In Silico Prediction of Quercetin Analogs for Targeting Death-Associated Protein Kinase 1 (DAPK1) Against Alzheimers Disease
- Authors: Sun Y.1, Zhao J.1, Lu Y.2, Ngo F.2, Shuai B.3, Zhang Z.1, Feng Y.2, Rong J.2
-
Affiliations:
- Department of Chinese Medicine, The University of Hong Kong Shenzhen Hospital
- School of Chinese Medicine, The University of Hong Kong
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology
- Issue: Vol 22, No 14 (2024)
- Pages: 2353-2367
- Section: Neurology
- URL: https://rjsocmed.com/1570-159X/article/view/644549
- DOI: https://doi.org/10.2174/1570159X22666240515090434
- ID: 644549
Cite item
Full Text
Abstract
:Alzheimers Disease (AD) is a progressive neurodegenerative disorder that greatly affects the health and life quality of the elderly population. Existing drugs mainly alleviate symptoms but fail to halt disease progression, underscoring the urgent need for the development of novel drugs. Based on the neuroprotective effects of flavonoid quercetin in AD, this study was designed to identify potential AD-related targets for quercetin and perform in silico prediction of promising analogs for the treatment of AD. Database mining suggested death-associated protein kinase 1 (DAPK1) as the most promising AD-related target for quercetin among seven protein candidates. To achieve better biological effects for the treatment of AD, we devised a series of quercetin analogs as ligands for DAPK1, and molecular docking analyses, absorption, distribution, metabolism, and excretion (ADME) predictions, as well as molecular dynamics (MD) simulations, were performed. The energy for drug-protein interaction was predicted and ranked. As a result, quercetin-A1a and quercetin-A1a1 out of 19 quercetin analogs exhibited the lowest interaction energy for binding to DAPK1 than quercetin, and they had similar dynamics performance with quercetin. In addition, quercetin-A1a and quercetin-A1a1 were predicted to have better water solubility. Thus, quercetin-A1a and quercetin-A1a1 could be promising agents for the treatment of AD. Our findings paved the way for further experimental studies and the development of novel drugs.
About the authors
Yilu Sun
Department of Chinese Medicine, The University of Hong Kong Shenzhen Hospital
Email: info@benthamscience.net
Jia Zhao
Department of Chinese Medicine, The University of Hong Kong Shenzhen Hospital
Email: info@benthamscience.net
Yizhu Lu
School of Chinese Medicine, The University of Hong Kong
Email: info@benthamscience.net
Fung Ngo
School of Chinese Medicine, The University of Hong Kong
Email: info@benthamscience.net
Bo Shuai
Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology
Email: info@benthamscience.net
Zhang-Jin Zhang
Department of Chinese Medicine, The University of Hong Kong Shenzhen Hospital
Email: info@benthamscience.net
Yibin Feng
School of Chinese Medicine, The University of Hong Kong
Author for correspondence.
Email: info@benthamscience.net
Jianhui Rong
School of Chinese Medicine, The University of Hong Kong
Author for correspondence.
Email: info@benthamscience.net
References
- Nichols, E.; Szoeke, C.E.I.; Vollset, S.E.; Abbasi, N.; Abd-Allah, F.; Abdela, J.; Aichour, M.T.E.; Akinyemi, R.O.; Alahdab, F.; Asgedom, S.W.; Awasthi, A.; Barker-Collo, S.L.; Baune, B.T.; Béjot, Y.; Belachew, A.B.; Bennett, D.A.; Biadgo, B.; Bijani, A.; Bin Sayeed, M.S.; Brayne, C.; Carpenter, D.O.; Carvalho, F.; Catalá-López, F.; Cerin, E.; Choi, J-Y.J.; Dang, A.K.; Degefa, M.G.; Djalalinia, S.; Dubey, M.; Duken, E.E.; Edvardsson, D.; Endres, M.; Eskandarieh, S.; Faro, A.; Farzadfar, F.; Fereshtehnejad, S-M.; Fernandes, E.; Filip, I.; Fischer, F.; Gebre, A.K.; Geremew, D.; Ghasemi-Kasman, M.; Gnedovskaya, E.V.; Gupta, R.; Hachinski, V.; Hagos, T.B.; Hamidi, S.; Hankey, G.J.; Haro, J.M.; Hay, S.I.; Irvani, S.S.N.; Jha, R.P.; Jonas, J.B.; Kalani, R.; Karch, A.; Kasaeian, A.; Khader, Y.S.; Khalil, I.A.; Khan, E.A.; Khanna, T.; Khoja, T.A.M.; Khubchandani, J.; Kisa, A.; Kissimova-Skarbek, K.; Kivimäki, M.; Koyanagi, A.; Krohn, K.J.; Logroscino, G.; Lorkowski, S.; Majdan, M.; Malekzadeh, R.; März, W.; Massano, J.; Mengistu, G.; Meretoja, A.; Mohammadi, M.; Mohammadi-Khanaposhtani, M.; Mokdad, A.H.; Mondello, S.; Moradi, G.; Nagel, G.; Naghavi, M.; Naik, G.; Nguyen, L.H.; Nguyen, T.H.; Nirayo, Y.L.; Nixon, M.R.; Ofori-Asenso, R.; Ogbo, F.A.; Olagunju, A.T.; Owolabi, M.O.; Panda-Jonas, S.; Passos, V.M.A.; Pereira, D.M.; Pinilla-Monsalve, G.D.; Piradov, M.A.; Pond, C.D.; Poustchi, H.; Qorbani, M.; Radfar, A.; Reiner, R.C., Jr; Robinson, S.R.; Roshandel, G.; Rostami, A.; Russ, T.C.; Sachdev, P.S.; Safari, H.; Safiri, S.; Sahathevan, R.; Salimi, Y.; Satpathy, M.; Sawhney, M.; Saylan, M.; Sepanlou, S.G.; Shafieesabet, A.; Shaikh, M.A.; Sahraian, M.A.; Shigematsu, M.; Shiri, R.; Shiue, I.; Silva, J.P.; Smith, M.; Sobhani, S.; Stein, D.J.; Tabarés-Seisdedos, R.; Tovani-Palone, M.R.; Tran, B.X.; Tran, T.T.; Tsegay, A.T.; Ullah, I.; Venketasubramanian, N.; Vlassov, V.; Wang, Y-P.; Weiss, J.; Westerman, R.; Wijeratne, T.; Wyper, G.M.A.; Yano, Y.; Yimer, E.M.; Yonemoto, N.; Yousefifard, M.; Zaidi, Z.; Zare, Z.; Vos, T.; Feigin, V.L.; Murray, C.J.L. Global, regional, and national burden of Alzheimers disease and other dementias, 1990-2016: A systematic analysis for the global burden of disease study 2016. Lancet Neurol., 2019, 18(1), 88-106. doi: 10.1016/S1474-4422(18)30403-4 PMID: 30497964
- Alzheimers disease facts and figures. Alzheimers Dement., 2020, 2020. PMID: 32157811
- Chen, G.; Xu, T.; Yan, Y.; Zhou, Y.; Jiang, Y.; Melcher, K.; Xu, H.E. Amyloid beta: Structure, biology and structure-based therapeutic development. Acta Pharmacol. Sin., 2017, 38(9), 1205-1235. doi: 10.1038/aps.2017.28 PMID: 28713158
- Binder, L.I.; Guillozet-Bongaarts, A.L.; Garcia-Sierra, F.; Berry, R.W. Tau, tangles, and Alzheimers disease. Biochim. Biophys. Acta Mol. Basis Dis., 2005, 1739(2-3), 216-223. doi: 10.1016/j.bbadis.2004.08.014 PMID: 15615640
- Lyketsos, C.G.; Carrillo, M.C.; Ryan, J.M.; Khachaturian, A.S.; Trzepacz, P.; Amatniek, J.; Cedarbaum, J.; Brashear, R.; Miller, D.S. Neuropsychiatric symptoms in Alzheimers disease. Alzheimers Dement., 2011, 7(5), 532-539. doi: 10.1016/j.jalz.2011.05.2410 PMID: 21889116
- Jacobsen, J.S.; Wu, C.C.; Redwine, J.M.; Comery, T.A.; Arias, R.; Bowlby, M.; Martone, R.; Morrison, J.H.; Pangalos, M.N.; Reinhart, P.H.; Bloom, F.E. Early-onset behavioral and synaptic deficits in a mouse model of Alzheimers disease. Proc. Natl. Acad. Sci. , 2006, 103(13), 5161-5166. doi: 10.1073/pnas.0600948103 PMID: 16549764
- Murphy, M.P.; LeVine, H., III Alzheimers disease and the amyloid-beta peptide. J. Alzheimers Dis., 2010, 19(1), 311-323. doi: 10.3233/JAD-2010-1221 PMID: 20061647
- Yao, M.; Nguyen, T.V.V.; Pike, C.J. Beta-amyloid-induced neuronal apoptosis involves c-Jun N-terminal kinase-dependent downregulation of Bcl-w. J. Neurosci., 2005, 25(5), 1149-1158. doi: 10.1523/JNEUROSCI.4736-04.2005 PMID: 15689551
- Tan, Z.; Shi, L.; Schreiber, S.S. Differential expression of redox factor-1 associated with beta-amyloid-mediated neurotoxicity. Open Neurosci. J., 2009, 3(1), 26-34. doi: 10.2174/1874082000903010026 PMID: 19898678
- Misonou, H.; Morishima-Kawashima, M.; Ihara, Y. Oxidative stress induces intracellular accumulation of amyloid beta-protein (Abeta) in human neuroblastoma cells. Biochemistry, 2000, 39(23), 6951-6959. doi: 10.1021/bi000169p PMID: 10841777
- Sun, X.; Chen, W.D.; Wang, Y.D. β-Amyloid: The key peptide in the pathogenesis of Alzheimers disease. Front. Pharmacol., 2015, 6, 221. doi: 10.3389/fphar.2015.00221 PMID: 26483691
- Panza, F.; Solfrizzi, V.; Seripa, D.; Imbimbo, B.P.; Lozupone, M.; Santamato, A.; Zecca, C.; Barulli, M.R.; Bellomo, A.; Pilotto, A.; Daniele, A.; Greco, A.; Logroscino, G. Tau-centric targets and drugs in clinical development for the treatment of alzheimers disease. BioMed Res. Int., 2016, 2016, 1-15. doi: 10.1155/2016/3245935 PMID: 27429978
- Wang, L.; Benzinger, T.L.; Su, Y.; Christensen, J.; Friedrichsen, K.; Aldea, P.; McConathy, J.; Cairns, N.J.; Fagan, A.M.; Morris, J.C.; Ances, B.M. Evaluation of tau imaging in staging alzheimer disease and revealing interactions between β-amyloid and tauopathy. JAMA Neurol., 2016, 73(9), 1070-1077. doi: 10.1001/jamaneurol.2016.2078 PMID: 27454922
- Götz, J.; Chen, F.; van Dorpe, J.; Nitsch, R.M. Formation of neurofibrillary tangles in P301l tau transgenic mice induced by Abeta 42 fibrils. Science, 2001, 293(5534), 1491-1495. doi: 10.1126/science.1062097 PMID: 11520988
- Jaworski, J.; Sheng, M. The growing role of mTOR in neuronal development and plasticity. Mol. Neurobiol., 2006, 34(3), 205-220. doi: 10.1385/MN:34:3:205 PMID: 17308353
- Ma, T.; Hoeffer, C.A.; Capetillo-Zarate, E.; Yu, F.; Wong, H.; Lin, M.T.; Tampellini, D.; Klann, E.; Blitzer, R.D.; Gouras, G.K. Dysregulation of the mTOR pathway mediates impairment of synaptic plasticity in a mouse model of Alzheimers disease. PLoS One, 2010, 5(9), e12845. doi: 10.1371/journal.pone.0012845 PMID: 20862226
- Kinney, J.W.; Bemiller, S.M.; Murtishaw, A.S.; Leisgang, A.M.; Salazar, A.M.; Lamb, B.T. Inflammation as a central mechanism in Alzheimers disease. Alzheimers Dement., 2018, 4(1), 575-590. doi: 10.1016/j.trci.2018.06.014 PMID: 30406177
- Xu, L.Z.; Li, B.Q.; Li, F.Y.; Li, Y.; Qin, W.; Zhao, Y.; Jia, J.P. NMDA receptor GluN2B subunit is involved in excitotoxicity mediated by death-associated protein kinase 1 in alzheimers disease. J. Alzheimers Dis., 2023, 91(2), 877-893. doi: 10.3233/JAD-220747 PMID: 36502323
- Wang, L.; Shui, X.; Zhang, M.; Mei, Y.; Xia, Y.; Lan, G.; Hu, L.; Gan, C.L.; Tian, Y.; Li, R.; Gu, X.; Zhang, T.; Chen, D.; Lee, T.H. MiR-191-5p attenuates tau phosphorylation, aβ generation, and neuronal cell death by regulating death-associated protein kinase 1. ACS Chem. Neurosci., 2022, 13(24), 3554-3566. doi: 10.1021/acschemneuro.2c00423 PMID: 36454178
- Xu, L.; Li, B.; Jia, J. DAPK1: A novel pathology and treatment target for alzheimers disease. Mol. Neurobiol., 2019, 56(4), 2838-2844. doi: 10.1007/s12035-018-1242-2 PMID: 30062675
- Li, R.; Zhi, S.; Lan, G.; Chen, X.; Zheng, X.; Hu, L.; Wang, L.; Zhang, T.; Lee, T.H.; Rao, S.; Chen, D. Ablation of death-associated protein kinase 1 changes the transcriptomic profile and alters neural-related pathways in the brain. Int. J. Mol. Sci., 2023, 24(7), 6542. doi: 10.3390/ijms24076542 PMID: 37047515
- Guan, P.P.; Ding, W.Y.; Wang, P. Molecular mechanism of acetylsalicylic acid in improving learning and memory impairment in APP/PS1 transgenic mice by inhibiting the abnormal cell cycle re-entry of neurons. Front. Mol. Neurosci., 2022, 15, 1006216. doi: 10.3389/fnmol.2022.1006216 PMID: 36263378
- Song, B.; Davis, K.; Liu, X.S.; Lee, H.; Smith, M.; Liu, X. Inhibition of polo-like kinase 1 reduces beta-amyloid-induced neuronal cell death in Alzheimers disease. Aging , 2011, 3(9), 846-851. doi: 10.18632/aging.100382 PMID: 21931181
- Park, J.Y.; Darvas, M.; Ladiges, W. Targeting IGF1R signaling for brain aging and Alzheimers disease. Aging Pathobiol. Ther., 2022, 4(4), 129-131. doi: 10.31491/APT.2022.12.103 PMID: 36776414
- Hamasaki, H.; Honda, H.; Suzuki, S.O.; Hokama, M.; Kiyohara, Y.; Nakabeppu, Y.; Iwaki, T. Down‐regulation of MET in hippocampal neurons of Alzheimers disease brains. Neuropathology, 2014, 34(3), 284-290. doi: 10.1111/neup.12095 PMID: 24444253
- Wang, L.; Chiang, H.C.; Wu, W.; Liang, B.; Xie, Z.; Yao, X.; Ma, W.; Du, S.; Zhong, Y. Epidermal growth factor receptor is a preferred target for treating Amyloid-β-induced memory loss. Proc. Natl. Acad. Sci. , 2012, 109(41), 16743-16748. doi: 10.1073/pnas.1208011109 PMID: 23019586
- Lin, W.Y.; Wu, B.T.; Lee, C.C.; Sheu, J.J.; Liu, S.H.; Wang, W.F.; Tsai, C.H.; Liu, H.P.; Tsai, F.J. Association analysis of dopaminergic gene variants (Comt, Drd4 And Dat1) with Alzheimer s disease. J. Biol. Regul. Homeost. Agents, 2012, 26(3), 401-410. PMID: 23034259
- Lannfelt, L.; Möller, C.; Basun, H.; Osswald, G.; Sehlin, D.; Satlin, A.; Logovinsky, V.; Gellerfors, P. Perspectives on future Alzheimer therapies: amyloid-β protofibrils - a new target for immunotherapy with BAN2401 in Alzheimers disease. Alzheimers Res. Ther., 2014, 6(2), 16. doi: 10.1186/alzrt246 PMID: 25031633
- Boutajangout, A.; Sigurdsson, E.M.; Krishnamurthy, P.K. Tau as a therapeutic target for Alzheimers disease. Curr. Alzheimer Res., 2011, 8(6), 666-677. doi: 10.2174/156720511796717195 PMID: 21679154
- Pimplikar, S.W. Neuroinflammation in Alzheimers disease: From pathogenesis to a therapeutic target. J. Clin. Immunol., 2014, 34(S1), 64-69. doi: 10.1007/s10875-014-0032-5 PMID: 24711006
- Jiang, T.; Sun, Q.; Chen, S. Oxidative stress: A major pathogenesis and potential therapeutic target of antioxidative agents in Parkinsons disease and Alzheimers disease. Prog. Neurobiol., 2016, 147, 1-19. doi: 10.1016/j.pneurobio.2016.07.005 PMID: 27769868
- Neve, R.L.; McPhie, D.L. The cell cycle as a therapeutic target for Alzheimers disease. Pharmacol. Ther., 2006, 111(1), 99-113. doi: 10.1016/j.pharmthera.2005.09.005 PMID: 16274748
- Kem, W.R. The brain α7 nicotinic receptor may be an important therapeutic target for the treatment of Alzheimers disease: Studies with DMXBA (GTS-21). Behav. Brain Res., 2000, 113(1-2), 169-181. doi: 10.1016/S0166-4328(00)00211-4 PMID: 10942043
- Yiannopoulou, K.G.; Papageorgiou, S.G. Current and future treatments in Alzheimer Disease: An update. J. Cent. Nerv. Syst. Dis., 2020, 12. doi: 10.1177/1179573520907397 PMID: 32165850
- Tan, C.C.; Yu, J.T.; Wang, H.F.; Tan, M.S.; Meng, X.F.; Wang, C.; Jiang, T.; Zhu, X.C.; Tan, L. Efficacy and safety of donepezil, galantamine, rivastigmine, and memantine for the treatment of Alzheimers disease: A systematic review and meta-analysis. J. Alzheimers Dis., 2014, 41(2), 615-631. doi: 10.3233/JAD-132690 PMID: 24662102
- Chen, J.; Bian, X.; Li, Y.; Xiao, X.; Yin, Y.; Du, X.; Wang, C.; Li, L.; Bai, Y.; Liu, X. Moderate hypothermia induces protection against hypoxia/reoxygenation injury by enhancing SUMOylation in cardiomyocytes. Mol. Med. Rep., 2020, 22(4), 2617-2626. doi: 10.3892/mmr.2020.11374 PMID: 32945433
- Siemers, E.R.; Sundell, K.L.; Carlson, C.; Case, M.; Sethuraman, G.; Liu-Seifert, H.; Dowsett, S.A.; Pontecorvo, M.J.; Dean, R.A.; Demattos, R. Phase 3 solanezumab trials: Secondary outcomes in mild Alzheimers disease patients. Alzheimers Dement., 2016, 12(2), 110-120. doi: 10.1016/j.jalz.2015.06.1893 PMID: 26238576
- Cummings, J.L.; Cohen, S.; van Dyck, C.H.; Brody, M.; Curtis, C.; Cho, W.; Ward, M.; Friesenhahn, M.; Rabe, C.; Brunstein, F.; Quartino, A.; Honigberg, L.A.; Fuji, R.N.; Clayton, D.; Mortensen, D.; Ho, C.; Paul, R. ABBY: A phase 2 randomized trial of crenezumab in mild to moderate Alzheimer disease. Neurology, 2018, 90(21), e1889-e1897. doi: 10.1212/WNL.0000000000005550 PMID: 29695589
- Kontsekova, E.; Zilka, N.; Kovacech, B.; Skrabana, R.; Novak, M. Identification of structural determinants on tau protein essential for its pathological function: Novel therapeutic target for tau immunotherapy in Alzheimers disease. Alzheimers Res. Ther., 2014, 6(4), 45. doi: 10.1186/alzrt277 PMID: 25478018
- Wischik, C.M.; Edwards, P.C.; Lai, R.Y.; Roth, M.; Harrington, C.R. Selective inhibition of Alzheimer disease-like tau aggregation by phenothiazines. Proc. Natl. Acad. Sci. , 1996, 93(20), 11213-11218. doi: 10.1073/pnas.93.20.11213 PMID: 8855335
- Calabrese, V.; Cornelius, C.; Dinkova-Kostova, A.T.; Calabrese, E.J.; Mattson, M.P. Cellular stress responses, the hormesis paradigm, and vitagenes: novel targets for therapeutic intervention in neurodegenerative disorders. Antioxid. Redox Signal., 2010, 13(11), 1763-1811. doi: 10.1089/ars.2009.3074 PMID: 20446769
- Calabrese, V.; Cornelius, C.; Cuzzocrea, S.; Iavicoli, I.; Rizzarelli, E.; Calabrese, E.J. Hormesis, cellular stress response and vitagenes as critical determinants in aging and longevity. Mol. Aspects Med., 2011, 32(4-6), 279-304. doi: 10.1016/j.mam.2011.10.007 PMID: 22020114
- Szekely, C.A.; Zandi, P.P. Non-steroidal anti-inflammatory drugs and Alzheimers disease: The epidemiological evidence. CNS Neurol. Disord. Drug Targets, 2010, 9(2), 132-139. doi: 10.2174/187152710791012026 PMID: 20205647
- Matsuoka, Y.; Jouroukhin, Y.; Gray, A.J.; Ma, L.; Hirata-Fukae, C.; Li, H.F.; Feng, L.; Lecanu, L.; Walker, B.R.; Planel, E.; Arancio, O.; Gozes, I.; Aisen, P.S. A neuronal microtubule-interacting agent, NAPVSIPQ, reduces tau pathology and enhances cognitive function in a mouse model of Alzheimers disease. J. Pharmacol. Exp. Ther., 2008, 325(1), 146-153. doi: 10.1124/jpet.107.130526 PMID: 18199809
- Butterfield, D.A.; Boyd-Kimball, D. Oxidative stress, amyloid-β peptide, and altered key molecular pathways in the pathogenesis and progression of alzheimers disease. J. Alzheimers Dis., 2018, 62(3), 1345-1367. doi: 10.3233/JAD-170543 PMID: 29562527
- Abate, G.; Vezzoli, M.; Sandri, M.; Rungratanawanich, W.; Memo, M.; Uberti, D. Mitochondria and cellular redox state on the route from ageing to Alzheimers disease. Mech. Ageing Dev., 2020, 192, 111385. doi: 10.1016/j.mad.2020.111385 PMID: 33129798
- Álvarez-Berbel, I.; Espargaró, A.; Viayna, A.; Caballero, A.B.; Busquets, M.A.; Gámez, P.; Luque, F.J.; Sabaté, R. Three to tango: Inhibitory effect of quercetin and apigenin on acetylcholinesterase, amyloid-β aggregation and acetylcholinesterase-amyloid interaction. Pharmaceutics, 2022, 14(11), 2342. doi: 10.3390/pharmaceutics14112342 PMID: 36365159
- Youdim, K.A.; Joseph, J.A. A possible emerging role of phytochemicals in improving age-related neurological dysfunctions: A multiplicity of effects. Free Radic. Biol. Med., 2001, 30(6), 583-594. doi: 10.1016/S0891-5849(00)00510-4 PMID: 11295356
- Piccialli, I.; Tedeschi, V.; Caputo, L.; DErrico, S.; Ciccone, R.; De Feo, V.; Secondo, A.; Pannaccione, A. Exploring the therapeutic potential of phytochemicals in alzheimers disease: Focus on polyphenols and monoterpenes. Front. Pharmacol., 2022, 13, 876614. doi: 10.3389/fphar.2022.876614 PMID: 35600880
- Hertog, M.G.L.; Hollman, P.C.H.; van de Putte, B. Content of potentially anticarcinogenic flavonoids of tea infusions, wines, and fruit juices. J. Agric. Food Chem., 1993, 41(8), 1242-1246. doi: 10.1021/jf00032a015
- Hertog, M.G. Flavonols and flavones in foods and their relation with cancer and coronary heart disease risk; Wageningen University and Research, 1994.
- Dajas, F. Life or death: Neuroprotective and anticancer effects of quercetin. J. Ethnopharmacol., 2012, 143(2), 383-396. doi: 10.1016/j.jep.2012.07.005 PMID: 22820241
- Zhang, M.; Swarts, S.G.; Yin, L.; Liu, C.; Tian, Y.; Cao, Y.; Swarts, M.; Yang, S.; Zhang, S.B.; Zhang, K.; Ju, S.; Olek, D.J., Jr; Schwartz, L.; Keng, P.C.; Howell, R.; Zhang, L.; Okunieff, P. Antioxidant properties of quercetin. Adv. Exp. Med. Biol., 2011, 701, 283-289. doi: 10.1007/978-1-4419-7756-4_38 PMID: 21445799
- Wu, W.; Li, R.; Li, X.; He, J.; Jiang, S.; Liu, S.; Yang, J. Quercetin as an antiviral agent inhibits influenza a virus (IAV) entry. Viruses, 2015, 8(1), 6. doi: 10.3390/v8010006 PMID: 26712783
- Yi, L.; Li, Z.; Yuan, K.; Qu, X.; Chen, J.; Wang, G.; Zhang, H.; Luo, H.; Zhu, L.; Jiang, P.; Chen, L.; Shen, Y.; Luo, M.; Zuo, G.; Hu, J.; Duan, D.; Nie, Y.; Shi, X.; Wang, W.; Han, Y.; Li, T.; Liu, Y.; Ding, M.; Deng, H.; Xu, X. Small molecules blocking the entry of severe acute respiratory syndrome coronavirus into host cells. J. Virol., 2004, 78(20), 11334-11339. doi: 10.1128/JVI.78.20.11334-11339.2004 PMID: 15452254
- Colunga Biancatelli, R.M.L.; Berrill, M.; Catravas, J.D.; Marik, P.E. Quercetin and vitamin C: An experimental, synergistic therapy for the prevention and treatment of SARS-CoV-2 related disease (COVID-19). Front. Immunol., 2020, 11, 1451. doi: 10.3389/fimmu.2020.01451 PMID: 32636851
- Vessal, M.; Hemmati, M.; Vasei, M. Antidiabetic effects of quercetin in streptozocin-induced diabetic rats. Comp. Biochem. Physiol. C Toxicol. Pharmacol., 2003, 135(3), 357-364. doi: 10.1016/S1532-0456(03)00140-6 PMID: 12927910
- Bruning, A. Inhibition of mTOR signaling by quercetin in cancer treatment and prevention. Anticancer. Agents Med. Chem., 2013, 13(7), 1025-1031. doi: 10.2174/18715206113139990114 PMID: 23272907
- Yang, H.; Song, Y.; Liang, Y.; Li, R. Quercetin treatment improves renal function and protects the kidney in a rat model of adenine-induced chronic kidney disease. Med. Sci. Monit., 2018, 24, 4760-4766. doi: 10.12659/MSM.909259 PMID: 29987270
- Patel, R.V.; Mistry, B.M.; Shinde, S.K.; Syed, R.; Singh, V.; Shin, H.S. Therapeutic potential of quercetin as a cardiovascular agent. Eur. J. Med. Chem., 2018, 155, 889-904. doi: 10.1016/j.ejmech.2018.06.053 PMID: 29966915
- Haleagrahara, N.; Miranda-Hernandez, S.; Alim, M.A.; Hayes, L.; Bird, G.; Ketheesan, N. Therapeutic effect of quercetin in collagen-induced arthritis. Biomed. Pharmacother., 2017, 90, 38-46. doi: 10.1016/j.biopha.2017.03.026 PMID: 28342364
- Ansari, M.A.; Abdul, H.M.; Joshi, G.; Opii, W.O.; Butterfield, D.A. Protective effect of quercetin in primary neurons against Aβ(1-42): Relevance to Alzheimers disease. J. Nutr. Biochem., 2009, 20(4), 269-275. doi: 10.1016/j.jnutbio.2008.03.002 PMID: 18602817
- Nakagawa, T.; Itoh, M.; Ohta, K.; Hayashi, Y.; Hayakawa, M.; Yamada, Y.; Akanabe, H.; Chikaishi, T.; Nakagawa, K.; Itoh, Y.; Muro, T.; Yanagida, D.; Nakabayashi, R.; Mori, T.; Saito, K.; Ohzawa, K.; Suzuki, C.; Li, S.; Ueda, M.; Wang, M.X.; Nishida, E.; Islam, S. Tana; Kobori, M.; Inuzuka, T. Improvement of memory recall by quercetin in rodent contextual fear conditioning and human early-stage Alzheimers disease patients. Neuroreport, 2016, 27(9), 671-676. doi: 10.1097/WNR.0000000000000594 PMID: 27145228
- Sabogal-Guáqueta, A.M.; Muñoz-Manco, J.I.; Ramírez-Pineda, J.R.; Lamprea-Rodriguez, M.; Osorio, E.; Cardona-Gómez, G.P. The flavonoid quercetin ameliorates Alzheimers disease pathology and protects cognitive and emotional function in aged triple transgenic Alzheimers disease model mice. Neuropharmacology, 2015, 93, 134-145. doi: 10.1016/j.neuropharm.2015.01.027 PMID: 25666032
- Kang, C.H.; Choi, Y.H.; Moon, S.K.; Kim, W.J.; Kim, G.Y. Quercetin inhibits lipopolysaccharide-induced nitric oxide production in BV2 microglial cells by suppressing the NF-κB pathway and activating the Nrf2-dependent HO-1 pathway. Int. Immunopharmacol., 2013, 17(3), 808-813. doi: 10.1016/j.intimp.2013.09.009 PMID: 24076371
- Li, Y.; Zhou, S.; Li, J.; Sun, Y.; Hasimu, H.; Liu, R.; Zhang, T. Quercetin protects human brain microvascular endothelial cells from fibrillar β-amyloid1-40-induced toxicity. Acta Pharm. Sin. B, 2015, 5(1), 47-54. doi: 10.1016/j.apsb.2014.12.003 PMID: 26579424
- Imai, K.; Nakanishi, I.; Ohkubo, K.; Ohba, Y.; Arai, T.; Mizuno, M.; Fukuzumi, S.; Matsumoto, K.; Fukuhara, K. Synthesis of methylated quercetin analogs for enhancement of radical-scavenging activity. RSC Advances, 2017, 7(29), 17968-17979. doi: 10.1039/C7RA02329D
- Qi, P.; Li, J.; Gao, S.; Yuan, Y.; Sun, Y.; Liu, N.; Li, Y.; Wang, G.; Chen, L.; Shi, J. Network pharmacology-based and experimental identification of the effects of quercetin on Alzheimers Disease. Front. Aging Neurosci., 2020, 12, 589588. doi: 10.3389/fnagi.2020.589588 PMID: 33192484
- Olayinka, J.; Eduviere, A.; Adeoluwa, O.; Fafure, A.; Adebanjo, A.; Ozolua, R. Quercetin mitigates memory deficits in scopolamine mice model via protection against neuroinflammation and neurodegeneration. Life Sci., 2022, 292, 120326. doi: 10.1016/j.lfs.2022.120326 PMID: 35031260
- Bukhari, S.N.A. Dietary polyphenols as therapeutic intervention for Alzheimers Disease: A mechanistic insight. Antioxidants, 2022, 11(3), 554. doi: 10.3390/antiox11030554 PMID: 35326204
- Zizkova, P.; Stefek, M.; Rackova, L.; Prnova, M.; Horakova, L. Novel quercetin derivatives: From redox properties to promising treatment of oxidative stress related diseases. Chem. Biol. Interact., 2017, 265, 36-46. doi: 10.1016/j.cbi.2017.01.019 PMID: 28137512
- Shah-abadi, M.E.; Ariaei, A.; Moradi, F.; Rustamzadeh, A.; Tanha, R.R.; Sadigh, N.; Marzban, M.; Heydari, M.; Ferdousie, V.T. In silico interactions of natural and synthetic compounds with key proteins involved in Alzheimers disease: Prospects for designing new therapeutics compound. Neurotox. Res., 2023, 41(5), 408-430. doi: 10.1007/s12640-023-00648-1 PMID: 37086338
- Wahid, M.; Saqib, F.; Qamar, M.; Ziora, Z.M. Antispasmodic activity of the ethanol extract of Citrullus lanatus seeds: Justifying ethnomedicinal use in Pakistan to treat asthma and diarrhea. J. Ethnopharmacol., 2022, 295, 115314. doi: 10.1016/j.jep.2022.115314 PMID: 35490899
- Ngo, F.Y.; Wang, W.; Chen, Q.; Zhao, J.; Chen, H.; Gao, J.M.; Rong, J. Network pharmacology analysis and molecular characterization of the herbal medicine formulation Qi-Fu-Yin for the inhibition of the neuroinflammatory biomarker iNOS in microglial BV-2 cells: Implication for the treatment of alzheimers disease. Oxid. Med. Cell. Longev., 2020, 2020, 1-15. doi: 10.1155/2020/5780703 PMID: 32952851
- Lin, A.; Wang, R.T.; Ahn, S.; Park, C.C.; Smith, D.J. A genome-wide map of human genetic interactions inferred from radiation hybrid genotypes. Genome Res., 2010, 20(8), 1122-1132. doi: 10.1101/gr.104216.109 PMID: 20508145
- Johnson, J.M.; Castle, J.; Garrett-Engele, P.; Kan, Z.; Loerch, P.M.; Armour, C.D.; Santos, R.; Schadt, E.E.; Stoughton, R.; Shoemaker, D.D. Genome-wide survey of human alternative pre-mRNA splicing with exon junction microarrays. Science, 2003, 302(5653), 2141-2144. doi: 10.1126/science.1090100 PMID: 14684825
- Rosenwald, A.; Alizadeh, A.A.; Widhopf, G.; Simon, R.; Davis, R.E.; Yu, X.; Yang, L.; Pickeral, O.K.; Rassenti, L.Z.; Powell, J.; Botstein, D.; Byrd, J.C.; Grever, M.R.; Cheson, B.D.; Chiorazzi, N.; Wilson, W.H.; Kipps, T.J.; Brown, P.O.; Staudt, L.M. Relation of gene expression phenotype to immunoglobulin mutation genotype in B cell chronic lymphocytic leukemia. J. Exp. Med., 2001, 194(11), 1639-1648. doi: 10.1084/jem.194.11.1639 PMID: 11733578
- Alizadeh, A.A.; Eisen, M.B.; Davis, R.E.; Ma, C.; Lossos, I.S.; Rosenwald, A.; Boldrick, J.C.; Sabet, H.; Tran, T.; Yu, X.; Powell, J.I.; Yang, L.; Marti, G.E.; Moore, T.; Hudson, J., Jr; Lu, L.; Lewis, D.B.; Tibshirani, R.; Sherlock, G.; Chan, W.C.; Greiner, T.C.; Weisenburger, D.D.; Armitage, J.O.; Warnke, R.; Levy, R.; Wilson, W.; Grever, M.R.; Byrd, J.C.; Botstein, D.; Brown, P.O.; Staudt, L.M. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature, 2000, 403(6769), 503-511. doi: 10.1038/35000501 PMID: 10676951
- Luo, D.; Fan, N.; Zhang, X.; Ngo, F.Y.; Zhao, J.; Zhao, W.; Huang, M.; Li, D.; Wang, Y.; Rong, J. Covalent inhibition of endoplasmic reticulum chaperone GRP78 disconnects the transduction of ER stress signals to inflammation and lipid accumulation in diet-induced obese mice. eLife, 2022, 11, e72182. doi: 10.7554/eLife.72182 PMID: 35138251
- Singh, P.; Ravanan, P.; Talwar, P. Death associated protein kinase 1 (DAPK1): A regulator of apoptosis and autophagy. Front. Mol. Neurosci., 2016, 9, 46. doi: 10.3389/fnmol.2016.00046 PMID: 27445685
- Hainsworth, A.H.; Allsopp, R.C.; Jim, A.; Potter, J.F.; Lowe, J.; Talbot, C.J.; Prettyman, R.J. Death-associated protein kinase (DAPK1) in cerebral cortex of late-onset Alzheimers disease patients and aged controls. Neuropathol. Appl. Neurobiol., 2010, 36(1), 17-24. doi: 10.1111/j.1365-2990.2009.01035.x PMID: 19627511
- Kim, B.M.; You, M.H.; Chen, C.H.; Suh, J.; Tanzi, R.E.; Ho Lee, T. Inhibition of death-associated protein kinase 1 attenuates the phosphorylation and amyloidogenic processing of amyloid precursor protein. Hum. Mol. Genet., 2016, 25(12), ddw114. doi: 10.1093/hmg/ddw114 PMID: 27094130
- Kim, B.M.; You, M-H.; Chen, C-H.; Lee, S.; Hong, Y.; Hong, Y.; Kimchi, A.; Zhou, X.Z.; Lee, T.H. Death-associated protein kinase 1 has a critical role in aberrant tau protein regulation and function. Cell Death Dis., 2014, 5(5), e1237. doi: 10.1038/cddis.2014.216 PMID: 24853415
- Zhang, H.; Wei, W.; Zhao, M.; Ma, L.; Jiang, X.; Pei, H.; Cao, Y.; Li, H. Interaction between Aβ and Tau in the Pathogenesis of Alzheimers Disease. Int. J. Biol. Sci., 2021, 17(9), 2181-2192. doi: 10.7150/ijbs.57078 PMID: 34239348
- Kim, N.; Chen, D.; Zhou, X.Z.; Lee, T.H. Death-associated protein kinase 1 phosphorylation in neuronal cell death and neurodegenerative disease. Int. J. Mol. Sci., 2019, 20(13), 3131. doi: 10.3390/ijms20133131 PMID: 31248062
- Shu, S.; Zhu, H.; Tang, N.; Chen, W.; Li, X.; Li, H.; Pei, L.; Liu, D.; Mu, Y.; Tian, Q.; Zhu, L.Q.; Lu, Y. Selective degeneration of entorhinal-ca1 synapses in Alzheimers disease via activation of DAPK1. J. Neurosci., 2016, 36(42), 10843-10852. doi: 10.1523/JNEUROSCI.2258-16.2016 PMID: 27798139
- Chen, D.; Mei, Y.; Kim, N.; Lan, G.; Gan, C.L.; Fan, F.; Zhang, T.; Xia, Y.; Wang, L.; Lin, C.; Ke, F.; Zhou, X.Z.; Lu, K.P.; Lee, T.H. Melatonin directly binds and inhibits death‐associated protein kinase 1 function in Alzheimers disease. J. Pineal Res., 2020, 69(2), e12665. doi: 10.1111/jpi.12665 PMID: 32358852
- Cai, X.; Fang, Z.; Dou, J.; Yu, A.; Zhai, G. Bioavailability of quercetin: Problems and promises. Curr. Med. Chem., 2013, 20(20), 2572-2582. doi: 10.2174/09298673113209990120 PMID: 23514412
- Massi, A.; Bortolini, O.; Ragno, D.; Bernardi, T.; Sacchetti, G.; Tacchini, M.; De Risi, C. Research progress in the modification of quercetin leading to anticancer agents. Molecules, 2017, 22(8), 1270. doi: 10.3390/molecules22081270 PMID: 28758919
- Babaei, P.; Kouhestani, S.; Jafari, A. Kaempferol attenuates cognitive deficit via regulating oxidative stress and neuroinflammation in an ovariectomized rat model of sporadic dementia. Neural Regen. Res., 2018, 13(10), 1827-1832. doi: 10.4103/1673-5374.238714 PMID: 30136699
- Mohammadi, N.; Asle-Rousta, M.; Rahnema, M.; Amini, R. Morin attenuates memory deficits in a rat model of Alzheimers disease by ameliorating oxidative stress and neuroinflammation. Eur. J. Pharmacol., 2021, 910, 174506. doi: 10.1016/j.ejphar.2021.174506 PMID: 34534533
- Koch, P.; Brunschweiger, A.; Namasivayam, V.; Ullrich, S.; Maruca, A.; Lazzaretto, B.; Küppers, P.; Hinz, S.; Hockemeyer, J.; Wiese, M.; Heer, J.; Alcaro, S.; Kiec-Kononowicz, K.; Müller, C.E. Probing substituents in the 1- and 3-position: Tetrahydropyrazino-annelated water-soluble xanthine derivatives as multi-target drugs with potent adenosine receptor antagonistic activity. Front Chem., 2018, 6, 206. doi: 10.3389/fchem.2018.00206 PMID: 29998095
- Egan, W.J.; Merz, K.M., Jr; Baldwin, J.J. Prediction of drug absorption using multivariate statistics. J. Med. Chem., 2000, 43(21), 3867-3877. doi: 10.1021/jm000292e PMID: 11052792
- Delaney, J.S. ESOL: Estimating aqueous solubility directly from molecular structure. J. Chem. Inf. Comput. Sci., 2004, 44(3), 1000-1005. doi: 10.1021/ci034243x PMID: 15154768
- Ali, J.; Camilleri, P.; Brown, M.B.; Hutt, A.J.; Kirton, S.B. Revisiting the general solubility equation: In silico prediction of aqueous solubility incorporating the effect of topographical polar surface area. J. Chem. Inf. Model., 2012, 52(2), 420-428. doi: 10.1021/ci200387c PMID: 22196228
- Sturgeon, J.B.; Laird, B.B. Symplectic algorithm for constant-pressure molecular dynamics using a Nosé-Poincaré thermostat. J. Chem. Phys., 2000, 112(8), 3474-3482. doi: 10.1063/1.480502
- Khelfaoui, H.; Harkati, D.; Saleh, B.A. Molecular docking, molecular dynamics simulations and reactivity, studies on approved drugs library targeting ACE2 and SARS-CoV-2 binding with ACE2. J. Biomol. Struct. Dyn., 2021, 39(18), 7246-7262. doi: 10.1080/07391102.2020.1803967 PMID: 32752951
- Moya-Alvarado, G.; Gershoni-Emek, N.; Perlson, E.; Bronfman, F.C. Neurodegeneration and Alzheimers disease (AD). What can proteomics tell us about the Alzheimers brain? Mol. Cell. Proteomics, 2016, 15(2), 409-425. doi: 10.1074/mcp.R115.053330 PMID: 26657538
- van der Flier, W.M.; de Vugt, M.E.; Smets, E.M.A.; Blom, M.; Teunissen, C.E. Towards a future where Alzheimers disease pathology is stopped before the onset of dementia. Nature. Aging, 2023, 3(5), 494-505. doi: 10.1038/s43587-023-00404-2 PMID: 37202515
- Passeri, E.; Elkhoury, K.; Morsink, M.; Broersen, K.; Linder, M.; Tamayol, A.; Malaplate, C.; Yen, F.T.; Arab-Tehrany, E. Alzheimers Disease: Treatment strategies and their limitations. Int. J. Mol. Sci., 2022, 23(22), 13954. doi: 10.3390/ijms232213954 PMID: 36430432
- You, M.H.; Kim, B.M.; Chen, C.H.; Begley, M.J.; Cantley, L.C.; Lee, T.H. Death-associated protein kinase 1 phosphorylates NDRG2 and induces neuronal cell death. Cell Death Differ., 2017, 24(2), 238-250. doi: 10.1038/cdd.2016.114 PMID: 28141794
- Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J. Nat. Prod., 2020, 83(3), 770-803. doi: 10.1021/acs.jnatprod.9b01285 PMID: 32162523
- Atanasov, A.G.; Zotchev, S.B.; Dirsch, V.M.; Supuran, C.T. Natural products in drug discovery: Advances and opportunities. Nat. Rev. Drug Discov., 2021, 20(3), 200-216. doi: 10.1038/s41573-020-00114-z PMID: 33510482
- Kim, J.H.; Lee, J.; Lee, S.; Cho, E.J. Quercetin and quercetin-3-β-d-glucoside improve cognitive and memory function in Alzheimers disease mouse. Appl. Biol. Chem., 2016, 59(5), 721-728. doi: 10.1007/s13765-016-0217-0
Supplementary files
