PMID: 34964097
  59. Daly, M. Letter to the Editor: Poor childhood mental health may explain linkages between trauma, cannabis use and later psychotic experiences. In: Psychol. Med; , 2011; 41, pp. (9)2012-2014. doi: 10.1017/S0033291711001024 PMID: 21676284
  60. Alemany, S.; Arias, B.; Fatjó-Vilas, M.; Villa, H.; Moya, J.; Ibáñez, M.I.; Ortet, G.; Gastó, C.; Fañanás, L. Psychosis-inducing effects of cannabis are related to both childhood abuse and COMT genotypes. Acta Psychiatr. Scand., 2014, 129(1), 54-62. doi: 10.1111/acps.12108 PMID: 23445265
  61. Vinkers, C.H.; Van Gastel, W.A.; Schubart, C.D.; Van Eijk, K.R.; Luykx, J.J.; Van Winkel, R.; Joëls, M.; Ophoff, R.A.; Boks, M.P.M.; Bruggeman, R.; Cahn, W.; de Haan, L.; Kahn, R.S.; Meijer, C.J.; Myin-Germeys, I.; van Os, J.; Wiersma, D. The effect of childhood maltreatment and cannabis use on adult psychotic symptoms is modified by the COMT Val158Met polymorphism. Schizophr. Res., 2013, 150(1), 303-311. doi: 10.1016/j.schres.2013.07.020 PMID: 23954148
  62. DeRosse, P.; Ikuta, T.; Peters, B.D.; Karlsgodt, K.H.; Szeszko, P.R.; Malhotra, A.K. Adding insult to injury: Childhood and adolescent risk factors for psychosis predict lower fractional anisotropy in the superior longitudinal fasciculus in healthy adults. Psychiatry Res. Neuroimaging, 2014, 224(3), 296-302. doi: 10.1016/j.pscychresns.2014.09.001 PMID: 25277095
  63. Carlyle, M.; Constable, T.; Walter, Z.C.; Wilson, J.; Newland, G.; Hides, L. Cannabis-induced dysphoria/paranoia mediates the link between childhood trauma and psychotic-like experiences in young cannabis users. Schizophr. Res., 2021, 238, 178-184. doi: 10.1016/j.schres.2021.10.011 PMID: 34717186
  64. Monterrubio, S.; Solowij, N.; Meyer, B.J.; Turner, N. Fatty acid relationships in former cannabis users with schizophrenia. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2006, 30(2), 280-285. doi: 10.1016/j.pnpbp.2005.08.013 PMID: 16236415
  65. Appiah-Kusi, E.; Wilson, R.; Colizzi, M.; Foglia, E.; Klamerus, E.; Caldwell, A.; Bossong, M.G.; McGuire, P.; Bhattacharyya, S. Childhood trauma and being at-risk for psychosis are associated with higher peripheral endocannabinoids. Psychol. Med., 2019, 50(11), 1862-1871. PMID: 31422779
  66. Rojnic Kuzman, M.; Bosnjak Kuharic, D.; Ganoci, L.; Makaric, P.; Kekin, I.; Rossini Gajsak, L.; Prpic, N.; Bozina, T.; Bajic, Z.; Bozina, N. Association of CNR1 genotypes with changes in neurocognitive performance after eighteen-month treatment in patients with first-episode psychosis. Eur. Psychiatry, 2019, 61, 88-96. doi: 10.1016/j.eurpsy.2019.07.004 PMID: 31398679
  67. Martland, N.; Martland, R.; Cullen, A.E.; Bhattacharyya, S. Are adult stressful life events associated with psychotic relapse? A systematic review of 23 studies. Psychol. Med., 2020, 50(14), 2302-2316. doi: 10.1017/S0033291720003554 PMID: 33054892
  68. Howes, O.; McCutcheon, R.; Stone, J. Glutamate and dopamine in schizophrenia: An update for the 21 st century. J. Psychopharmacol., 2015, 29(2), 97-115. doi: 10.1177/0269881114563634 PMID: 25586400
  69. Llorente-Berzal, A.; Terzian, A.L.B.; di Marzo, V.; Micale, V.; Viveros, M.P.; Wotjak, C.T. 2-AG promotes the expression of conditioned fear via cannabinoid receptor type 1 on GABAergic neurons. Psychopharmacology , 2015, 232(15), 2811-2825. doi: 10.1007/s00213-015-3917-y PMID: 25814137
  70. Micale, V.; Stepan, J.; Jurik, A.; Pamplona, F.A.; Marsch, R.; Drago, F.; Eder, M.; Wotjak, C.T. Extinction of avoidance behavior by safety learning depends on endocannabinoid signaling in the hippocampus. J. Psychiatr. Res., 2017, 90, 46-59. doi: 10.1016/j.jpsychires.2017.02.002 PMID: 28222356
  71. Terzian, A.L.; Drago, F.; Wotjak, C.T.; Micale, V. The dopamine and cannabinoid interaction in the modulation of emotions and cognition: Assessing the role of cannabinoid CB1 receptor in neurons expressing dopamine D1 receptors. Front. Behav. Neurosci., 2011, 5, 49. doi: 10.3389/fnbeh.2011.00049 PMID: 21887137
  72. Terzian, A.L.B.; Micale, V.; Wotjak, C.T. Cannabinoid receptor type 1 receptors on GABAergic vs. glutamatergic neurons differentially gate sex-dependent social interest in mice. Eur. J. Neurosci., 2014, 40(1), 2293-2298. doi: 10.1111/ejn.12561 PMID: 24698342
  73. Bhattacharyya, S.; Morrison, P.D.; Fusar-Poli, P.; Martin-Santos, R.; Borgwardt, S.; Winton-Brown, T.; Nosarti, C.; O’ Carroll, C.M.; Seal, M.; Allen, P.; Mehta, M.A.; Stone, J.M.; Tunstall, N.; Giampietro, V.; Kapur, S.; Murray, R.M.; Zuardi, A.W.; Crippa, J.A.; Atakan, Z.; McGuire, P.K. Opposite effects of delta-9-tetrahydrocannabinol and cannabidiol on human brain function and psychopathology. Neuropsychopharmacology, 2010, 35(3), 764-774. doi: 10.1038/npp.2009.184 PMID: 19924114
  74. Leweke, F.M.; Piomelli, D.; Pahlisch, F.; Muhl, D.; Gerth, C.W.; Hoyer, C.; Klosterkötter, J.; Hellmich, M.; Koethe, D. Cannabidiol enhances anandamide signaling and alleviates psychotic symptoms of schizophrenia. Transl. Psychiatry, 2012, 2(3), e94. doi: 10.1038/tp.2012.15 PMID: 22832859
  75. Rodrigues da Silva, N.; Gomes, F.V.; Sonego, A.B.; Silva, N.R.; Guimarães, F.S. Cannabidiol attenuates behavioral changes in a rodent model of schizophrenia through 5-HT1A, but not CB1 and CB2 receptors. Pharmacol. Res., 2020, 156, 104749. doi: 10.1016/j.phrs.2020.104749 PMID: 32151683
  76. Seeman, P. Cannabidiol is a partial agonist at dopamine D2High receptors, predicting its antipsychotic clinical dose. Transl. Psychiatry, 2016, 6(10), e920. doi: 10.1038/tp.2016.195 PMID: 27754480
  77. Stark, T.; Di Bartolomeo, M.; Di Marco, R.; Drazanova, E.; Platania, C.B.M.; Iannotti, F.A.; Ruda-Kucerova, J.; D’Addario, C.; Kratka, L.; Pekarik, V.; Piscitelli, F.; Babinska, Z.; Fedotova, J.; Giurdanella, G.; Salomone, S.; Sulcova, A.; Bucolo, C.; Wotjak, C.T.; Starcuk, Z., Jr; Drago, F.; Mechoulam, R.; Di Marzo, V.; Micale, V. Altered dopamine D3 receptor gene expression in MAM model of schizophrenia is reversed by peripubertal cannabidiol treatment. Biochem. Pharmacol., 2020, 177, 114004. doi: 10.1016/j.bcp.2020.114004 PMID: 32360362
  78. Di Bartolomeo, M.; Stark, T.; Maurel, O.M.; Iannotti, F.A.; Kuchar, M.; Ruda-Kucerova, J.; Piscitelli, F.; Laudani, S.; Pekarik, V.; Salomone, S.; Arosio, B.; Mechoulam, R.; Maccarrone, M.; Drago, F.; Wotjak, C.T.; Di Marzo, V.; Vismara, M.; Dell’Osso, B.; D’Addario, C.; Micale, V. Crosstalk between the transcriptional regulation of dopamine D2 and cannabinoid CB1 receptors in schizophrenia: Analyses in patients and in perinatalΔ 9-tetrahydrocannabinol-exposed rats. Pharmacol. Res., 2021, 164, 105357. doi: 10.1016/j.phrs.2020.105357 PMID: 33285233
  79. Stark, T.; Ruda-Kucerova, J.; Iannotti, F.A.; D’Addario, C.; Di Marco, R.; Pekarik, V.; Drazanova, E.; Piscitelli, F.; Bari, M.; Babinska, Z.; Giurdanella, G.; Di Bartolomeo, M.; Salomone, S.; Sulcova, A.; Maccarrone, M.; Wotjak, C.T.; Starcuk, Z., Jr; Drago, F.; Mechoulam, R.; Di Marzo, V.; Micale, V. Peripubertal cannabidiol treatment rescues behavioral and neurochemical abnormalities in the MAM model of schizophrenia. Neuropharmacology, 2019, 146, 212-221. doi: 10.1016/j.neuropharm.2018.11.035 PMID: 30496751
  80. Stark, T.; Di Martino, S.; Drago, F.; Wotjak, C.T.; Micale, V. Phytocannabinoids and schizophrenia: Focus on adolescence as a critical window of enhanced vulnerability and opportunity for treatment. Pharmacol. Res., 2021, 174, 105938. doi: 10.1016/j.phrs.2021.105938 PMID: 34655773

补充文件

附件文件
动作
1. JATS XML

版权所有 © Bentham Science Publishers, 2024