Potential Therapeutic Effects of Short-Chain Fatty Acids on Chronic Pain


Cite item

Full Text

Abstract

The intestinal homeostasis maintained by the gut microbiome and relevant metabolites is essential for health, and its disturbance leads to various intestinal or extraintestinal diseases. Recent studies suggest that gut microbiome-derived metabolites short-chain fatty acids (SCFAs) are involved in different neurological disorders (such as chronic pain). SCFAs are produced by bacterial fermentation of dietary fibers in the gut and contribute to multiple host processes, including gastrointestinal regulation, cardiovascular modulation, and neuroendocrine-immune homeostasis. Although SCFAs have been implicated in the modulation of chronic pain, the detailed mechanisms that underlie such roles of SCFAs remain to be further investigated. In this review, we summarize currently available research data regarding SCFAs as a potential therapeutic target for chronic pain treatment and discuss several possible mechanisms by which SCFAs modulate chronic pain.

About the authors

Yuanyuan Tang

School of Basic Medical Sciences, Xinxiang Medical University

Email: info@benthamscience.net

Juan Du

School of Basic Medical Sciences, Xinxiang Medical University

Email: info@benthamscience.net

Hongfeng Wu

School of Basic Medical Sciences, Xinxiang Medical University

Email: info@benthamscience.net

Mengyao Wang

School of Basic Medical Sciences, Xinxiang Medical University

Email: info@benthamscience.net

Sufang Liu

Department of Biomedical Sciences, College of Dentistry,, Texas A&M University Dallas

Author for correspondence.
Email: info@benthamscience.net

Feng Tao

Department of Biomedical Sciences, College of Dentistry, Texas A&M University Dallas

Author for correspondence.
Email: info@benthamscience.net

References

  1. Zhou, F.; Wang, X.; Han, B.; Tang, X.; Liu, R.; Ji, Q.; Zhou, Z.; Zhang, L. Short-chain fatty acids contribute to neuropathic pain via regulating microglia activation and polarization. Mol. Pain, 2021, 17. doi: 10.1177/1744806921996520 PMID: 33626986
  2. Bonomo, R.R.; Cook, T.M.; Gavini, C.K.; White, C.R.; Jones, J.R.; Bovo, E.; Zima, A.V.; Brown, I.A.; Dugas, L.R.; Zakharian, E.; Aubert, G.; Alonzo, F., III; Calcutt, N.A.; Mansuy-Aubert, V. Fecal transplantation and butyrate improve neuropathic pain, modify immune cell profile, and gene expression in the PNS of obese mice. Proc. Natl. Acad. Sci. USA, 2020, 117(42), 26482-26493. doi: 10.1073/pnas.2006065117 PMID: 33020290
  3. Zhang, J.; Song, L.; Wang, Y.; Liu, C.; Zhang, L.; Zhu, S.; Liu, S.; Duan, L. Beneficial effect of butyrate‐producing Lachnospiraceae on stress‐induced visceral hypersensitivity in rats. J. Gastroenterol. Hepatol., 2019, 34(8), 1368-1376. doi: 10.1111/jgh.14536 PMID: 30402954
  4. O’ Mahony, S.M.; Dinan, T.G.; Cryan, J.F. The gut microbiota as a key regulator of visceral pain. Pain, 2017, 158(1), S19-S28. doi: 10.1097/j.pain.0000000000000779 PMID: 27918315
  5. Vanhoutvin, S.A.L.W.; Troost, F.J.; Kilkens, T.O.C.; Lindsey, P.J.; Hamer, H.M.; Jonkers, D.M.A.E.; Venema, K.; Brummer, R-J.M. The effects of butyrate enemas on visceral perception in healthy volunteers. Neurogastroenterol. Motil., 2009, 21(9), 952-e76. doi: 10.1111/j.1365-2982.2009.01324.x PMID: 19460106
  6. Luczynski, P.; Tramullas, M.; Viola, M.; Shanahan, F.; Clarke, G.; O’Mahony, S.; Dinan, T.G.; Cryan, J.F. Microbiota regulates visceral pain in the mouse. eLife, 2017, 6, e25887. doi: 10.7554/eLife.25887 PMID: 28629511
  7. Shen, S.; Lim, G.; You, Z.; Ding, W.; Huang, P.; Ran, C.; Doheny, J.; Caravan, P.; Tate, S.; Hu, K.; Kim, H.; McCabe, M.; Huang, B.; Xie, Z.; Kwon, D.; Chen, L.; Mao, J. Gut microbiota is critical for the induction of chemotherapy-induced pain. Nat. Neurosci., 2017, 20(9), 1213-1216. doi: 10.1038/nn.4606 PMID: 28714953
  8. Tang, Y.; Liu, S.; Shu, H.; Yanagisawa, L.; Tao, F. Gut microbiota dysbiosis enhances migraine-like pain via TNFα upregulation. Mol. Neurobiol., 2020, 57(1), 461-468. doi: 10.1007/s12035-019-01721-7 PMID: 31378003
  9. Crawford, J.; Liu, S.; Tao, F. Gut microbiota and migraine. Neurobiol. Pain, 2022, 11, 100090. doi: 10.1016/j.ynpai.2022.100090 PMID: 35464185
  10. Minerbi, A.; Gonzalez, E.; Brereton, N.J.B.; Anjarkouchian, A.; Dewar, K.; Fitzcharles, M.A.; Chevalier, S.; Shir, Y. Altered microbiome composition in individuals with fibromyalgia. Pain, 2019, 160(11), 2589-2602. doi: 10.1097/j.pain.0000000000001640 PMID: 31219947
  11. Ma, Y.; Liu, S.; Shu, H.; Crawford, J.; Xing, Y.; Tao, F. Resveratrol alleviates temporomandibular joint inflammatory pain by recovering disturbed gut microbiota. Brain Behav. Immun., 2020, 87, 455-464. doi: 10.1016/j.bbi.2020.01.016 PMID: 32001342
  12. Crock, L.W.; Baldridge, M.T. A role for the microbiota in complex regional pain syndrome? Neurobiol. Pain, 2020, 8, 100054. doi: 10.1016/j.ynpai.2020.100054 PMID: 33305068
  13. Cryan, J.F.; O’Riordan, K.J.; Cowan, C.S.M.; Sandhu, K.V.; Bastiaanssen, T.F.S.; Boehme, M.; Codagnone, M.G.; Cussotto, S.; Fulling, C.; Golubeva, A.V.; Guzzetta, K.E.; Jaggar, M.; Long-Smith, C.M.; Lyte, J.M.; Martin, J.A.; Molinero-Perez, A.; Moloney, G.; Morelli, E.; Morillas, E.; O’Connor, R.; Cruz-Pereira, J.S.; Peterson, V.L.; Rea, K.; Ritz, N.L.; Sherwin, E.; Spichak, S.; Teichman, E.M.; van de Wouw, M.; Ventura-Silva, A.P.; Wallace-Fitzsimons, S.E.; Hyland, N.; Clarke, G.; Dinan, T.G. The microbiota-gut-brain axis. Physiol. Rev., 2019, 99(4), 1877-2013. doi: 10.1152/physrev.00018.2018 PMID: 31460832
  14. Morita, C.; Tsuji, H.; Hata, T.; Gondo, M.; Takakura, S.; Kawai, K.; Yoshihara, K.; Ogata, K.; Nomoto, K.; Miyazaki, K.; Sudo, N. Gut dysbiosis in patients with anorexia nervosa. PLoS One, 2015, 10(12), e0145274. doi: 10.1371/journal.pone.0145274 PMID: 26682545
  15. Unger, M.M.; Spiegel, J.; Dillmann, K.U.; Grundmann, D.; Philippeit, H.; Bürmann, J.; Faßbender, K.; Schwiertz, A.; Schäfer, K.H. Short chain fatty acids and gut microbiota differ between patients with Parkinson’s disease and age-matched controls. Parkinsonism Relat. Disord., 2016, 32, 66-72. doi: 10.1016/j.parkreldis.2016.08.019 PMID: 27591074
  16. Zhang, L.; Wang, Y.; Xiayu, X.; Shi, C.; Chen, W.; Song, N.; Fu, X.; Zhou, R.; Xu, Y.F.; Huang, L.; Zhu, H.; Han, Y.; Qin, C. Altered gut microbiota in a mouse model of Alzheimer’s disease. J. Alzheimers Dis., 2017, 60(4), 1241-1257. doi: 10.3233/JAD-170020 PMID: 29036812
  17. Wang, L.; Christophersen, C.T.; Sorich, M.J.; Gerber, J.P.; Angley, M.T.; Conlon, M.A. Elevated fecal short chain fatty acid and ammonia concentrations in children with autism spectrum disorder. Dig. Dis. Sci., 2012, 57(8), 2096-2102. doi: 10.1007/s10620-012-2167-7 PMID: 22535281
  18. Liu, S.; Li, E.; Sun, Z.; Fu, D.; Duan, G.; Jiang, M.; Yu, Y.; Mei, L.; Yang, P.; Tang, Y.; Zheng, P. Altered gut microbiota and short chain fatty acids in Chinese children with autism spectrum disorder. Sci. Rep., 2019, 9(1), 287. doi: 10.1038/s41598-018-36430-z PMID: 30670726
  19. Maltz, R.M.; Keirsey, J.; Kim, S.C.; Mackos, A.R.; Gharaibeh, R.Z.; Moore, C.C.; Xu, J.; Bakthavatchalu, V.; Somogyi, A.; Bailey, M.T. Prolonged restraint stressor exposure in outbred CD-1 mice impacts microbiota, colonic inflammation, and short chain fatty acids. PLoS One, 2018, 13(5), e0196961. doi: 10.1371/journal.pone.0196961 PMID: 29742146
  20. Dalile, B.; Van Oudenhove, L.; Vervliet, B.; Verbeke, K. The role of short-chain fatty acids in microbiota-gut-brain communication. Nat. Rev. Gastroenterol. Hepatol., 2019, 16(8), 461-478. doi: 10.1038/s41575-019-0157-3 PMID: 31123355
  21. Macfarlane, S.; Macfarlane, G.T. Regulation of short-chain fatty acid production. Proc. Nutr. Soc., 2003, 62(1), 67-72. doi: 10.1079/PNS2002207 PMID: 12740060
  22. Schönfeld, P.; Wojtczak, L. Short- and medium-chain fatty acids in energy metabolism: The cellular perspective. J. Lipid Res., 2016, 57(6), 943-954. doi: 10.1194/jlr.R067629 PMID: 27080715
  23. Bhattacharya, I.; Boje, K.M.K. GHB (gamma-hydroxybutyrate) carrier-mediated transport across the blood-brain barrier. J. Pharmacol. Exp. Ther., 2004, 311(1), 92-98. doi: 10.1124/jpet.104.069682 PMID: 15173314
  24. Vijay, N.; Morris, M. Role of monocarboxylate transporters in drug delivery to the brain. Curr. Pharm. Des., 2014, 20(10), 1487-1498. doi: 10.2174/13816128113199990462 PMID: 23789956
  25. Oldendorf, W.H. Carrier-mediated blood-brain barrier transport of short-chain monocarboxylic organic acids. Am. J. Physiol., 1973, 224(6), 1450-1453. doi: 10.1152/ajplegacy.1973.224.6.1450 PMID: 4712154
  26. Silva, Y.P.; Bernardi, A.; Frozza, R.L. The role of short-chain fatty acids from gut microbiota in gut-brain communication. Front. Endocrinol. (Lausanne), 2020, 11, 25. doi: 10.3389/fendo.2020.00025 PMID: 32082260
  27. Bachmann, C.; Colombo, J.P.; Berüter, J. Short chain fatty acids in plasma and brain: Quantitative determination by gas chromatography. Clin. Chim. Acta, 1979, 92(2), 153-159. doi: 10.1016/0009-8981(79)90109-8 PMID: 487569
  28. Braniste, V.; Al-Asmakh, M.; Kowal, C.; Anuar, F.; Abbaspour, A.; Tóth, M.; Korecka, A.; Bakocevic, N.; Ng, L.G.; Kundu, P.; Gulyás, B.; Halldin, C.; Hultenby, K.; Nilsson, H.; Hebert, H.; Volpe, B.T.; Diamond, B.; Pettersson, S. The gut microbiota influences blood-brain barrier permeability in mice. Sci. Transl. Med., 2014, 6(263), 263ra158. doi: 10.1126/scitranslmed.3009759 PMID: 25411471
  29. Smith, P.M.; Howitt, M.R.; Panikov, N.; Michaud, M.; Gallini, C.A.; Bohlooly-Y, M.; Glickman, J.N.; Garrett, W.S. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science, 2013, 341(6145), 569-573. doi: 10.1126/science.1241165 PMID: 23828891
  30. Zhang, J.; Liu, J.; Zhu, S.; Fang, Y.; Wang, B.; Jia, Q.; Hao, H.; Kao, J.Y.; He, Q.; Song, L.; Liu, F.; Zhu, B.; Owyang, C.; Duan, L. Berberine alleviates visceral hypersensitivity in rats by altering gut microbiome and suppressing spinal microglial activation. Acta Pharmacol. Sin., 2021, 42(11), 1821-1833. doi: 10.1038/s41401-020-00601-4 PMID: 33558654
  31. Pozuelo, M.; Panda, S.; Santiago, A.; Mendez, S.; Accarino, A.; Santos, J.; Guarner, F.; Azpiroz, F.; Manichanh, C. Reduction of butyrate- and methane-producing microorganisms in patients with Irritable Bowel Syndrome. Sci. Rep., 2015, 5(1), 12693. doi: 10.1038/srep12693 PMID: 26239401
  32. Banasiewicz, T.; Krokowicz, Ł.; Stojcev, Z.; Kaczmarek, B.F.; Kaczmarek, E.; Maik, J.; Marciniak, R.; Krokowicz, P.; Walkowiak, J.; Drews, M. Microencapsulated sodium butyrate reduces the frequency of abdominal pain in patients with irritable bowel syndrome. Colorectal Dis., 2013, 15(2), 204-209. doi: 10.1111/j.1463-1318.2012.03152.x PMID: 22738315
  33. Pituch, A.; Walkowiak, J.; Banaszkiewicz, A. Butyric acid in functional constipation. Prz. Gastroenterol., 2013, 5(5), 295-298. doi: 10.5114/pg.2013.38731 PMID: 24868272
  34. Krokowicz, L.; Kaczmarek, B.F.; Krokowicz, P.; Stojcev, Z.; Mackiewicz, J.; Walkowiak, J.; Drews, M.; Banasiewicz, T. Sodium butyrate and short chain fatty acids in prevention of travellers’ diarrhoea: A randomized prospective study. Travel Med. Infect. Dis., 2014, 12(2), 183-188. doi: 10.1016/j.tmaid.2013.08.008 PMID: 24063909
  35. He, Y.; Tan, Y.; Zhu, J.; Wu, X.; Huang, Z.; Chen, H.; Yang, M.; Chen, D. Effect of sodium butyrate regulating IRAK1 (interleukin-1 receptor-associated kinase 1) on visceral hypersensitivity in irritable bowel syndrome and its mechanism. Bioengineered, 2021, 12(1), 1436-1444. doi: 10.1080/21655979.2021.1920324 PMID: 33906562
  36. Nozu, T.; Miyagishi, S.; Nozu, R.; Takakusaki, K.; Okumura, T. Butyrate inhibits visceral allodynia and colonic hyperpermeability in rat models of irritable bowel syndrome. Sci. Rep., 2019, 9(1), 19603. doi: 10.1038/s41598-019-56132-4 PMID: 31862976
  37. Russo, R.; De Caro, C.; Avagliano, C.; Cristiano, C.; La Rana, G.; Mattace Raso, G.; Berni Canani, R.; Meli, R.; Calignano, A. Sodium butyrate and its synthetic amide derivative modulate nociceptive behaviors in mice. Pharmacol. Res., 2016, 103, 279-291. doi: 10.1016/j.phrs.2015.11.026 PMID: 26675718
  38. De Caro, C.; Di Cesare Mannelli, L.; Branca, J.J.V.; Micheli, L.; Citraro, R.; Russo, E.; De Sarro, G.; Ghelardini, C.; Calignano, A.; Russo, R. Pain modulation in WAG/Rij epileptic rats (a genetic model of absence epilepsy): Effects of biological and pharmacological histone deacetylase inhibitors. Front. Pharmacol., 2020, 11, 549191. doi: 10.3389/fphar.2020.549191 PMID: 33343343
  39. Lanza, M.; Filippone, A.; Ardizzone, A.; Casili, G.; Paterniti, I.; Esposito, E.; Campolo, M. SCFA treatment alleviates pathological signs of migraine and related intestinal alterations in a mouse model of NTG-induced migraine. Cells, 2021, 10(10), 2756. doi: 10.3390/cells10102756 PMID: 34685736
  40. Lanza, M.; Filippone, A.; Casili, G.; Giuffrè, L.; Scuderi, S.A.; Paterniti, I.; Campolo, M.; Cuzzocrea, S.; Esposito, E. Supplementation with SCFAs Re-Establishes microbiota composition and attenuates hyperalgesia and pain in a mouse model of NTG-induced migraine. Int. J. Mol. Sci., 2022, 23(9), 4847. doi: 10.3390/ijms23094847 PMID: 35563235
  41. Rosser, E.C.; Piper, C.J.M.; Matei, D.E.; Blair, P.A.; Rendeiro, A.F.; Orford, M.; Alber, D.G.; Krausgruber, T.; Catalan, D.; Klein, N.; Manson, J.J.; Drozdov, I.; Bock, C.; Wedderburn, L.R.; Eaton, S.; Mauri, C. Microbiota-derived metabolites suppress arthritis by amplifying aryl-hydrocarbon receptor activation in regulatory B cells. Cell Metab., 2020, 31(4), 837-851.e10. doi: 10.1016/j.cmet.2020.03.003 PMID: 32213346
  42. Filippone, A.; Lanza, M.; Campolo, M.; Casili, G.; Paterniti, I.; Cuzzocrea, S.; Esposito, E. The anti-inflammatory and antioxidant effects of sodium propionate. Int. J. Mol. Sci., 2020, 21(8), 3026. doi: 10.3390/ijms21083026 PMID: 32344758
  43. Balmer, M.L.; Ma, E.H.; Thompson, A.J.; Epple, R.; Unterstab, G.; Lötscher, J.; Dehio, P.; Schürch, C.M.; Warncke, J.D.; Perrin, G.; Woischnig, A.K.; Grählert, J.; Löliger, J.; Assmann, N.; Bantug, G.R.; Schären, O.P.; Khanna, N.; Egli, A.; Bubendorf, L.; Rentsch, K.; Hapfelmeier, S.; Jones, R.G.; Hess, C. Memory CD8+ T cells balance Pro- and anti-inflammatory activity by reprogramming cellular acetate handling at sites of infection. Cell Metab., 2020, 32(3), 457-467.e5. doi: 10.1016/j.cmet.2020.07.004 PMID: 32738204
  44. Reisenauer, C.J.; Bhatt, D.P.; Mitteness, D.J.; Slanczka, E.R.; Gienger, H.M.; Watt, J.A.; Rosenberger, T.A. Acetate supplementation attenuates lipopolysaccharide-induced neuroinflammation. J. Neurochem., 2011, 117(2), 264-274. doi: 10.1111/j.1471-4159.2011.07198.x PMID: 21272004
  45. Soliman, M.L.; Smith, M.D.; Houdek, H.M.; Rosenberger, T.A. Acetate supplementation modulates brain histone acetylation and decreases interleukin-1β expression in a rat model of neuroinflammation. J. Neuroinflammation, 2012, 9(1), 51. doi: 10.1186/1742-2094-9-51 PMID: 22413888
  46. Xu, M.; Wang, C.; Li, N.; Wang, J.; Zhang, Y.; Deng, X. Intraperitoneal injection of acetate protects mice against lipopolysaccharide (LPS) induced acute lung injury through its anti-inflammatory and anti-oxidative ability. Med. Sci. Monit., 2019, 25, 2278-2288. doi: 10.12659/MSM.911444 PMID: 30921298
  47. Huda-Faujan, N.; Abdulamir, A.S.; Fatimah, A.B.; Anas, O.M.; Shuhaimi, M.; Yazid, A.M.; Loong, Y.Y. The impact of the level of the intestinal short chain Fatty acids in inflammatory bowel disease patients versus healthy subjects. Open Biochem. J., 2010, 4, 53-58. doi: 10.2174/1874091X01004010053 PMID: 20563285
  48. Long, X.; Li, M.; Li, L.X.; Sun, Y.Y.; Zhang, W.X.; Zhao, D.Y.; Li, Y.Q. Butyrate promotes visceral hypersensitivity in an IBS-like model via enteric glial cell-derived nerve growth factor. Neurogastroenterol. Motil., 2018, 30(4), e13227. doi: 10.1111/nmo.13227 PMID: 29052293
  49. Esquerre, N.; Basso, L.; Defaye, M.; Vicentini, F.A.; Cluny, N.; Bihan, D.; Hirota, S.A.; Schick, A.; Jijon, H.B.; Lewis, I.A.; Geuking, M.B.; Sharkey, K.A.; Altier, C.; Nasser, Y. Colitis-induced microbial perturbation promotes postinflammatory visceral hypersensitivity. Cell. Mol. Gastroenterol. Hepatol., 2020, 10(2), 225-244. doi: 10.1016/j.jcmgh.2020.04.003 PMID: 32289500
  50. Tan, J.; McKenzie, C.; Potamitis, M.; Thorburn, A.N.; Mackay, C.R.; Macia, L. The role of short-chain fatty acids in health and disease. Adv. Immunol., 2014, 121, 91-119. doi: 10.1016/B978-0-12-800100-4.00003-9 PMID: 24388214
  51. Sivaprakasam, S.; Bhutia, Y.D.; Yang, S.; Ganapathy, V. Short-chain fatty acid transporters: Role in colonic homeostasis. Compr. Physiol., 2017, 8(1), 299-314. doi: 10.1002/cphy.c170014 PMID: 29357130
  52. You, H.; Tan, Y.; Yu, D.; Qiu, S.; Bai, Y.; He, J.; Cao, H.; Che, Q.; Guo, J.; Su, Z. The Therapeutic effect of SCFA-mediated regulation of the intestinal environment on obesity. Front. Nutr., 2022, 9, 886902. doi: 10.3389/fnut.2022.886902 PMID: 35662937
  53. Brown, A.J.; Goldsworthy, S.M.; Barnes, A.A.; Eilert, M.M.; Tcheang, L.; Daniels, D.; Muir, A.I.; Wigglesworth, M.J.; Kinghorn, I.; Fraser, N.J.; Pike, N.B.; Strum, J.C.; Steplewski, K.M.; Murdock, P.R.; Holder, J.C.; Marshall, F.H.; Szekeres, P.G.; Wilson, S.; Ignar, D.M.; Foord, S.M.; Wise, A.; Dowell, S.J. The Orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids. J. Biol. Chem., 2003, 278(13), 11312-11319. doi: 10.1074/jbc.M211609200 PMID: 12496283
  54. Le Poul, E.; Loison, C.; Struyf, S.; Springael, J.Y.; Lannoy, V.; Decobecq, M.E.; Brezillon, S.; Dupriez, V.; Vassart, G.; Van Damme, J.; Parmentier, M.; Detheux, M. Functional characterization of human receptors for short chain fatty acids and their role in polymorphonuclear cell activation. J. Biol. Chem., 2003, 278(28), 25481-25489. doi: 10.1074/jbc.M301403200 PMID: 12711604
  55. Nilsson, N.E.; Kotarsky, K.; Owman, C.; Olde, B. Identification of a free fatty acid receptor, FFA2R, expressed on leukocytes and activated by short-chain fatty acids. Biochem. Biophys. Res. Commun., 2003, 303(4), 1047-1052. doi: 10.1016/S0006-291X(03)00488-1 PMID: 12684041
  56. Tolhurst, G.; Heffron, H.; Lam, Y.S.; Parker, H.E.; Habib, A.M.; Diakogiannaki, E.; Cameron, J.; Grosse, J.; Reimann, F.; Gribble, F.M. Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via the G-protein-coupled receptor FFAR2. Diabetes, 2012, 61(2), 364-371. doi: 10.2337/db11-1019 PMID: 22190648
  57. Nøhr, M.K.; Egerod, K.L.; Christiansen, S.H.; Gille, A.; Offermanns, S.; Schwartz, T.W.; Møller, M. Expression of the short chain fatty acid receptor GPR41/FFAR3 in autonomic and somatic sensory ganglia. Neuroscience, 2015, 290, 126-137. doi: 10.1016/j.neuroscience.2015.01.040 PMID: 25637492
  58. Kimura, I.; Inoue, D.; Maeda, T.; Hara, T.; Ichimura, A.; Miyauchi, S.; Kobayashi, M.; Hirasawa, A.; Tsujimoto, G. Short-chain fatty acids and ketones directly regulate sympathetic nervous system via G protein-coupled receptor 41 (GPR41). Proc. Natl. Acad. Sci. USA, 2011, 108(19), 8030-8035. doi: 10.1073/pnas.1016088108 PMID: 21518883
  59. Bonini, J.A.; Anderson, S.M.; Steiner, D.F. Molecular cloning and tissue expression of a novel orphan G protein-coupled receptor from rat lung. Biochem. Biophys. Res. Commun., 1997, 234(1), 190-193. doi: 10.1006/bbrc.1997.6591 PMID: 9168987
  60. Iwanaga, T.; Takebe, K.; Kato, I.; Karaki, S.I.; Kuwahara, A. Cellular expression of monocarboxylate transporters (MCT) in the digestive tract of the mouse, rat, and humans, with special reference to slc5a8. Biomed. Res., 2006, 27(5), 243-254. doi: 10.2220/biomedres.27.243 PMID: 17099289
  61. Waldecker, M.; Kautenburger, T.; Daumann, H.; Busch, C.; Schrenk, D. Inhibition of histone-deacetylase activity by short-chain fatty acids and some polyphenol metabolites formed in the colon. J. Nutr. Biochem., 2008, 19(9), 587-593. doi: 10.1016/j.jnutbio.2007.08.002 PMID: 18061431
  62. Soliman, M.L.; Rosenberger, T.A. Acetate supplementation increases brain histone acetylation and inhibits histone deacetylase activity and expression. Mol. Cell. Biochem., 2011, 352(1-2), 173-180. doi: 10.1007/s11010-011-0751-3 PMID: 21359531
  63. Wang, W.; Cui, S.; Lu, R.; Zhang, H. Is there any therapeutic value for the use of histone deacetylase inhibitors for chronic pain? Brain Res. Bull., 2016, 125, 44-52. doi: 10.1016/j.brainresbull.2016.04.010 PMID: 27090944
  64. Penas, C.; Navarro, X. Epigenetic modifications associated to neuroinflammation and neuropathic pain after neural trauma. Front. Cell. Neurosci., 2018, 12, 158. doi: 10.3389/fncel.2018.00158 PMID: 29930500
  65. Schroeder, F.A.; Lin, C.L.; Crusio, W.E.; Akbarian, S. Antidepressant-like effects of the histone deacetylase inhibitor, sodium butyrate, in the mouse. Biol. Psychiatry, 2007, 62(1), 55-64. doi: 10.1016/j.biopsych.2006.06.036 PMID: 16945350
  66. Fischer, A.; Sananbenesi, F.; Wang, X.; Dobbin, M.; Tsai, L.H. Recovery of learning and memory is associated with chromatin remodelling. Nature, 2007, 447(7141), 178-182. doi: 10.1038/nature05772 PMID: 17468743
  67. Stafford, J.M.; Raybuck, J.D.; Ryabinin, A.E.; Lattal, K.M. Increasing histone acetylation in the hippocampus-infralimbic network enhances fear extinction. Biol. Psychiatry, 2012, 72(1), 25-33. doi: 10.1016/j.biopsych.2011.12.012 PMID: 22290116
  68. Cousens, L.S.; Gallwitz, D.; Alberts, B.M. Different accessibilities in chromatin to histone acetylase. J. Biol. Chem., 1979, 254(5), 1716-1723. doi: 10.1016/S0021-9258(17)37831-6 PMID: 762168
  69. Descalzi, G.; Ikegami, D.; Ushijima, T.; Nestler, E.J.; Zachariou, V.; Narita, M. Epigenetic mechanisms of chronic pain. Trends Neurosci., 2015, 38(4), 237-246. doi: 10.1016/j.tins.2015.02.001 PMID: 25765319
  70. Cherng, C.H.; Lee, K.C.; Chien, C.C.; Chou, K.Y.; Cheng, Y.C.; Hsin, S.T.; Lee, S.O.; Shen, C.H.; Tsai, R.Y.; Wong, C.S. Baicalin ameliorates neuropathic pain by suppressing HDAC1 expression in the spinal cord of spinal nerve ligation rats. J. Formos. Med. Assoc., 2014, 113(8), 513-520. doi: 10.1016/j.jfma.2013.04.007 PMID: 23684218
  71. Yuan, L.; Liu, C.; Wan, Y.; Yan, H.; Li, T. Effect of HDAC2/Inpp5f on neuropathic pain and cognitive function through regulating PI3K/Akt/GSK-3β signal pathway in rats with neuropathic pain. Exp. Ther. Med., 2019, 18(1), 678-684. doi: 10.3892/etm.2019.7622 PMID: 31281447
  72. Kukkar, A.; Singh, N.; Jaggi, A.S. Attenuation of neuropathic pain by sodium butyrate in an experimental model of chronic constriction injury in rats. J. Formos. Med. Assoc., 2014, 113(12), 921-928. doi: 10.1016/j.jfma.2013.05.013 PMID: 23870713
  73. Mao, Y.; Zhou, J.; Liu, X.; Gu, E.; Zhang, Z.; Tao, W. Comparison of different histone deacetylase inhibitors in attenuating inflammatory pain in rats. Pain Res. Manag., 2019, 2019, 1-10. doi: 10.1155/2019/1648919 PMID: 30809320
  74. Romanelli, M.N.; Borgonetti, V.; Galeotti, N. Dual BET/HDAC inhibition to relieve neuropathic pain: Recent advances, perspectives, and future opportunities. Pharmacol. Res., 2021, 173, 105901. doi: 10.1016/j.phrs.2021.105901 PMID: 34547384
  75. Borgonetti, V.; Meacci, E.; Pierucci, F.; Romanelli, M.N.; Galeotti, N. Dual HDAC/BRD4 inhibitors relieves neuropathic pain by attenuating inflammatory response in microglia after spared nerve injury. Neurotherapeutics, 2022, 173, 105901. doi: 10.1007/s13311-022-01243-6 PMID: 35501470
  76. Zhang, Z.; Cai, Y.Q.; Zou, F.; Bie, B.; Pan, Z.Z. Epigenetic suppression of GAD65 expression mediates persistent pain. Nat. Med., 2011, 17(11), 1448-1455. doi: 10.1038/nm.2442 PMID: 21983856
  77. Hou, X.; Weng, Y.; Ouyang, B.; Ding, Z.; Song, Z.; Zou, W.; Huang, C.; Guo, Q. HDAC inhibitor TSA ameliorates mechanical hypersensitivity and potentiates analgesic effect of morphine in a rat model of bone cancer pain by restoring µ-opioid receptor in spinal cord. Brain Res., 2017, 1669, 97-105. doi: 10.1016/j.brainres.2017.05.014 PMID: 28559159
  78. Zammataro, M.; Sortino, M.A.; Parenti, C.; Gereau, R.W., IV; Chiechio, S. HDAC and HAT inhibitors differently affect analgesia mediated by group II metabotropic glutamate receptors. Mol. Pain, 2014, 10, 1744-8069-10-68. doi: 10.1186/1744-8069-10-68 PMID: 25406541
  79. Matsushita, Y.; Araki, K.; Omotuyi, O.; Mukae, T.; Ueda, H. HDAC inhibitors restore C-fibre sensitivity in experimental neuropathic pain model. Br. J. Pharmacol., 2013, 170(5), 991-998. doi: 10.1111/bph.12366 PMID: 24032674
  80. He, X.T.; Hu, X.F.; Zhu, C.; Zhou, K.X.; Zhao, W.J.; Zhang, C.; Han, X.; Wu, C.L.; Wei, Y.Y.; Wang, W.; Deng, J.P.; Chen, F.M.; Gu, Z.X.; Dong, Y.L. Suppression of histone deacetylases by SAHA relieves bone cancer pain in rats via inhibiting activation of glial cells in spinal dorsal horn and dorsal root ganglia. J. Neuroinflammation, 2020, 17(1), 125. doi: 10.1186/s12974-020-01740-5 PMID: 32321538
  81. Borgonetti, V.; Galeotti, N. Combined inhibition of histone deacetylases and BET family proteins as epigenetic therapy for nerve injury-induced neuropathic pain. Pharmacol. Res., 2021, 165, 105431. doi: 10.1016/j.phrs.2021.105431 PMID: 33529752
  82. Winkler, I.; Blotnik, S.; Shimshoni, J.; Yagen, B.; Devor, M.; Bialer, M. Efficacy of antiepileptic isomers of valproic acid and valpromide in a rat model of neuropathic pain. Br. J. Pharmacol., 2005, 146(2), 198-208. doi: 10.1038/sj.bjp.0706310 PMID: 15997234
  83. Sabari, B.R.; Tang, Z.; Huang, H.; Yong-Gonzalez, V.; Molina, H.; Kong, H.E.; Dai, L.; Shimada, M.; Cross, J.R.; Zhao, Y.; Roeder, R.G.; Allis, C.D. Intracellular crotonyl-CoA stimulates transcription through p300-catalyzed histone crotonylation. Mol. Cell, 2015, 58(2), 203-215. doi: 10.1016/j.molcel.2015.02.029 PMID: 25818647
  84. Fellows, R.; Denizot, J.; Stellato, C.; Cuomo, A.; Jain, P.; Stoyanova, E.; Balázsi, S.; Hajnády, Z.; Liebert, A.; Kazakevych, J.; Blackburn, H.; Corrêa, R.O.; Fachi, J.L.; Sato, F.T.; Ribeiro, W.R.; Ferreira, C.M.; Perée, H.; Spagnuolo, M.; Mattiuz, R.; Matolcsi, C.; Guedes, J.; Clark, J.; Veldhoen, M.; Bonaldi, T.; Vinolo, M.A.R.; Varga-Weisz, P. Microbiota derived short chain fatty acids promote histone crotonylation in the colon through histone deacetylases. Nat. Commun., 2018, 9(1), 105. doi: 10.1038/s41467-017-02651-5 PMID: 29317660
  85. Chriett, S.; Dąbek, A.; Wojtala, M.; Vidal, H.; Balcerczyk, A.; Pirola, L. Prominent action of butyrate over β-hydroxybutyrate as histone deacetylase inhibitor, transcriptional modulator and anti-inflammatory molecule. Sci. Rep., 2019, 9(1), 742. doi: 10.1038/s41598-018-36941-9 PMID: 30679586
  86. Oleskin, A.V.; Shenderov, B.A. Neuromodulatory effects and targets of the SCFAs and gasotransmitters produced by the human symbiotic microbiota. Microb. Ecol. Health Dis., 2016, 27, 30971. PMID: 27389418
  87. Frost, G.; Sleeth, M.L.; Sahuri-Arisoylu, M.; Lizarbe, B.; Cerdan, S.; Brody, L.; Anastasovska, J.; Ghourab, S.; Hankir, M.; Zhang, S.; Carling, D.; Swann, J.R.; Gibson, G.; Viardot, A.; Morrison, D.; Louise Thomas, E.; Bell, J.D. The short-chain fatty acid acetate reduces appetite via a central homeostatic mechanism. Nat. Commun., 2014, 5(1), 3611. doi: 10.1038/ncomms4611 PMID: 24781306
  88. Peek, A.L.; Rebbeck, T.; Puts, N.A.J.; Watson, J.; Aguila, M.E.R.; Leaver, A.M. Brain GABA and glutamate levels across pain conditions: A systematic literature review and meta-analysis of 1H-MRS studies using the MRS-Q quality assessment tool. Neuroimage, 2020, 210, 116532. doi: 10.1016/j.neuroimage.2020.116532 PMID: 31958584
  89. Clarke, G.; Stilling, R.M.; Kennedy, P.J.; Stanton, C.; Cryan, J.F.; Dinan, T.G. Minireview: Gut microbiota: The neglected endocrine organ. Mol. Endocrinol., 2014, 28(8), 1221-1238. doi: 10.1210/me.2014-1108 PMID: 24892638
  90. Hooten, W.M. Chronic pain and mental health disorders. Mayo Clin. Proc., 2016, 91(7), 955-970. doi: 10.1016/j.mayocp.2016.04.029 PMID: 27344405
  91. Savignac, H.M.; Corona, G.; Mills, H.; Chen, L.; Spencer, J.P.E.; Tzortzis, G.; Burnet, P.W.J. Prebiotic feeding elevates central brain derived neurotrophic factor, N-methyl-d-aspartate receptor subunits and d-serine. Neurochem. Int., 2013, 63(8), 756-764. doi: 10.1016/j.neuint.2013.10.006 PMID: 24140431
  92. Barichello, T.; Generoso, J.S.; Simões, L.R.; Faller, C.J.; Ceretta, R.A.; Petronilho, F.; Lopes-Borges, J.; Valvassori, S.S.; Quevedo, J. Sodium butyrate prevents memory impairment by re-establishing BDNF and GDNF expression in experimental pneumococcal meningitis. Mol. Neurobiol., 2015, 52(1), 734-740. doi: 10.1007/s12035-014-8914-3 PMID: 25284351
  93. Varela, R.B.; Valvassori, S.S.; Lopes-Borges, J.; Mariot, E.; Dal-Pont, G.C.; Amboni, R.T.; Bianchini, G.; Quevedo, J. Sodium butyrate and mood stabilizers block ouabain-induced hyperlocomotion and increase BDNF, NGF and GDNF levels in brain of Wistar rats. J. Psychiatr. Res., 2015, 61, 114-121. doi: 10.1016/j.jpsychires.2014.11.003 PMID: 25467060
  94. Obara, I.; Telezhkin, V.; Alrashdi, I.; Chazot, P.L. Histamine, histamine receptors, and neuropathic pain relief. Br. J. Pharmacol., 2020, 177(3), 580-599. doi: 10.1111/bph.14696 PMID: 31046146
  95. Cui, J.G.; Linderoth, B.; Meyerson, B.A. Effects of spinal cord stimulation on touch-evoked allodynia involve GABAergic mechanisms. An experimental study in the mononeuropathic rat. Pain, 1996, 66(2), 287-295. doi: 10.1016/0304-3959(96)03069-2 PMID: 8880852
  96. Wang, C.; Gu, L.; Ruan, Y.; Geng, X.; Xu, M.; Yang, N.; Yu, L.; Jiang, Y.; Zhu, C.; Yang, Y.; Zhou, Y.; Guan, X.; Luo, W.; Liu, Q.; Dong, X.; Yu, G.; Lan, L.; Tang, Z. Facilitation of MrgprD by TRP‐A1 promotes neuropathic pain. FASEB J., 2019, 33(1), 1360-1373. doi: 10.1096/fj.201800615RR PMID: 30148678
  97. Kinfe, T.; Buchfelder, M.; Chaudhry, S.; Chakravarthy, K.; Deer, T.; Russo, M.; Georgius, P.; Hurlemann, R.; Rasheed, M.; Muhammad, S.; Yearwood, T. Leptin and associated mediators of immunometabolic signaling: Novel molecular outcome measures for neurostimulation to treat chronic pain. Int. J. Mol. Sci., 2019, 20(19), 4737. doi: 10.3390/ijms20194737 PMID: 31554241
  98. Hassan, A.M.; Jain, P.; Mayerhofer, R.; Fröhlich, E.E.; Farzi, A.; Reichmann, F.; Herzog, H.; Holzer, P. Visceral hyperalgesia caused by peptide YY deletion and Y2 receptor antagonism. Sci. Rep., 2017, 7(1), 40968. doi: 10.1038/srep40968 PMID: 28106168
  99. Apkarian, A.V.; Bushnell, M.C.; Treede, R.D.; Zubieta, J.K. Human brain mechanisms of pain perception and regulation in health and disease. Eur. J. Pain, 2005, 9(4), 463-484. doi: 10.1016/j.ejpain.2004.11.001 PMID: 15979027
  100. Psichas, A.; Sleeth, M.L.; Murphy, K.G.; Brooks, L.; Bewick, G.A.; Hanyaloglu, A.C.; Ghatei, M.A.; Bloom, S.R.; Frost, G. The short chain fatty acid propionate stimulates GLP-1 and PYY secretion via free fatty acid receptor 2 in rodents. Int. J. Obes., 2015, 39(3), 424-429. doi: 10.1038/ijo.2014.153 PMID: 25109781
  101. Larraufie, P.; Martin-Gallausiaux, C.; Lapaque, N.; Dore, J.; Gribble, F.M.; Reimann, F.; Blottiere, H.M. SCFAs strongly stimulate PYY production in human enteroendocrine cells. Sci. Rep., 2018, 8(1), 74. doi: 10.1038/s41598-017-18259-0 PMID: 29311617
  102. Cani, P.D.; Lecourt, E.; Dewulf, E.M.; Sohet, F.M.; Pachikian, B.D.; Naslain, D.; De Backer, F.; Neyrinck, A.M.; Delzenne, N.M. Gut microbiota fermentation of prebiotics increases satietogenic and incretin gut peptide production with consequences for appetite sensation and glucose response after a meal. Am. J. Clin. Nutr., 2009, 90(5), 1236-1243. doi: 10.3945/ajcn.2009.28095 PMID: 19776140
  103. Trapp, S.; Richards, J.E. The gut hormone glucagon-like peptide-1 produced in brain: Is this physiologically relevant? Curr. Opin. Pharmacol., 2013, 13(6), 964-969. doi: 10.1016/j.coph.2013.09.006 PMID: 24075717
  104. Yang, Y.; Cui, X.; Chen, Y.; Wang, Y.; Li, X.; Lin, L.; Zhang, H. Exendin-4, an analogue of glucagon-like peptide-1, attenuates hyperalgesia through serotonergic pathways in rats with neonatal colonic sensitivity. J. Physiol. Pharmacol., 2014, 65(3), 349-357. PMID: 24930506
  105. Li, Z.Y.; Zhang, N.; Wen, S.; Zhang, J.; Sun, X.L.; Fan, X.M.; Sun, Y.H. Decreased glucagon-like peptide-1 correlates with abdominal pain in patients with constipation-predominant irritable bowel syndrome. Clin. Res. Hepatol. Gastroenterol., 2017, 41(4), 459-465. doi: 10.1016/j.clinre.2016.12.007 PMID: 28215540
  106. O’Malley, D. Endocrine regulation of gut function - a role for glucagon-like peptide-1 in the pathophysiology of irritable bowel syndrome. Exp. Physiol., 2019, 104(1), 3-10. PMID: 30444291
  107. Hellström, P.M.; Hein, J.; Bytzer, P.; Björnssön, E.; Kristensen, J.; Schambye, H. Clinical trial: the glucagon-like peptide-1 analogue ROSE-010 for management of acute pain in patients with irritable bowel syndrome: A randomized, placebo-controlled, double-blind study. Aliment. Pharmacol. Ther., 2009, 29(2), 198-206. doi: 10.1111/j.1365-2036.2008.03870.x PMID: 18945254
  108. Tang, X.; Wu, H.; Mao, X.; Li, X.; Wang, Y. The GLP-1 receptor herbal agonist morroniside attenuates neuropathic pain via spinal microglial expression of IL-10 and β-endorphin. Biochem. Biophys. Res. Commun., 2020, 530(3), 494-499. doi: 10.1016/j.bbrc.2020.05.080 PMID: 32595037
  109. Wang, Y.R.; Mao, X.F.; Wu, H.Y.; Wang, Y.X. Liposome-encapsulated clodronate specifically depletes spinal microglia and reduces initial neuropathic pain. Biochem. Biophys. Res. Commun., 2018, 499(3), 499-505. doi: 10.1016/j.bbrc.2018.03.177 PMID: 29596830
  110. Morimoto, R.; Satoh, F.; Murakami, O.; Totsune, K.; Saruta, M.; Suzuki, T.; Sasano, H.; Ito, S.; Takahashi, K. Expression of peptide YY in human brain and pituitary tissues. Nutrition, 2008, 24(9), 878-884. doi: 10.1016/j.nut.2008.06.011 PMID: 18662857
  111. Nonaka, N.; Shioda, S.; Niehoff, M.L.; Banks, W.A. Characterization of blood-brain barrier permeability to PYY3-36 in the mouse. J. Pharmacol. Exp. Ther., 2003, 306(3), 948-953. doi: 10.1124/jpet.103.051821 PMID: 12750431
  112. Koda, S.; Date, Y.; Murakami, N.; Shimbara, T.; Hanada, T.; Toshinai, K.; Niijima, A.; Furuya, M.; Inomata, N.; Osuye, K.; Nakazato, M. The role of the vagal nerve in peripheral PYY3-36-induced feeding reduction in rats. Endocrinology, 2005, 146(5), 2369-2375. doi: 10.1210/en.2004-1266 PMID: 15718279
  113. Waise, T.M.Z.; Dranse, H.J.; Lam, T.K.T. The metabolic role of vagal afferent innervation. Nat. Rev. Gastroenterol. Hepatol., 2018, 15(10), 625-636. doi: 10.1038/s41575-018-0062-1 PMID: 30185916
  114. Ly, H.G.; Dupont, P.; Van Laere, K.; Depoortere, I.; Tack, J.; Van Oudenhove, L. Differential brain responses to gradual intragastric nutrient infusion and gastric balloon distension: A role for gut peptides? Neuroimage., 2017, 144(Pt A), 101-112. doi: 10.1016/j.neuroimage.2016.09.032 PMID: 27639359
  115. Gibbs, J.L.; Diogenes, A.; Hargreaves, K.M. Neuropeptide Y modulates effects of bradykinin and prostaglandin E2 on trigeminal nociceptors via activation of the Y1 and Y2 receptors. Br. J. Pharmacol., 2007, 150(1), 72-79. doi: 10.1038/sj.bjp.0706967 PMID: 17143304
  116. Paredes, S.; Cantillo, S.; Candido, K.D.; Knezevic, N.N. An Association of Serotonin with Pain Disorders and Its Modulation by Estrogens. Int. J. Mol. Sci., 2019, 20(22), 5729. doi: 10.3390/ijms20225729 PMID: 31731606
  117. Gershon, M.D.; Tack, J. The serotonin signaling system: from basic understanding to drug development for functional GI disorders. Gastroenterology, 2007, 132(1), 397-414. doi: 10.1053/j.gastro.2006.11.002 PMID: 17241888
  118. Bonaz, B.; Bazin, T.; Pellissier, S. The vagus nerve at the interface of the microbiota-gut-brain Axis. Front. Neurosci., 2018, 12, 49. doi: 10.3389/fnins.2018.00049 PMID: 29467611
  119. Reigstad, C.S.; Salmonson, C.E.; Iii, J.F.R.; Szurszewski, J.H.; Linden, D.R.; Sonnenburg, J.L.; Farrugia, G.; Kashyap, P.C. Gut microbes promote colonic serotonin production through an effect of short‐chain fatty acids on enterochromaffin cells. FASEB J., 2015, 29(4), 1395-1403. doi: 10.1096/fj.14-259598 PMID: 25550456
  120. Fukumoto, S.; Tatewaki, M.; Yamada, T.; Fujimiya, M.; Mantyh, C.; Voss, M.; Eubanks, S.; Harris, M.; Pappas, T.N.; Takahashi, T. Short-chain fatty acids stimulate colonic transit via intraluminal 5-HT release in rats. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2003, 284(5), R1269-R1276. doi: 10.1152/ajpregu.00442.2002 PMID: 12676748
  121. Yano, J.M.; Yu, K.; Donaldson, G.P.; Shastri, G.G.; Ann, P.; Ma, L.; Nagler, C.R.; Ismagilov, R.F.; Mazmanian, S.K.; Hsiao, E.Y. Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell, 2015, 161(2), 264-276. doi: 10.1016/j.cell.2015.02.047 PMID: 25860609
  122. Srikanthan, K.; Feyh, A.; Visweshwar, H.; Shapiro, J.I.; Sodhi, K. Systematic review of metabolic syndrome biomarkers: A panel for early detection, management, and risk stratification in the west virginian population. Int. J. Med. Sci., 2016, 13(1), 25-38. doi: 10.7150/ijms.13800 PMID: 26816492
  123. Byrne, C.S.; Chambers, E.S.; Morrison, D.J.; Frost, G. The role of short chain fatty acids in appetite regulation and energy homeostasis. Int. J. Obes., 2015, 39(9), 1331-1338. doi: 10.1038/ijo.2015.84 PMID: 25971927
  124. Ezquerro, S.; Frühbeck, G.; Rodríguez, A. Ghrelin and autophagy. Curr. Opin. Clin. Nutr. Metab. Care, 2017, 20(5), 402-408. doi: 10.1097/MCO.0000000000000390 PMID: 28590260
  125. Raghay, K.; Akki, R.; Bensaid, D.; Errami, M. Ghrelin as an anti-inflammatory and protective agent in ischemia/reperfusion injury. Peptides, 2020, 124, 170226. doi: 10.1016/j.peptides.2019.170226 PMID: 31786283
  126. Yamashita, K.; Yamamoto, K.; Takata, A.; Miyazaki, Y.; Saito, T.; Tanaka, K.; Makino, T.; Takahashi, T.; Kurokawa, Y.; Yamasaki, M.; Mano, M.; Nakajima, K.; Eguchi, H.; Doki, Y. Continuous ghrelin infusion attenuates the postoperative inflammatory response in patients with esophageal cancer. Esophagus, 2021, 18(2), 239-247. doi: 10.1007/s10388-020-00776-z PMID: 32856182
  127. Pirzadeh, S.; Sajedianfard, J.; Aloisi, A.M.; Ashrafi, M. Effects of intracerebroventricular and intra-arcuate nucleus injection of ghrelin on pain behavioral responses and met-enkephalin and β-endorphin concentrations in the periaqueductal gray area in rats. Int. J. Mol. Sci., 2019, 20(10), 2475. doi: 10.3390/ijms20102475 PMID: 31109149
  128. Carniglia, L.; Ramírez, D.; Durand, D.; Saba, J.; Turati, J.; Caruso, C.; Scimonelli, T.N.; Lasaga, M. Neuropeptides and microglial activation in inflammation, pain, and neurodegenerative diseases. Mediators Inflamm., 2017, 2017, 1-23. doi: 10.1155/2017/5048616 PMID: 28154473
  129. Zhou, C.H.; Li, X.; Zhu, Y.Z.; Huang, H.; Li, J.; Liu, L.; Hu, Q.; Ma, T.F.; Shao, Y.; Wu, Y.Q. Ghrelin alleviates neuropathic pain through GHSR-1a-mediated suppression of the p38 MAPK/NF-κB pathway in a rat chronic constriction injury model. Reg. Anesth. Pain Med., 2014, 39(2), 137-148. doi: 10.1097/AAP.0000000000000050 PMID: 24513955
  130. Fukumori, R.; Sugino, T.; Hasegawa, Y.; Kojima, M.; Kangawa, K.; Obitsu, T.; Taniguchi, K. Plasma ghrelin concentration is decreased by short chain fatty acids in wethers. Domest. Anim. Endocrinol., 2011, 41(1), 50-55. doi: 10.1016/j.domaniend.2011.04.001 PMID: 21645807
  131. Okine, B.N.; Gaspar, J.C.; Finn, D.P. PPARs and pain. Br. J. Pharmacol., 2019, 176(10), 1421-1442. doi: 10.1111/bph.14339 PMID: 29679493
  132. Manickam, R.; Duszka, K.; Wahli, W. PPARs and microbiota in skeletal muscle health and wasting. Int. J. Mol. Sci., 2020, 21(21), 8056. doi: 10.3390/ijms21218056 PMID: 33137899
  133. Higashimura, Y.; Naito, Y.; Takagi, T.; Uchiyama, K.; Mizushima, K.; Yoshikawa, T. Propionate promotes fatty acid oxidation through the up-regulation of peroxisome proliferator-activated Receptor α in intestinal epithelial cells. J. Nutr. Sci. Vitaminol. (Tokyo), 2015, 61(6), 511-515. doi: 10.3177/jnsv.61.511 PMID: 26875495
  134. Leong, W.; Huang, G.; Liao, W.; Xia, W.; Li, X.; Su, Z.; Liu, L.; Wu, Q.; Wong, V.K.W.; Law, B.Y.K.; Xia, C.; Guo, X.; Khan, I.; Wendy Hsiao, W.L. Traditional Patchouli essential oil modulates the host’s immune responses and gut microbiota and exhibits potent anti-cancer effects in Apc mice. Pharmacol. Res., 2022, 176, 106082. doi: 10.1016/j.phrs.2022.106082 PMID: 35032662
  135. Alex, S.; Lange, K.; Amolo, T.; Grinstead, J.S.; Haakonsson, A.K.; Szalowska, E.; Koppen, A.; Mudde, K.; Haenen, D.; Al-Lahham, S.; Roelofsen, H.; Houtman, R.; van der Burg, B.; Mandrup, S.; Bonvin, A.M.J.J.; Kalkhoven, E.; Müller, M.; Hooiveld, G.J.; Kersten, S. Short-chain fatty acids stimulate angiopoietin-like 4 synthesis in human colon adenocarcinoma cells by activating peroxisome proliferator-activated receptor γ. Mol. Cell. Biol., 2013, 33(7), 1303-1316. doi: 10.1128/MCB.00858-12 PMID: 23339868
  136. Nakamura, M.T.; Yudell, B.E.; Loor, J.J. Regulation of energy metabolism by long-chain fatty acids. Prog. Lipid Res., 2014, 53, 124-144. doi: 10.1016/j.plipres.2013.12.001 PMID: 24362249
  137. Botta, M.; Audano, M.; Sahebkar, A.; Sirtori, C.; Mitro, N.; Ruscica, M. PPAR agonists and metabolic syndrome: An established role? Int. J. Mol. Sci., 2018, 19(4), 1197. doi: 10.3390/ijms19041197 PMID: 29662003
  138. Montaigne, D.; Butruille, L.; Staels, B. PPAR control of metabolism and cardiovascular functions. Nat. Rev. Cardiol., 2021, 18(12), 809-823. doi: 10.1038/s41569-021-00569-6 PMID: 34127848
  139. Cook, T.M.; Gavini, C.K.; Jesse, J.; Aubert, G.; Gornick, E.; Bonomo, R.; Gautron, L.; Layden, B.T.; Mansuy-Aubert, V. Vagal neuron expression of the microbiota-derived metabolite receptor, free fatty acid receptor (FFAR3), is necessary for normal feeding behavior. Mol. Metab., 2021, 54, 101350. doi: 10.1016/j.molmet.2021.101350 PMID: 34626852
  140. Goswami, C.; Iwasaki, Y.; Yada, T. Short-chain fatty acids suppress food intake by activating vagal afferent neurons. J. Nutr. Biochem., 2018, 57, 130-135. doi: 10.1016/j.jnutbio.2018.03.009 PMID: 29702431
  141. Tanida, M.; Yamano, T.; Maeda, K.; Okumura, N.; Fukushima, Y.; Nagai, K. Effects of intraduodenal injection of Lactobacillus johnsonii La1 on renal sympathetic nerve activity and blood pressure in urethane-anesthetized rats. Neurosci. Lett., 2005, 389(2), 109-114. doi: 10.1016/j.neulet.2005.07.036 PMID: 16118039
  142. Bravo, J.A.; Forsythe, P.; Chew, M.V.; Escaravage, E.; Savignac, H.M.; Dinan, T.G.; Bienenstock, J.; Cryan, J.F. Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc. Natl. Acad. Sci. USA, 2011, 108(38), 16050-16055. doi: 10.1073/pnas.1102999108 PMID: 21876150
  143. Onyszkiewicz, M.; Gawrys-Kopczynska, M.; Konopelski, P.; Aleksandrowicz, M.; Sawicka, A.; Koźniewska, E.; Samborowska, E.; Ufnal, M. Butyric acid, a gut bacteria metabolite, lowers arterial blood pressure via colon-vagus nerve signaling and GPR41/43 receptors. Pflugers Arch., 2019, 471(11-12), 1441-1453. doi: 10.1007/s00424-019-02322-y PMID: 31728701
  144. Li, Y.; Hao, Y.; Zhu, J.; Owyang, C. Serotonin released from intestinal enterochromaffin cells mediates luminal non–cholecystokininstimulated pancreatic secretion in rats. Gastroenterology, 2000, 118(6), 1197-1207. doi: 10.1016/S0016-5085(00)70373-8 PMID: 10833495
  145. Strader, A.D.; Woods, S.C. Gastrointestinal hormones and food intake. Gastroenterology, 2005, 128(1), 175-191. doi: 10.1053/j.gastro.2004.10.043 PMID: 15633135
  146. Lal, S.; Kirkup, A.J.; Brunsden, A.M.; Thompson, D.G.; Grundy, D. Vagal afferent responses to fatty acids of different chain length in the rat. Am. J. Physiol. Gastrointest. Liver Physiol., 2001, 281(4), G907-G915. doi: 10.1152/ajpgi.2001.281.4.G907 PMID: 11557510
  147. Yuan, H.; Silberstein, S.D. Vagus nerve and vagus nerve stimulation, a comprehensive review: Part I. Headache, 2016, 56(1), 71-78. doi: 10.1111/head.12647 PMID: 26364692
  148. Ressler, K.J.; Mayberg, H.S. Targeting abnormal neural circuits in mood and anxiety disorders: from the laboratory to the clinic. Nat. Neurosci., 2007, 10(9), 1116-1124. doi: 10.1038/nn1944 PMID: 17726478
  149. Hosoi, T.; Okuma, Y.; Matsuda, T.; Nomura, Y. Novel pathway for LPS-induced afferent vagus nerve activation: Possible role of nodose ganglion. Auton. Neurosci., 2005, 120(1-2), 104-107. doi: 10.1016/j.autneu.2004.11.012 PMID: 15919243
  150. Bonaz, B.; Sinniger, V.; Pellissier, S. Vagal tone: effects on sensitivity, motility, and inflammation. Neurogastroenterol. Motil., 2016, 28(4), 455-462. doi: 10.1111/nmo.12817 PMID: 27010234
  151. Tanimoto, T.; Takeda, M.; Matsumoto, S. Suppressive effect of vagal afferents on cervical dorsal horn neurons responding to tooth pulp electrical stimulation in the rat. Exp. Brain Res., 2002, 145(4), 468-479. doi: 10.1007/s00221-002-1138-1 PMID: 12172658
  152. Thurston, C.L.; Randich, A. Quantitative characterization and spinal substrates of antinociception produced by electrical stimulation of the subdiaphragmatic vagus in rats. Pain, 1991, 44(2), 201-209. doi: 10.1016/0304-3959(91)90138-N PMID: 2052387
  153. Erny, D.; Hrabě de Angelis, A.L.; Jaitin, D.; Wieghofer, P.; Staszewski, O.; David, E.; Keren-Shaul, H.; Mahlakoiv, T.; Jakobshagen, K.; Buch, T.; Schwierzeck, V.; Utermöhlen, O.; Chun, E.; Garrett, W.S.; McCoy, K.D.; Diefenbach, A.; Staeheli, P.; Stecher, B.; Amit, I.; Prinz, M. Host microbiota constantly control maturation and function of microglia in the CNS. Nat. Neurosci., 2015, 18(7), 965-977. doi: 10.1038/nn.4030 PMID: 26030851
  154. Lupori, L.; Cornuti, S.; Mazziotti, R.; Borghi, E.; Ottaviano, E.; Cas, M.D.; Sagona, G.; Pizzorusso, T.; Tognini, P. The gut microbiota of environmentally enriched mice regulates visual cortical plasticity. Cell Rep., 2022, 38(2), 110212. doi: 10.1016/j.celrep.2021.110212 PMID: 35021093
  155. Erny, D.; Dokalis, N.; Mezö, C.; Castoldi, A.; Mossad, O.; Staszewski, O.; Frosch, M.; Villa, M.; Fuchs, V.; Mayer, A.; Neuber, J.; Sosat, J.; Tholen, S.; Schilling, O.; Vlachos, A.; Blank, T.; Gomez de Agüero, M.; Macpherson, A.J.; Pearce, E.J.; Prinz, M. Microbiota-derived acetate enables the metabolic fitness of the brain innate immune system during health and disease. Cell Metab., 2021, 33(11), 2260-2276.e7. doi: 10.1016/j.cmet.2021.10.010 PMID: 34731656
  156. Huuskonen, J.; Suuronen, T.; Nuutinen, T.; Kyrylenko, S.; Salminen, A. Regulation of microglial inflammatory response by sodium butyrate and short-chain fatty acids. Br. J. Pharmacol., 2004, 141(5), 874-880. doi: 10.1038/sj.bjp.0705682 PMID: 14744800
  157. Liu, J.; Li, H.; Gong, T.; Chen, W.; Mao, S.; Kong, Y.; Yu, J.; Sun, J. Anti-neuroinflammatory effect of short-chain fatty acid acetate against Alzheimer’s disease via upregulating GPR41 and inhibiting ERK/JNK/NF-κB. J. Agric. Food Chem., 2020, 68(27), 7152-7161. doi: 10.1021/acs.jafc.0c02807 PMID: 32583667
  158. Matt, S.M.; Allen, J.M.; Lawson, M.A.; Mailing, L.J.; Woods, J.A.; Johnson, R.W. Butyrate and dietary soluble fiber improve neuroinflammation associated with aging in mice. Front. Immunol., 2018, 9, 1832. doi: 10.3389/fimmu.2018.01832 PMID: 30154787
  159. Sadler, R.; Cramer, J.V.; Heindl, S.; Kostidis, S.; Betz, D.; Zuurbier, K.R.; Northoff, B.H.; Heijink, M.; Goldberg, M.P.; Plautz, E.J.; Roth, S.; Malik, R.; Dichgans, M.; Holdt, L.M.; Benakis, C.; Giera, M.; Stowe, A.M.; Liesz, A. Short-chain fatty acids improve poststroke recovery via immunological mechanisms. J. Neurosci., 2020, 40(5), 1162-1173. doi: 10.1523/JNEUROSCI.1359-19.2019 PMID: 31889008
  160. Wenzel, T.J.; Gates, E.J.; Ranger, A.L.; Klegeris, A. Short-chain fatty acids (SCFAs) alone or in combination regulate select immune functions of microglia-like cells. Mol. Cell. Neurosci., 2020, 105, 103493. doi: 10.1016/j.mcn.2020.103493 PMID: 32333962
  161. Li, H.; Xiang, Y.; Zhu, Z.; Wang, W.; Jiang, Z.; Zhao, M.; Cheng, S.; Pan, F.; Liu, D.; Ho, R.C.M.; Ho, C.S.H. Rifaximin-mediated gut microbiota regulation modulates the function of microglia and protects against CUMS-induced depression-like behaviors in adolescent rat. J. Neuroinflammation, 2021, 18(1), 254. doi: 10.1186/s12974-021-02303-y PMID: 34736493
  162. Liu, Q.; Xie, T.; Xi, Y.; Li, L.; Mo, F.; Liu, X.; Liu, Z.; Gao, J.M.; Yuan, T. Sesamol attenuates amyloid peptide accumulation and cognitive deficits in APP/PS1 mice: The mediating role of the gut-brain axis. J. Agric. Food Chem., 2021, 69(43), 12717-12729. doi: 10.1021/acs.jafc.1c04687 PMID: 34669408
  163. Hu, L.; Zhu, S.; Peng, X.; Li, K.; Peng, W.; Zhong, Y.; Kang, C.; Cao, X.; Liu, Z.; Zhao, B. High salt elicits brain inflammation and cognitive dysfunction, accompanied by alternations in the gut microbiota and decreased SCFA production. J. Alzheimers Dis., 2020, 77(2), 629-640. doi: 10.3233/JAD-200035 PMID: 32741809
  164. Shi, H.; Ge, X.; Ma, X.; Zheng, M.; Cui, X.; Pan, W.; Zheng, P.; Yang, X.; Zhang, P.; Hu, M.; Hu, T.; Tang, R.; Zheng, K.; Huang, X.F.; Yu, Y. A fiber-deprived diet causes cognitive impairment and hippocampal microglia-mediated synaptic loss through the gut microbiota and metabolites. Microbiome, 2021, 9(1), 223. doi: 10.1186/s40168-021-01172-0 PMID: 34758889
  165. Calvo-Barreiro, L.; Eixarch, H.; Cornejo, T.; Costa, C.; Castillo, M.; Mestre, L.; Guaza, C.; Martínez-Cuesta, M.C.; Tanoue, T.; Honda, K.; González-López, J.J.; Montalban, X.; Espejo, C. Selected clostridia strains from the human microbiota and their metabolite, butyrate, improve experimental autoimmune encephalomyelitis. Neurotherapeutics, 2021, 18(2), 920-937. doi: 10.1007/s13311-021-01016-7 PMID: 33829410

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers