New Insights on Mechanisms and Therapeutic Targets of Cerebral Edema


Cite item

Full Text

Abstract

:Cerebral Edema (CE) is the final common pathway of brain death. In severe neurological disease, neuronal cell damage first contributes to tissue edema, and then Increased Intracranial Pressure (ICP) occurs, which results in diminishing cerebral perfusion pressure. In turn, anoxic brain injury brought on by decreased cerebral perfusion pressure eventually results in neuronal cell impairment, creating a vicious cycle. Traditionally, CE is understood to be tightly linked to elevated ICP, which ultimately generates cerebral hernia and is therefore regarded as a risk factor for mortality. Intracranial hypertension and brain edema are two serious neurological disorders that are commonly treated with mannitol. However, mannitol usage should be monitored since inappropriate utilization of the substance could conversely have negative effects on CE patients. CE is thought to be related to bloodbrain barrier dysfunction. Nonetheless, a fluid clearance mechanism called the glial-lymphatic or glymphatic system was updated. This pathway facilitates the transport of cerebrospinal fluid (CSF) into the brain along arterial perivascular spaces and later into the brain interstitium. After removing solutes from the neuropil into meningeal and cervical lymphatic drainage arteries, the route then directs flows into the venous perivascular and perineuronal regions. Remarkably, the dual function of the glymphatic system was observed to protect the brain from further exacerbated damage. From our point of view, future studies ought to concentrate on the management of CE based on numerous targets of the updated glymphatic system. Further clinical trials are encouraged to apply these agents to the clinic as soon as possible.

About the authors

Pei Shang

Department of Neurology, Nanfang Hospital, Southern Medical University

Email: info@benthamscience.net

Ruoyi Zheng

Department of Neurology, Nanfang Hospital, Southern Medical University

Email: info@benthamscience.net

Kou Wu

Department of Neurology, Nanfang Hospita, Southern Medical University

Email: info@benthamscience.net

Chao Yuan

Department of Neurology, Nanfang Hospital, Southern Medical University

Author for correspondence.
Email: info@benthamscience.net

Suyue Pan

Department of Neurology, Nanfang Hospital, Southern Medical University

Author for correspondence.
Email: info@benthamscience.net

References

  1. Steiner, L.A.; Andrews, P.J.D. Monitoring the injured brain: ICP and CBF. Br. J. Anaesth., 2006, 97(1), 26-38. doi: 10.1093/bja/ael110 PMID: 16698860
  2. Canac, N.; Jalaleddini, K.; Thorpe, S.G.; Thibeault, C.M.; Hamilton, R.B. Review: pathophysiology of intracranial hypertension and noninvasive intracranial pressure monitoring. Fluids Barriers CNS, 2020, 17(1), 40. doi: 10.1186/s12987-020-00201-8 PMID: 32576216
  3. Markey, K.A.; Mollan, S.P.; Jensen, R.H.; Sinclair, A.J. Understanding idiopathic intracranial hypertension: mechanisms, management, and future directions. Lancet Neurol., 2016, 15(1), 78-91. doi: 10.1016/S1474-4422(15)00298-7 PMID: 26700907
  4. Papadopoulos, M.C.; Saadoun, S.; Binder, D.K.; Manley, G.T.; Krishna, S.; Verkman, A.S. Molecular mechanisms of brain tumor edema. Neuroscience, 2004, 129(4), 1009-1018. doi: 10.1016/j.neuroscience.2004.05.044 PMID: 15561416
  5. Koenig, M.A. Cerebral Edema and Elevated Intracranial Pressure. Continuum (Minneap. Minn.), 2018, 24(6), 1588-1602. doi: 10.1212/CON.0000000000000665 PMID: 30516597
  6. Chen, S.; Shao, L.; Ma, L. Cerebral edema formation after stroke: emphasis on blood-brain barrier and the lymphatic drainage system of the brain. Front. Cell. Neurosci., 2021, 15, 716825. doi: 10.3389/fncel.2021.716825 PMID: 34483842
  7. Iliff, J.J.; Wang, M.; Liao, Y.; Plogg, B.A.; Peng, W.; Gundersen, G.A.; Benveniste, H.; Vates, G.E.; Deane, R.; Goldman, S.A.; Nagelhus, E.A.; Nedergaard, M. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β. Sci. Transl. Med., 2012, 4(147), 147ra111. doi: 10.1126/scitranslmed.3003748 PMID: 22896675
  8. Mestre, H.; Du, T.; Sweeney, A.M.; Liu, G.; Samson, A.J.; Peng, W.; Mortensen, K.N.; Stæger, F.F.; Bork, P.A.R.; Bashford, L.; Toro, E.R.; Tithof, J.; Kelley, D.H.; Thomas, J.H.; Hjorth, P.G.; Martens, E.A.; Mehta, R.I.; Solis, O.; Blinder, P.; Kleinfeld, D.; Hirase, H.; Mori, Y.; Nedergaard, M. Cerebrospinal fluid influx drives acute ischemic tissue swelling. Science, 2020, 367(6483), eaax7171. doi: 10.1126/science.aax7171 PMID: 32001524
  9. Starling, E.H. On the absorption of fluids from the connective tissue spaces. J. Physiol., 1896, 19(4), 312-326. doi: 10.1113/jphysiol.1896.sp000596 PMID: 16992325
  10. Stokum, J.A.; Gerzanich, V.; Simard, J.M. Molecular pathophysiology of cerebral edema. J. Cereb. Blood Flow Metab., 2016, 36(3), 513-538. doi: 10.1177/0271678X15617172 PMID: 26661240
  11. Zhang, C.; Jiang, M.; Wang, W.; Zhao, S.; Yin, Y.; Mi, Q.; Yang, M.; Song, Y.; Sun, B.; Zhang, Z. Selective mGluR1 negative allosteric modulator reduces blood-brain barrier permeability and cerebral edema after experimental subarachnoid hemorrhage. Transl. Stroke Res., 2020, 11(4), 799-811. doi: 10.1007/s12975-019-00758-z PMID: 31833035
  12. Aspelund, A.; Antila, S.; Proulx, S.T.; Karlsen, T.V.; Karaman, S.; Detmar, M.; Wiig, H.; Alitalo, K. A dural lymphatic vascular system that drains brain interstitial fluid and macromolecules. J. Exp. Med., 2015, 212(7), 991-999. doi: 10.1084/jem.20142290 PMID: 26077718
  13. Daneman, R. The blood-brain barrier in health and disease. Ann. Neurol., 2012, 72(5), 648-672. doi: 10.1002/ana.23648 PMID: 23280789
  14. Westergaard, E. The blood-brain barrier to horseradish peroxidase under normal and experimental conditions. Acta Neuropathol., 1977, 39(3), 181-187. doi: 10.1007/BF00691695 PMID: 333857
  15. Yamamizu, K.; Iwasaki, M.; Takakubo, H.; Sakamoto, T.; Ikuno, T.; Miyoshi, M.; Kondo, T.; Nakao, Y.; Nakagawa, M.; Inoue, H.; Yamashita, J.K. RETRACTED: In vitro modeling of blood-brain barrier with human iPSC-derived endothelial cells, pericytes, neurons, and astrocytes via notch signaling. Stem Cell Reports, 2017, 8(3), 634-647. doi: 10.1016/j.stemcr.2017.01.023 PMID: 28238797
  16. Mizee, M.R.; de Vries, H.E. Blood-brain barrier regulation. Tissue Barriers, 2013, 1(5), e26882. doi: 10.4161/tisb.26882 PMID: 24868496
  17. Armulik, A.; Abramsson, A.; Betsholtz, C. Endothelial/pericyte interactions. Circ. Res., 2005, 97(6), 512-523. doi: 10.1161/01.RES.0000182903.16652.d7 PMID: 16166562
  18. Winkler, E.A.; Bell, R.D.; Zlokovic, B.V. Central nervous system pericytes in health and disease. Nat. Neurosci., 2011, 14(11), 1398-1405. doi: 10.1038/nn.2946 PMID: 22030551
  19. Armulik, A.; Genové, G.; Mäe, M.; Nisancioglu, M.H.; Wallgard, E.; Niaudet, C.; He, L.; Norlin, J.; Lindblom, P.; Strittmatter, K.; Johansson, B.R.; Betsholtz, C. Pericytes regulate the blood-brain barrier. Nature, 2010, 468(7323), 557-561. doi: 10.1038/nature09522 PMID: 20944627
  20. Attwell, D.; Buchan, A.M.; Charpak, S.; Lauritzen, M.; MacVicar, B.A.; Newman, E.A. Glial and neuronal control of brain blood flow. Nature, 2010, 468(7321), 232-243. doi: 10.1038/nature09613 PMID: 21068832
  21. Hayashi, Y.; Nomura, M.; Yamagishi, S.I.; Harada, S.I.; Yamashita, J.; Yamamoto, H. Induction of various blood-brain barrier properties in non-neural endothelial cells by close apposition to co-cultured astrocytes. Glia, 1997, 19(1), 13-26. doi: 10.1002/(SICI)1098-1136(199701)19:13.0.CO;2-B PMID: 8989564
  22. Dehouck, M.P.; Méresse, S.; Delorme, P.; Fruchart, J.C.; Cecchelli, R. An easier, reproducible, and mass-production method to study the blood-brain barrier in vitro. J. Neurochem., 1990, 54(5), 1798-1801. doi: 10.1111/j.1471-4159.1990.tb01236.x PMID: 2182777
  23. Rubin, L.L.; Hall, D.E.; Porter, S.; Barbu, K.; Cannon, C.; Horner, H.C.; Janatpour, M.; Liaw, C.W.; Manning, K.; Morales, J. A cell culture model of the blood-brain barrier. J. Cell Biol., 1991, 115(6), 1725-1735. doi: 10.1083/jcb.115.6.1725 PMID: 1661734
  24. Williams, K.; Alvarez, X.; Lackner, A.A. Central nervous system perivascular cells are immunoregulatory cells that connect the CNS with the peripheral immune system. Glia, 2001, 36(2), 156-164. doi: 10.1002/glia.1105 PMID: 11596124
  25. Kutuzov, N.; Flyvbjerg, H.; Lauritzen, M. Contributions of the glycocalyx, endothelium, and extravascular compartment to the blood-brain barrier. Proc. Natl. Acad. Sci. USA, 2018, 115(40), E9429-E9438. doi: 10.1073/pnas.1802155115 PMID: 30217895
  26. Milford, E.M.; Reade, M.C. Resuscitation fluid choices to preserve the endothelial glycocalyx. Crit. Care, 2019, 23(1), 77. doi: 10.1186/s13054-019-2369-x PMID: 30850020
  27. Pinchi, E.; Frati, A.; Cipolloni, L.; Aromatario, M.; Gatto, V.; La Russa, R.; Pesce, A.; Santurro, A.; Fraschetti, F.; Frati, P.; Fineschi, V. Clinical-pathological study on β-APP, IL-1β, GFAP, NFL, Spectrin II, 8OHdG, TUNEL, miR-21, miR-16, miR-92 expressions to verify DAI-diagnosis, grade and prognosis. Sci. Rep., 2018, 8(1), 2387. doi: 10.1038/s41598-018-20699-1 PMID: 29402984
  28. Ito, J.; Marmarou, A.; Barzó, P.; Fatouros, P.; Corwin, F. Characterization of edema by diffusion-weighted imaging in experimental traumatic brain injury. J. Neurosurg., 1996, 84(1), 97-103. doi: 10.3171/jns.1996.84.1.0097 PMID: 8613843
  29. Maiese, A.; Spina, F.; Visi, G.; Del Duca, F.; De Matteis, A.; La Russa, R.; Di Paolo, M.; Frati, P.; Fineschi, V. The expression of FOXO3a as a forensic diagnostic tool in cases of traumatic brain injury: An immunohistochemical study. Int. J. Mol. Sci., 2023, 24(3), 2584. doi: 10.3390/ijms24032584 PMID: 36768906
  30. Riezzo, I.; Cerretani, D.; Fiore, C.; Bello, S.; Centini, F.; D’Errico, S.; Fiaschi, A.I.; Giorgi, G.; Neri, M.; Pomara, C.; Turillazzi, E.; Fineschi, V. Enzymatic-nonenzymatic cellular antioxidant defense systems response and immunohistochemical detection of MDMA, VMAT2, HSP70, and apoptosis as biomarkers for MDMA (Ecstasy) neurotoxicity. J. Neurosci. Res., 2010, 88(4), 905-916. doi: 10.1002/jnr.22245 PMID: 19798748
  31. Stokum, J.A.; Kwon, M.S.; Woo, S.K.; Tsymbalyuk, O.; Vennekens, R.; Gerzanich, V.; Simard, J.M. SUR1‐TRPM4 and AQP4 form a heteromultimeric complex that amplifies ion/water osmotic coupling and drives astrocyte swelling. Glia, 2018, 66(1), 108-125. doi: 10.1002/glia.23231 PMID: 28906027
  32. Ren, Z.; Iliff, J.J.; Yang, L.; Yang, J.; Chen, X.; Chen, M.J.; Giese, R.N.; Wang, B.; Shi, X.; Nedergaard, M. ‘Hit & Run’ model of closed-skull traumatic brain injury (TBI) reveals complex patterns of post-traumatic AQP4 dysregulation. J. Cereb. Blood Flow Metab., 2013, 33(6), 834-845. doi: 10.1038/jcbfm.2013.30 PMID: 23443171
  33. Verkman, A.S.; Binder, D.K.; Bloch, O.; Auguste, K.; Papadopoulos, M.C. Three distinct roles of aquaporin-4 in brain function revealed by knockout mice. Biochim. Biophys. Acta Biomembr., 2006, 1758(8), 1085-1093. doi: 10.1016/j.bbamem.2006.02.018 PMID: 16564496
  34. Kitaura, H.; Tsujita, M.; Huber, V.J.; Kakita, A.; Shibuki, K.; Sakimura, K.; Kwee, I.L.; Nakada, T. Activity-dependent glial swelling is impaired in aquaporin-4 knockout mice. Neurosci. Res., 2009, 64(2), 208-212. doi: 10.1016/j.neures.2009.03.002 PMID: 19428702
  35. Haj-Yasein, N.N.; Bugge, C.E.; Jensen, V.; Østby, I.; Ottersen, O.P.; Hvalby, Ø.; Nagelhus, E.A. Deletion of aquaporin-4 increases extracellular K+ concentration during synaptic stimulation in mouse hippocampus. Brain Struct. Funct., 2015, 220(4), 2469-2474. doi: 10.1007/s00429-014-0767-z PMID: 24744149
  36. Steiner, E.; Enzmann, G.U.; Lin, S.; Ghavampour, S.; Hannocks, M.J.; Zuber, B.; Rüegg, M.A.; Sorokin, L.; Engelhardt, B. Loss of astrocyte polarization upon transient focal brain ischemia as a possible mechanism to counteract early edema formation. Glia, 2012, 60(11), 1646-1659. doi: 10.1002/glia.22383 PMID: 22782669
  37. Fukuda, A.M.; Pop, V.; Spagnoli, D.; Ashwal, S.; Obenaus, A.; Badaut, J. Delayed increase of astrocytic aquaporin 4 after juvenile traumatic brain injury: Possible role in edema resolution? Neuroscience, 2012, 222, 366-378. doi: 10.1016/j.neuroscience.2012.06.033 PMID: 22728101
  38. Mehta, R.I.; Tosun, C.; Ivanova, S.; Tsymbalyuk, N.; Famakin, B.M.; Kwon, M.S.; Castellani, R.J.; Gerzanich, V.; Simard, J.M. Sur1-Trpm4 cation channel expression in human cerebral infarcts. J. Neuropathol. Exp. Neurol., 2015, 74(8), 835-849. doi: 10.1097/NEN.0000000000000223 PMID: 26172285
  39. Mehta, R.I.; Ivanova, S.; Tosun, C.; Castellani, R.J.; Gerzanich, V.; Simard, J.M. Sulfonylurea receptor 1 expression in human cerebral infarcts. J. Neuropathol. Exp. Neurol., 2013, 72(9), 871-883. doi: 10.1097/NEN.0b013e3182a32e40 PMID: 23965746
  40. Jha, R.M.; Kochanek, P.M.; Simard, J.M. Pathophysiology and treatment of cerebral edema in traumatic brain injury. Neuropharmacology, 2019, 145(Pt B), 230-246. doi: 10.1016/j.neuropharm.2018.08.004 PMID: 30086289
  41. King, Z.A.; Sheth, K.N.; Kimberly, W.T.; Simard, J.M. Profile of intravenous glyburide for the prevention of cerebral edema following large hemispheric infarction: Evidence to date. Drug Des. Devel. Ther., 2018, 12, 2539-2552. doi: 10.2147/DDDT.S150043 PMID: 30147301
  42. Stokum, J.A.; Gerzanich, V.; Sheth, K.N.; Kimberly, W.T.; Simard, J.M. Emerging pharmacological treatments for cerebral edema: evidence from clinical studies. Annu. Rev. Pharmacol. Toxicol., 2020, 60(1), 291-309. doi: 10.1146/annurev-pharmtox-010919-023429 PMID: 31914899
  43. Simard, J.M.; Kent, T.A.; Chen, M.; Tarasov, K.V.; Gerzanich, V. Brain oedema in focal ischaemia: molecular pathophysiology and theoretical implications. Lancet Neurol., 2007, 6(3), 258-268. doi: 10.1016/S1474-4422(07)70055-8 PMID: 17303532
  44. Nilius, B.; Prenen, J.; Tang, J.; Wang, C.; Owsianik, G.; Janssens, A.; Voets, T.; Zhu, M.X. Regulation of the Ca2+ sensitivity of the nonselective cation channel TRPM4. J. Biol. Chem., 2005, 280(8), 6423-6433. doi: 10.1074/jbc.M411089200 PMID: 15590641
  45. Chen, M.; Simard, J.M. Cell swelling and a nonselective cation channel regulated by internal Ca2+ and ATP in native reactive astrocytes from adult rat brain. J. Neurosci., 2001, 21(17), 6512-6521. doi: 10.1523/JNEUROSCI.21-17-06512.2001 PMID: 11517240
  46. Jha, R.M.; Bell, J.; Citerio, G.; Hemphill, J.C.; Kimberly, W.T.; Narayan, R.K.; Sahuquillo, J.; Sheth, K.N.; Simard, J.M. Role of sulfonylurea receptor 1 and glibenclamide in traumatic brain injury: A review of the evidence. Int. J. Mol. Sci., 2020, 21(2), 409. doi: 10.3390/ijms21020409 PMID: 31936452
  47. Simard, J.M.; Woo, S.K.; Schwartzbauer, G.T.; Gerzanich, V. Sulfonylurea receptor 1 in central nervous system injury: a focused review. J. Cereb. Blood Flow Metab., 2012, 32(9), 1699-1717. doi: 10.1038/jcbfm.2012.91 PMID: 22714048
  48. Chen, M.; Dong, Y.; Simard, J.M. Functional coupling between sulfonylurea receptor type 1 and a nonselective cation channel in reactive astrocytes from adult rat brain. J. Neurosci., 2003, 23(24), 8568-8577. doi: 10.1523/JNEUROSCI.23-24-08568.2003 PMID: 13679426
  49. Gerzanich, V.; Kwon, M.S.; Woo, S.K.; Ivanov, A.; Simard, J.M. SUR1-TRPM4 channel activation and phasic secretion of MMP-9 induced by tPA in brain endothelial cells. PLoS One, 2018, 13(4), e0195526. doi: 10.1371/journal.pone.0195526 PMID: 29617457
  50. Kurland, D.B.; Gerzanich, V.; Karimy, J.K.; Woo, S.K.; Vennekens, R.; Freichel, M.; Nilius, B.; Bryan, J.; Simard, J.M. The Sur1-Trpm4 channel regulates NOS2 transcription in TLR4-activated microglia. J. Neuroinflammation, 2016, 13(1), 130. doi: 10.1186/s12974-016-0599-2 PMID: 27246103
  51. Sheth, K.N.; Elm, J.J.; Molyneaux, B.J.; Hinson, H.; Beslow, L.A.; Sze, G.K.; Ostwaldt, A.C.; del Zoppo, G.J.; Simard, J.M.; Jacobson, S.; Kimberly, W.T. Safety and efficacy of intravenous glyburide on brain swelling after large hemispheric infarction (GAMES-RP): A randomised, double-blind, placebo-controlled phase 2 trial. Lancet Neurol., 2016, 15(11), 1160-1169. doi: 10.1016/S1474-4422(16)30196-X PMID: 27567243
  52. Wu, D.; Lai, N.; Deng, R.; Liang, T.; Pan, P.; Yuan, G.; Li, X.; Li, H.; Shen, H.; Wang, Z.; Chen, G. Activated WNK3 induced by intracerebral hemorrhage deteriorates brain injury maybe via WNK3/SPAK/NKCC1 pathway. Exp. Neurol., 2020, 332, 113386. doi: 10.1016/j.expneurol.2020.113386 PMID: 32589890
  53. Gong, Y.; Wu, M.; Gao, F.; Shi, M.; Gu, H.; Gao, R.; Dang, B.Q.; Chen, G. Inhibition of the p SPAK/p NKCC1 signaling pathway protects the blood-brain barrier and reduces neuronal apoptosis in a rat model of surgical brain injury. Mol. Med. Rep., 2021, 24(4), 717. doi: 10.3892/mmr.2021.12356 PMID: 34396440
  54. Hampel, P.; Romermann, K.; Gramer, M.; Loscher, W. The search for brain-permeant NKCC1 inhibitors for the treatment of seizures: Pharmacokinetic-pharmacodynamic modelling of NKCC1 inhibition by azosemide, torasemide, and bumetanide in mouse brain. Epilepsy Behav. 2021, 114(Pt A), 107616. doi: 10.1016/j.yebeh.2020.107616 PMID: 33279441
  55. Papadopoulos, M.C.; Manley, G.T.; Krishna, S.; Verkman, A.S. Aquaporin‐4 facilitates reabsorption of excess fluid in vasogenic brain edema. FASEB J., 2004, 18(11), 1291-1293. doi: 10.1096/fj.04-1723fje PMID: 15208268
  56. Gasche, Y.; Copin, J.C.; Sugawara, T.; Fujimura, M.; Chan, P.H. Matrix metalloproteinase inhibition prevents oxidative stress-associated blood-brain barrier disruption after transient focal cerebral ischemia. J. Cereb. Blood Flow Metab., 2001, 21(12), 1393-1400. doi: 10.1097/00004647-200112000-00003 PMID: 11740200
  57. Yang, C.; Hawkins, K.E.; Doré, S.; Candelario-Jalil, E. Neuroinflammatory mechanisms of blood-brain barrier damage in ischemic stroke. Am. J. Physiol. Cell Physiol., 2019, 316(2), C135-C153. doi: 10.1152/ajpcell.00136.2018 PMID: 30379577
  58. Copin, J.C.; Bengualid, D.J.; Da Silva, R.F.; Kargiotis, O.; Schaller, K.; Gasche, Y. Recombinant tissue plasminogen activator induces blood-brain barrier breakdown by a matrix metalloproteinase-9-independent pathway after transient focal cerebral ischemia in mouse. Eur. J. Neurosci., 2011, 34(7), 1085-1092. doi: 10.1111/j.1460-9568.2011.07843.x PMID: 21895804
  59. Yan, W.; Zhao, X.; Chen, H.; Zhong, D.; Jin, J.; Qin, Q.; Zhang, H.; Ma, S.; Li, G. β-Dystroglycan cleavage by matrix metalloproteinase-2/-9 disturbs aquaporin-4 polarization and influences brain edema in acute cerebral ischemia. Neuroscience, 2016, 326, 141-157. doi: 10.1016/j.neuroscience.2016.03.055 PMID: 27038751
  60. Liu, B.; Li, Y.; Han, Y.; Wang, S.; Yang, H.; Zhao, Y.; Li, P.; Wang, Y. Notoginsenoside R1 intervenes degradation and redistribution of tight junctions to ameliorate blood-brain barrier permeability by Caveolin-1/MMP2/9 pathway after acute ischemic stroke. Phytomedicine, 2021, 90, 153660. doi: 10.1016/j.phymed.2021.153660 PMID: 34344565
  61. Bauer, A.T.; Bürgers, H.F.; Rabie, T.; Marti, H.H. Matrix metalloproteinase-9 mediates hypoxia-induced vascular leakage in the brain via tight junction rearrangement. J. Cereb. Blood Flow Metab., 2010, 30(4), 837-848. doi: 10.1038/jcbfm.2009.248 PMID: 19997118
  62. Aid, S.; Silva, A.C.; Candelario-Jalil, E.; Choi, S.H.; Rosenberg, G.A.; Bosetti, F. Cyclooxygenase-1 and -2 differentially modulate lipopolysaccharide-induced blood-brain barrier disruption through matrix metalloproteinase activity. J. Cereb. Blood Flow Metab., 2010, 30(2), 370-380. doi: 10.1038/jcbfm.2009.223 PMID: 19844242
  63. Yang, C.; Yang, Y.; DeMars, K.M.; Rosenberg, G.A.; Candelario-Jalil, E. Genetic deletion or pharmacological inhibition of cyclooxygenase-2 reduces blood-brain barrier damage in experimental ischemic stroke. Front. Neurol., 2020, 11, 887. doi: 10.3389/fneur.2020.00887 PMID: 32973660
  64. Candelario-Jalil, E.; Yang, Y.; Rosenberg, G.A. Diverse roles of matrix metalloproteinases and tissue inhibitors of metalloproteinases in neuroinflammation and cerebral ischemia. Neuroscience, 2009, 158(3), 983-994. doi: 10.1016/j.neuroscience.2008.06.025 PMID: 18621108
  65. Yang, Q.; Yu, J.; Qin, H.; Liu, L.; Di, C.; Zhuang, Q.; Yin, H. Irbesartan suppresses lipopolysaccharide (LPS)-induced blood-brain barrier (BBB) dysfunction by inhibiting the activation of MLCK/MLC. Int. Immunopharmacol., 2021, 98, 107834. doi: 10.1016/j.intimp.2021.107834 PMID: 34174702
  66. Foote, C.A.; Soares, R.N.; Ramirez-Perez, F.I.; Ghiarone, T.; Aroor, A.; Manrique-Acevedo, C.; Padilla, J.; Martinez-Lemus, L. Endothelial Glycocalyx. Compr. Physiol., 2022, 12(4), 3781-3811. doi: 10.1002/cphy.c210029 PMID: 35997082
  67. Zhu, J.; Li, X.; Yin, J.; Hu, Y.; Gu, Y.; Pan, S. Glycocalyx degradation leads to blood-brain barrier dysfunction and brain edema after asphyxia cardiac arrest in rats. J. Cereb. Blood Flow Metab., 2018, 38(11), 1979-1992. doi: 10.1177/0271678X17726062 PMID: 28825336
  68. Zhu, J.; Li, Z.; Ji, Z.; Wu, Y.; He, Y.; Liu, K.; Chang, Y.; Peng, Y.; Lin, Z.; Wang, S.; Wang, D.; Huang, K.; Pan, S. Glycocalyx is critical for blood‐brain barrier integrity by suppressing caveolin1‐dependent endothelial transcytosis following ischemic stroke. Brain Pathol., 2022, 32(1), e13006. doi: 10.1111/bpa.13006 PMID: 34286899
  69. Li, X.; Zhu, J.; Liu, K.; Hu, Y.; Huang, K.; Pan, S. Corrigendum to ‘Heparin ameliorates cerebral edema and improves outcomes following status epilepticus by protecting endothelial glycocalyx in mice’. Exp Neurol. volume 330 (2020) 113320 Exp. Neurol., 2021, 338, 113595. doi: 10.1016/j.expneurol.2020.113595 PMID: 33485107
  70. Zhang, Y-N.; Wu, Q.; Zhang, N-N.; Chen, H-S. Ischemic preconditioning alleviates cerebral ischemia-reperfusion injury by interfering with glycocalyx. Transl. Stroke Res., 2022, 14(6), 929-940. PMID: 36168082
  71. Koh, L.; Zakharov, A.; Johnston, M. Integration of the subarachnoid space and lymphatics: Is it time to embrace a new concept of cerebrospinal fluid absorption? Cerebrospinal Fluid Res., 2005, 2(1), 6. doi: 10.1186/1743-8454-2-6 PMID: 16174293
  72. Proulx, S.T. Cerebrospinal fluid outflow: a review of the historical and contemporary evidence for arachnoid villi, perineural routes, and dural lymphatics. Cell. Mol. Life Sci., 2021, 78(6), 2429-2457. doi: 10.1007/s00018-020-03706-5 PMID: 33427948
  73. Spera, I.; Cousin, N.; Ries, M.; Kedracka, A.; Castillo, A.; Aleandri, S.; Vladymyrov, M.; Mapunda, J.A.; Engelhardt, B.; Luciani, P.; Detmar, M.; Proulx, S.T. Open pathways for cerebrospinal fluid outflow at the cribriform plate along the olfactory nerves. EBioMedicine, 2023, 91, 104558. doi: 10.1016/j.ebiom.2023.104558 PMID: 37043871
  74. Louveau, A.; Smirnov, I.; Keyes, T.J.; Eccles, J.D.; Rouhani, S.J.; Peske, J.D.; Derecki, N.C.; Castle, D.; Mandell, J.W.; Lee, K.S.; Harris, T.H.; Kipnis, J. Structural and functional features of central nervous system lymphatic vessels. Nature, 2015, 523(7560), 337-341. doi: 10.1038/nature14432 PMID: 26030524
  75. Ahn, J.H.; Cho, H.; Kim, J.H.; Kim, S.H.; Ham, J.S.; Park, I.; Suh, S.H.; Hong, S.P.; Song, J.H.; Hong, Y.K.; Jeong, Y.; Park, S.H.; Koh, G.Y. Meningeal lymphatic vessels at the skull base drain cerebrospinal fluid. Nature, 2019, 572(7767), 62-66. doi: 10.1038/s41586-019-1419-5 PMID: 31341278
  76. Hu, X.; Deng, Q.; Ma, L.; Li, Q.; Chen, Y.; Liao, Y.; Zhou, F.; Zhang, C.; Shao, L.; Feng, J.; He, T.; Ning, W.; Kong, Y.; Huo, Y.; He, A.; Liu, B.; Zhang, J.; Adams, R.; He, Y.; Tang, F.; Bian, X.; Luo, J. Meningeal lymphatic vessels regulate brain tumor drainage and immunity. Cell Res., 2020, 30(3), 229-243. doi: 10.1038/s41422-020-0287-8 PMID: 32094452
  77. Izen, R.M.; Yamazaki, T.; Nishinaka-Arai, Y.; Hong, Y.K.; Mukouyama, Y.S. Postnatal development of lymphatic vasculature in the brain meninges. Dev. Dyn., 2018, 247(5), 741-753. doi: 10.1002/dvdy.24624 PMID: 29493038
  78. Antila, S.; Karaman, S.; Nurmi, H.; Airavaara, M.; Voutilainen, M.H.; Mathivet, T.; Chilov, D.; Li, Z.; Koppinen, T.; Park, J.H.; Fang, S.; Aspelund, A.; Saarma, M.; Eichmann, A.; Thomas, J.L.; Alitalo, K. Development and plasticity of meningeal lymphatic vessels. J. Exp. Med., 2017, 214(12), 3645-3667. doi: 10.1084/jem.20170391 PMID: 29141865
  79. Mestre, H.; Mori, Y.; Nedergaard, M. The Brain’s glymphatic System: Current controversies. Trends Neurosci., 2020, 43(7), 458-466. doi: 10.1016/j.tins.2020.04.003 PMID: 32423764
  80. Simon, M.; Wang, M.X.; Ismail, O.; Braun, M.; Schindler, A.G.; Reemmer, J.; Wang, Z.; Haveliwala, M.A.; O’Boyle, R.P.; Han, W.Y.; Roese, N.; Grafe, M.; Woltjer, R.; Boison, D.; Iliff, J.J. Loss of perivascular aquaporin-4 localization impairs glymphatic exchange and promotes amyloid β plaque formation in mice. Alzheimers Res. Ther., 2022, 14(1), 59. doi: 10.1186/s13195-022-00999-5 PMID: 35473943
  81. Harrison, I.F.; Ismail, O.; Machhada, A.; Colgan, N.; Ohene, Y.; Nahavandi, P.; Ahmed, Z.; Fisher, A.; Meftah, S.; Murray, T.K.; Ottersen, O.P.; Nagelhus, E.A.; O’Neill, M.J.; Wells, J.A.; Lythgoe, M.F. Impaired glymphatic function and clearance of tau in an Alzheimer’s disease model. Brain, 2020, 143(8), 2576-2593. doi: 10.1093/brain/awaa179 PMID: 32705145
  82. Cui, H.; Wang, W.; Zheng, X.; Xia, D.; Liu, H.; Qin, C.; Tian, H.; Teng, J. Decreased AQP4 expression aggravates ɑ-synuclein pathology in Parkinson’s disease mice, possibly via impaired glymphatic clearance. J. Mol. Neurosci., 2021, 71(12), 2500-2513. doi: 10.1007/s12031-021-01836-4 PMID: 33772424
  83. Goulay, R.; Flament, J.; Gauberti, M.; Naveau, M.; Pasquet, N.; Gakuba, C.; Emery, E.; Hantraye, P.; Vivien, D.; Aron-Badin, R.; Gaberel, T. Subarachnoid hemorrhage severely impairs brain parenchymal cerebrospinal fluid circulation in nonhuman primate. Stroke, 2017, 48(8), 2301-2305. doi: 10.1161/STROKEAHA.117.017014 PMID: 28526764
  84. Bolte, A.C.; Dutta, A.B.; Hurt, M.E.; Smirnov, I.; Kovacs, M.A.; McKee, C.A.; Ennerfelt, H.E.; Shapiro, D.; Nguyen, B.H.; Frost, E.L.; Lammert, C.R.; Kipnis, J.; Lukens, J.R. Meningeal lymphatic dysfunction exacerbates traumatic brain injury pathogenesis. Nat. Commun., 2020, 11(1), 4524. doi: 10.1038/s41467-020-18113-4 PMID: 32913280
  85. Li, X.; Qi, L.; Yang, D.; Hao, S.; Zhang, F.; Zhu, X.; Sun, Y.; Chen, C.; Ye, J.; Yang, J.; Zhao, L.; Altmann, D.M.; Cao, S.; Wang, H.; Wei, B. Meningeal lymphatic vessels mediate neurotropic viral drainage from the central nervous system. Nat. Neurosci., 2022, 25(5), 577-587. doi: 10.1038/s41593-022-01063-z PMID: 35524140
  86. Yanev, P.; Poinsatte, K.; Hominick, D.; Khurana, N.; Zuurbier, K.R.; Berndt, M.; Plautz, E.J.; Dellinger, M.T.; Stowe, A.M. Impaired meningeal lymphatic vessel development worsens stroke outcome. J. Cereb. Blood Flow Metab., 2020, 40(2), 263-275. doi: 10.1177/0271678X18822921 PMID: 30621519
  87. Chen, J.; He, J.; Ni, R.; Yang, Q.; Zhang, Y.; Luo, L. Cerebrovascular injuries induce lymphatic invasion into brain parenchyma to guide vascular regeneration in Zebrafish. Dev. Cell, 2019, 49(5), 697-710.e5. doi: 10.1016/j.devcel.2019.03.022 PMID: 31006646
  88. Vieira, J.M.; Norman, S.; Villa del Campo, C.; Cahill, T.J.; Barnette, D.N.; Gunadasa-Rohling, M.; Johnson, L.A.; Greaves, D.R.; Carr, C.A.; Jackson, D.G.; Riley, P.R. The cardiac lymphatic system stimulates resolution of inflammation following myocardial infarction. J. Clin. Invest., 2018, 128(8), 3402-3412. doi: 10.1172/JCI97192 PMID: 29985167
  89. Rosenberg, G.A.; Yang, Y. Vasogenic edema due to tight junction disruption by matrix metalloproteinases in cerebral ischemia. Neurosurg. Focus, 2007, 22(5), 1-9. doi: 10.3171/foc.2007.22.5.5 PMID: 17613235
  90. Khatri, R.; McKinney, A.M.; Swenson, B.; Janardhan, V. Blood-brain barrier, reperfusion injury, and hemorrhagic transformation in acute ischemic stroke. Neurology, 2012, 79(Suppl. 1), S52-S57. doi: 10.1212/WNL.0b013e3182697e70 PMID: 23008413
  91. Semyachkina-Glushkovskaya, O.; Abdurashitov, A.; Dubrovsky, A.; Bragin, D.; Bragina, O.; Shushunova, N.; Maslyakova, G.; Navolokin, N.; Bucharskaya, A.; Tuchind, V.; Kurths, J.; Shirokov, A. Application of optical coherence tomography for in vivo monitoring of the meningeal lymphatic vessels during opening of blood-brain barrier: mechanisms of brain clearing. J. Biomed. Opt., 2017, 22(12), 1-9. doi: 10.1117/1.JBO.22.12.121719 PMID: 29275545
  92. Semyachkina-Glushkovskaya, O.; Navolokin, N.; Shirokov, A.; Terskov, A.; Khorovodov, A.; Mamedova, A.; Klimova, M.; Rafailov, E.; Kurths, J. Meningeal lymphatic pathway of brain clearing from the blood after haemorrhagic injuries. Adv. Exp. Med. Biol., 2020, 1232, 63-68. doi: 10.1007/978-3-030-34461-0_9 PMID: 31893395
  93. Plog, B.A.; Dashnaw, M.L.; Hitomi, E.; Peng, W.; Liao, Y.; Lou, N.; Deane, R.; Nedergaard, M. Biomarkers of traumatic injury are transported from brain to blood via the glymphatic system. J. Neurosci., 2015, 35(2), 518-526. doi: 10.1523/JNEUROSCI.3742-14.2015 PMID: 25589747
  94. Laman, J.D.; Weller, R.O. Drainage of cells and soluble antigen from the CNS to regional lymph nodes. J. Neuroimmune Pharmacol., 2013, 8(4), 840-856. doi: 10.1007/s11481-013-9470-8 PMID: 23695293
  95. Dave, R.S.; Jain, P.; Byrareddy, S.N. Functional meningeal lymphatics and cerebrospinal fluid outflow. J. Neuroimmune Pharmacol., 2018, 13(2), 123-125. doi: 10.1007/s11481-018-9778-5 PMID: 29464588
  96. Iadecola, C.; Anrather, J. The immunology of stroke: from mechanisms to translation. Nat. Med., 2011, 17(7), 796-808. doi: 10.1038/nm.2399 PMID: 21738161
  97. Hayakawa, K.; Miyamoto, N.; Seo, J.H.; Pham, L.D.D.; Kim, K.W.; Lo, E.H.; Arai, K. High‐mobility group box 1 from reactive astrocytes enhances the accumulation of endothelial progenitor cells in damaged white matter. J. Neurochem., 2013, 125(2), 273-280. doi: 10.1111/jnc.12120 PMID: 23227954
  98. Ritzel, R.M.; Patel, A.R.; Grenier, J.M.; Crapser, J.; Verma, R.; Jellison, E.R.; McCullough, L.D. Functional differences between microglia and monocytes after ischemic stroke. J. Neuroinflammation, 2015, 12(1), 106. doi: 10.1186/s12974-015-0329-1 PMID: 26022493
  99. Montaner, J.; Ramiro, L.; Simats, A.; Hernández-Guillamon, M.; Delgado, P.; Bustamante, A.; Rosell, A. Matrix metalloproteinases and ADAMs in stroke. Cell. Mol. Life Sci., 2019, 76(16), 3117-3140. doi: 10.1007/s00018-019-03175-5 PMID: 31165904
  100. Seifert, H.A.; Pennypacker, K.R. Molecular and cellular immune responses to ischemic brain injury. Transl. Stroke Res., 2014, 5(5), 543-553. doi: 10.1007/s12975-014-0349-7 PMID: 24895236
  101. Chamorro, Á.; Meisel, A.; Planas, A.M.; Urra, X.; van de Beek, D.; Veltkamp, R. The immunology of acute stroke. Nat. Rev. Neurol., 2012, 8(7), 401-410. doi: 10.1038/nrneurol.2012.98 PMID: 22664787
  102. Russo, E.; Teijeira, A.; Vaahtomeri, K.; Willrodt, A.H.; Bloch, J.S.; Nitschké, M.; Santambrogio, L.; Kerjaschki, D.; Sixt, M.; Halin, C. Intralymphatic CCL21 promotes tissue egress of dendritic cells through afferent lymphatic vessels. Cell Rep., 2016, 14(7), 1723-1734. doi: 10.1016/j.celrep.2016.01.048 PMID: 26876174
  103. Louveau, A.; Herz, J.; Alme, M.N.; Salvador, A.F.; Dong, M.Q.; Viar, K.E.; Herod, S.G.; Knopp, J.; Setliff, J.C.; Lupi, A.L.; Da Mesquita, S.; Frost, E.L.; Gaultier, A.; Harris, T.H.; Cao, R.; Hu, S.; Lukens, J.R.; Smirnov, I.; Overall, C.C.; Oliver, G.; Kipnis, J. CNS lymphatic drainage and neuroinflammation are regulated by meningeal lymphatic vasculature. Nat. Neurosci., 2018, 21(10), 1380-1391. doi: 10.1038/s41593-018-0227-9 PMID: 30224810
  104. Engelhardt, B.; Carare, R.O.; Bechmann, I.; Flügel, A.; Laman, J.D.; Weller, R.O. Vascular, glial, and lymphatic immune gateways of the central nervous system. Acta Neuropathol., 2016, 132(3), 317-338. doi: 10.1007/s00401-016-1606-5 PMID: 27522506
  105. Esposito, E.; Ahn, B.J.; Shi, J.; Nakamura, Y.; Park, J.H.; Mandeville, E.T.; Yu, Z.; Chan, S.J.; Desai, R.; Hayakawa, A.; Ji, X.; Lo, E.H.; Hayakawa, K. Brain-to-cervical lymph node signaling after stroke. Nat. Commun., 2019, 10(1), 5306. doi: 10.1038/s41467-019-13324-w PMID: 31757960
  106. Xu, Y.; Yuan, L.; Mak, J.; Pardanaud, L.; Caunt, M.; Kasman, I.; Larrivée, B.; del Toro, R.; Suchting, S.; Medvinsky, A.; Silva, J.; Yang, J.; Thomas, J.L.; Koch, A.W.; Alitalo, K.; Eichmann, A.; Bagri, A. Neuropilin-2 mediates VEGF-C-induced lymphatic sprouting together with VEGFR3. J. Cell Biol., 2010, 188(1), 115-130. doi: 10.1083/jcb.200903137 PMID: 20065093
  107. Alitalo, K.; Tammela, T.; Petrova, T.V. Lymphangiogenesis in development and human disease. Nature, 2005, 438(7070), 946-953. doi: 10.1038/nature04480 PMID: 16355212
  108. Yoshimatsu, Y.; Lee, Y.G.; Akatsu, Y.; Taguchi, L.; Suzuki, H.I.; Cunha, S.I.; Maruyama, K.; Suzuki, Y.; Yamazaki, T.; Katsura, A.; Oh, S.P.; Zimmers, T.A.; Lee, S.J.; Pietras, K.; Koh, G.Y.; Miyazono, K.; Watabe, T. Bone morphogenetic protein-9 inhibits lymphatic vessel formation via activin receptor-like kinase 1 during development and cancer progression. Proc. Natl. Acad. Sci. USA, 2013, 110(47), 18940-18945. doi: 10.1073/pnas.1310479110 PMID: 24133138
  109. Shichita, T.; Ito, M.; Morita, R.; Komai, K.; Noguchi, Y.; Ooboshi, H.; Koshida, R.; Takahashi, S.; Kodama, T.; Yoshimura, A. MAFB prevents excess inflammation after ischemic stroke by accelerating clearance of damage signals through MSR1. Nat. Med., 2017, 23(6), 723-732. doi: 10.1038/nm.4312 PMID: 28394332
  110. Liu, K.; Zhu, J.; Chang, Y.; Lin, Z.; Shi, Z.; Li, X.; Chen, X.; Lin, C.; Pan, S.; Huang, K. Attenuation of cerebral edema facilitates recovery of glymphatic system function after status epilepticus. JCI Insight, 2021, 6(17), e151835. doi: 10.1172/jci.insight.151835 PMID: 34494549
  111. Da Mesquita, S.; Louveau, A.; Vaccari, A.; Smirnov, I.; Cornelison, R.C.; Kingsmore, K.M.; Contarino, C.; Onengut-Gumuscu, S.; Farber, E.; Raper, D.; Viar, K.E.; Powell, R.D.; Baker, W.; Dabhi, N.; Bai, R.; Cao, R.; Hu, S.; Rich, S.S.; Munson, J.M.; Lopes, M.B.; Overall, C.C.; Acton, S.T.; Kipnis, J. Functional aspects of meningeal lymphatics in ageing and Alzheimer’s disease. Nature, 2018, 560(7717), 185-191. doi: 10.1038/s41586-018-0368-8 PMID: 30046111
  112. Li, M.; Jia, Q.; Chen, T.; Zhao, Z.; Chen, J.; Zhang, J. The role of vascular endothelial growth factor and vascular endothelial growth inhibitor in clinical outcome of traumatic brain injury. Clin. Neurol. Neurosurg., 2016, 144, 7-13. doi: 10.1016/j.clineuro.2016.02.032 PMID: 26945876
  113. Anrather, J.; Iadecola, C. Inflammation and Stroke: An overview. Neurotherapeutics, 2016, 13(4), 661-670. doi: 10.1007/s13311-016-0483-x PMID: 27730544
  114. Chamorro, Á.; Hallenbeck, J. The harms and benefits of inflammatory and immune responses in vascular disease. Stroke, 2006, 37(2), 291-293. doi: 10.1161/01.STR.0000200561.69611.f8 PMID: 16410468
  115. Geocadin, R.G.; Tahsili-Fahadan, P.; Farrokh, S. Hypothermia and brain inflammation after cardiac arrest. Brain Circ., 2018, 4(1), 1-13. doi: 10.4103/bc.BC_4_18 PMID: 30276330
  116. Rochfort, K.D.; Cummins, P.M. Cytokine-mediated dysregulation of zonula occludens-1 properties in human brain microvascular endothelium. Microvasc. Res., 2015, 100, 48-53. doi: 10.1016/j.mvr.2015.04.010 PMID: 25953589
  117. dell’Aquila, M.; Maiese, A.; De Matteis, A.; Viola, R.V.; Arcangeli, M.; La Russa, R.; Fineschi, V. Traumatic brain injury: Estimate of the age of the injury based on neuroinflammation, endothelial activation markers and adhesion molecules. Histol. Histopathol., 2021, 36(8), 795-806. PMID: 33625724
  118. Gelderblom, M.; Leypoldt, F.; Steinbach, K.; Behrens, D.; Choe, C.U.; Siler, D.A.; Arumugam, T.V.; Orthey, E.; Gerloff, C.; Tolosa, E.; Magnus, T. Temporal and spatial dynamics of cerebral immune cell accumulation in stroke. Stroke, 2009, 40(5), 1849-1857. doi: 10.1161/STROKEAHA.108.534503 PMID: 19265055
  119. Jayaraj, R.L.; Azimullah, S.; Beiram, R.; Jalal, F.Y.; Rosenberg, G.A. Neuroinflammation: Friend and foe for ischemic stroke. J. Neuroinflammation, 2019, 16(1), 142. doi: 10.1186/s12974-019-1516-2 PMID: 31291966
  120. Ahn, S.J.; Anrather, J.; Nishimura, N.; Schaffer, C.B. Diverse inflammatory response after cerebral microbleeds includes coordinated microglial migration and proliferation. Stroke, 2018, 49(7), 1719-1726. doi: 10.1161/STROKEAHA.117.020461 PMID: 29844029
  121. Neri, M.; Frati, A.; Turillazzi, E.; Cantatore, S.; Cipolloni, L.; Di Paolo, M.; Frati, P.; La Russa, R.; Maiese, A.; Scopetti, M.; Santurro, A.; Sessa, F.; Zamparese, R.; Fineschi, V. Immunohistochemical evaluation of aquaporin-4 and its correlation with CD68, IBA-1, HIF-1α, GFAP, and CD15 expressions in fatal traumatic brain injury. Int. J. Mol. Sci., 2018, 19(11), 3544. doi: 10.3390/ijms19113544 PMID: 30423808
  122. Prinz, M.; Priller, J. Microglia and brain macrophages in the molecular age: from origin to neuropsychiatric disease. Nat. Rev. Neurosci., 2014, 15(5), 300-312. doi: 10.1038/nrn3722 PMID: 24713688
  123. Ketheeswaranathan, P.; Turner, N.A.; Spary, E.J.; Batten, T.F.C.; McColl, B.W.; Saha, S. Changes in glutamate transporter expression in mouse forebrain areas following focal ischemia. Brain Res., 2011, 1418, 93-103. doi: 10.1016/j.brainres.2011.08.029 PMID: 21911209
  124. Wang, H.; Song, G.; Chuang, H.; Chiu, C.; Abdelmaksoud, A.; Ye, Y.; Zhao, L. Portrait of glial scar in neurological diseases. Int. J. Immunopathol. Pharmacol., 2018, 31. doi: 10.1177/2058738418801406 PMID: 30309271
  125. Ferrara, M.; Bertozzi, G.; Volonnino, G.; Di Fazio, N.; Frati, P.; Cipolloni, L.; La Russa, R.; Fineschi, V. Glymphatic system a window on TBI pathophysiology: A systematic review. Int. J. Mol. Sci., 2022, 23(16), 9138. doi: 10.3390/ijms23169138 PMID: 36012401
  126. Yang, J.; Wang, T.; Jin, X.; Wang, G.; Zhao, F.; Jin, Y. Roles of crosstalk between astrocytes and microglia in triggering neuroinflammation and brain edema formation in 1,2-dichloroethane-intoxicated mice. Cells, 2021, 10(10), 2647. doi: 10.3390/cells10102647 PMID: 34685627
  127. Lai, A.Y.; Todd, K.G. Microglia in cerebral ischemia: molecular actions and interactionsThis paper is one of a selection of papers published in this Special Issue, entitled Young Investigator’s Forum. Can. J. Physiol. Pharmacol., 2006, 84(1), 49-59. doi: 10.1139/Y05-143 PMID: 16845890
  128. Almolda, B.; de Labra, C.; Barrera, I.; Gruart, A.; Delgado-Garcia, J.M.; Villacampa, N.; Vilella, A.; Hofer, M.J.; Hidalgo, J.; Campbell, I.L.; González, B.; Castellano, B. Alterations in microglial phenotype and hippocampal neuronal function in transgenic mice with astrocyte-targeted production of interleukin-10. Brain Behav. Immun., 2015, 45, 80-97. doi: 10.1016/j.bbi.2014.10.015 PMID: 25449577
  129. Ortega-Gómez, A.; Perretti, M.; Soehnlein, O. Resolution of inflammation: an integrated view. EMBO Mol. Med., 2013, 5(5), 661-674. doi: 10.1002/emmm.201202382 PMID: 23592557
  130. Tang, Y.; Le, W. Differential roles of M1 and M2 microglia in neurodegenerative diseases. Mol. Neurobiol., 2016, 53(2), 1181-1194. doi: 10.1007/s12035-014-9070-5 PMID: 25598354
  131. Sica, A.; Mantovani, A. Macrophage plasticity and polarization: In vivo veritas. J. Clin. Invest., 2012, 122(3), 787-795. doi: 10.1172/JCI59643 PMID: 22378047
  132. Kigerl, K.A.; Gensel, J.C.; Ankeny, D.P.; Alexander, J.K.; Donnelly, D.J.; Popovich, P.G. Identification of two distinct macrophage subsets with divergent effects causing either neurotoxicity or regeneration in the injured mouse spinal cord. J. Neurosci., 2009, 29(43), 13435-13444. doi: 10.1523/JNEUROSCI.3257-09.2009 PMID: 19864556
  133. Singhal, G.; Baune, B.T. Microglia: An interface between the loss of neuroplasticity and depression. Front. Cell. Neurosci., 2017, 11, 270. doi: 10.3389/fncel.2017.00270 PMID: 28943841
  134. Shinozaki, Y.; Shibata, K.; Yoshida, K.; Shigetomi, E.; Gachet, C.; Ikenaka, K.; Tanaka, K.F.; Koizumi, S. Transformation of astrocytes to a neuroprotective phenotype by microglia via P2Y1 receptor downregulation. Cell Rep., 2017, 19(6), 1151-1164. doi: 10.1016/j.celrep.2017.04.047 PMID: 28494865
  135. Shindo, A.; Maki, T.; Mandeville, E.T.; Liang, A.C.; Egawa, N.; Itoh, K.; Itoh, N.; Borlongan, M.; Holder, J.C.; Chuang, T.T.; McNeish, J.D.; Tomimoto, H.; Lok, J.; Lo, E.H.; Arai, K. Astrocyte-derived pentraxin 3 supports blood-brain barrier integrity under acute phase of stroke. Stroke, 2016, 47(4), 1094-1100. doi: 10.1161/STROKEAHA.115.012133 PMID: 26965847
  136. Okoreeh, A.K.; Bake, S.; Sohrabji, F. Astrocyte‐specific insulin‐like growth factor‐1 gene transfer in aging female rats improves stroke outcomes. Glia, 2017, 65(7), 1043-1058. doi: 10.1002/glia.23142 PMID: 28317235
  137. Morizawa, Y.M.; Hirayama, Y.; Ohno, N.; Shibata, S.; Shigetomi, E.; Sui, Y.; Nabekura, J.; Sato, K.; Okajima, F.; Takebayashi, H.; Okano, H.; Koizumi, S. Reactive astrocytes function as phagocytes after brain ischemia via ABCA1-mediated pathway. Nat. Commun., 2017, 8(1), 28. doi: 10.1038/s41467-017-00037-1 PMID: 28642575
  138. Li, P.; Gan, Y.; Sun, B.L.; Zhang, F.; Lu, B.; Gao, Y.; Liang, W.; Thomson, A.W.; Chen, J.; Hu, X. Adoptive regulatory T‐cell therapy protects against cerebral ischemia. Ann. Neurol., 2013, 74(3), 458-471. doi: 10.1002/ana.23815 PMID: 23674483
  139. Park, K.P.; Rosell, A.; Foerch, C.; Xing, C.; Kim, W.J.; Lee, S.; Opdenakker, G.; Furie, K.L.; Lo, E.H. Plasma and brain matrix metalloproteinase-9 after acute focal cerebral ischemia in rats. Stroke, 2009, 40(8), 2836-2842. doi: 10.1161/STROKEAHA.109.554824 PMID: 19556529
  140. Liesz, A.; Hu, X.; Kleinschnitz, C.; Offner, H. Functional role of regulatory lymphocytes in stroke: facts and controversies. Stroke, 2015, 46(5), 1422-1430. doi: 10.1161/STROKEAHA.114.008608 PMID: 25791715
  141. Xie, L.; Choudhury, G.R.; Winters, A.; Yang, S.H.; Jin, K. Cerebral regulatory T cells restrain microglia/macrophage‐mediated inflammatory responses via IL‐10. Eur. J. Immunol., 2015, 45(1), 180-191. doi: 10.1002/eji.201444823 PMID: 25329858
  142. Ito, M.; Komai, K.; Mise-Omata, S.; Iizuka-Koga, M.; Noguchi, Y.; Kondo, T.; Sakai, R.; Matsuo, K.; Nakayama, T.; Yoshie, O.; Nakatsukasa, H.; Chikuma, S.; Shichita, T.; Yoshimura, A. Brain regulatory T cells suppress astrogliosis and potentiate neurological recovery. Nature, 2019, 565(7738), 246-250. doi: 10.1038/s41586-018-0824-5 PMID: 30602786
  143. Ruan, L.; Lau, B.W.M.; Wang, J.; Huang, L. ZhuGe, Q.; Wang, B.; Jin, K.; So, K.F. Neurogenesis in neurological and psychiatric diseases and brain injury: From bench to bedside. Prog. Neurobiol., 2014, 115, 116-137. doi: 10.1016/j.pneurobio.2013.12.006 PMID: 24384539
  144. Müller, M.; Frese, A.; Nassenstein, I.; Hoppen, M.; Marziniak, M.; Ringelstein, E.B.; Kim, K.S.; Schäbitz, W.R.; Kraus, J. Serum from interferon-β-1b-treated patients with early multiple sclerosis stabilizes the blood-brain barrier in vitro. Mult. Scler., 2012, 18(2), 236-239. doi: 10.1177/1352458511416837 PMID: 21844066
  145. Defazio, G.; Livrea, P.; Giorelli, M.; Martino, D.; Roselli, F.; Ricchiuti, F.; Trojano, M. Interferon β-1a downregulates TNFα-induced intercellular adhesion molecule 1 expression on brain microvascular endothelial cells through a tyrosine kinase-dependent pathway. Brain Res., 2000, 881(2), 227-230. doi: 10.1016/S0006-8993(00)02814-6 PMID: 11036165
  146. Veldhuis, W.B.; Derksen, J.W.; Floris, S.; van der Meide, P.H.; de Vries, H.E.; Schepers, J.; Vos, I.M.P.; Dijkstra, C.D.; Kappelle, L.J.; Nicolay, K.; Bär, P.R. Interferon-beta blocks infiltration of inflammatory cells and reduces infarct volume after ischemic stroke in the rat. J. Cereb. Blood Flow Metab., 2003, 23(9), 1029-1039. doi: 10.1097/01.WCB.0000080703.47016.B6 PMID: 12973019
  147. Bonaventura, A.; Liberale, L.; Vecchié, A.; Casula, M.; Carbone, F.; Dallegri, F.; Montecucco, F. Update on inflammatory biomarkers and treatments in ischemic stroke. Int. J. Mol. Sci., 2016, 17(12), 1967. doi: 10.3390/ijms17121967 PMID: 27898011
  148. Pascual, M.; Calvo-Rodriguez, M.; Núñez, L.; Villalobos, C.; Ureña, J.; Guerri, C. Toll‐like receptors in neuroinflammation, neurodegeneration, and alcohol‐induced brain damage. IUBMB Life, 2021, 73(7), 900-915. doi: 10.1002/iub.2510 PMID: 34033211
  149. Sun, G.; Fu, T.; Liu, Z.; Zhang, Y.; Chen, X.; Jin, S.; Chi, F. The rule of brain hematoma pressure gradient and its influence on hypertensive cerebral hemorrhage operation. Sci. Rep., 2021, 11(1), 4599. doi: 10.1038/s41598-021-84108-w PMID: 33633221
  150. Chandra, V.V.R.; Mowliswara Prasad, B.C.; Banavath, H.N.; Chandrasekhar Reddy, K. Cisternostomy versus decompressive craniectomy for the management of traumatic brain injury: A randomized controlled trial. World Neurosurg., 2022, 162, e58-e64. doi: 10.1016/j.wneu.2022.02.067 PMID: 35192970
  151. Ito, U.; Tomita, H.; Yamazaki, S.; Takada, Y.; Inaba, Y. Brain swelling and brain oedema in acute head injury. Acta Neurochir. (Wien), 1986, 79(2-4), 120-124. doi: 10.1007/BF01407455 PMID: 3962741
  152. Mould, W.A.; Carhuapoma, J.R.; Muschelli, J.; Lane, K.; Morgan, T.C.; McBee, N.A.; Bistran-Hall, A.J.; Ullman, N.L.; Vespa, P.; Martin, N.A.; Awad, I.; Zuccarello, M.; Hanley, D.F. Minimally invasive surgery plus recombinant tissue-type plasminogen activator for intracerebral hemorrhage evacuation decreases perihematomal edema. Stroke, 2013, 44(3), 627-634. doi: 10.1161/STROKEAHA.111.000411 PMID: 23391763
  153. Schneweis, S.; Grond, M.; Staub, F.; Brinker, G.; Neveling, M.; Dohmen, C.; Graf, R.; Heiss, W.D. Predictive value of neurochemical monitoring in large middle cerebral artery infarction. Stroke, 2001, 32(8), 1863-1867. doi: 10.1161/01.STR.32.8.1863 PMID: 11486118
  154. Rosenberg, G.A. Ischemic brain edema. Prog. Cardiovasc. Dis., 1999, 42(3), 209-216. doi: 10.1016/S0033-0620(99)70003-4 PMID: 10598921
  155. Wise, B.L.; Chater, N. The value of hypertonic mannitol solution in decreasing brain mass and lowering cerebro-spinal-fluid pressure. J. Neurosurg., 1962, 19(12), 1038-1043. doi: 10.3171/jns.1962.19.12.1038 PMID: 14001309
  156. Todd, M.M.; Tommasino, C.; Moore, S. Cerebral effects of isovolemic hemodilution with a hypertonic saline solution. J. Neurosurg., 1985, 63(6), 944-948. doi: 10.3171/jns.1985.63.6.0944 PMID: 4056907
  157. Kaufmann, A.M.; Cardoso, E.R. Aggravation of vasogenic cerebral edema by multiple-dose mannitol. J. Neurosurg., 1992, 77(4), 584-589. doi: 10.3171/jns.1992.77.4.0584 PMID: 1527619
  158. Li, S.; Sun, H.; Liu, X.; Ren, X.; Hao, S.; Zeng, M.; Wang, D.; Dong, J.; Kan, Q.; Peng, Y.; Han, R. Mannitol improves intraoperative brain relaxation in patients with a midline shift undergoing supratentorial tumor surgery: A randomized controlled trial. J. Neurosurg. Anesthesiol., 2020, 32(4), 307-314. doi: 10.1097/ANA.0000000000000585 PMID: 30789384
  159. Frank, J.I. Large hemispheric infarction, deterioration, and intracranial pressure. Neurology, 1995, 45(7), 1286-1290. doi: 10.1212/WNL.45.7.1286 PMID: 7617183
  160. Riha, H.M.; Erdman, M.J.; Vandigo, J.E.; Kimmons, L.A.; Goyal, N.; Davidson, K.E.; Pandhi, A.; Jones, G.M. Impact of moderate hyperchloremia on clinical outcomes in intracerebral hemorrhage patients treated with continuous infusion hypertonic saline: A pilot study. Crit. Care Med., 2017, 45(9), e947-e953. doi: 10.1097/CCM.0000000000002522 PMID: 28538442
  161. Cooper, D.J.; Rosenfeld, J.V.; Murray, L.; Arabi, Y.M.; Davies, A.R.; D’Urso, P.; Kossmann, T.; Ponsford, J.; Seppelt, I.; Reilly, P.; Wolfe, R. Decompressive craniectomy in diffuse traumatic brain injury. N. Engl. J. Med., 2011, 364(16), 1493-1502. doi: 10.1056/NEJMoa1102077 PMID: 21434843
  162. Hutchinson, P.J.; Kolias, A.G.; Timofeev, I.S.; Corteen, E.A.; Czosnyka, M.; Timothy, J.; Anderson, I.; Bulters, D.O.; Belli, A.; Eynon, C.A.; Wadley, J.; Mendelow, A.D.; Mitchell, P.M.; Wilson, M.H.; Critchley, G.; Sahuquillo, J.; Unterberg, A.; Servadei, F.; Teasdale, G.M.; Pickard, J.D.; Menon, D.K.; Murray, G.D.; Kirkpatrick, P.J. Trial of decompressive craniectomy for traumatic intracranial hypertension. N. Engl. J. Med., 2016, 375(12), 1119-1130. doi: 10.1056/NEJMoa1605215 PMID: 27602507
  163. Simard, J.M.; Chen, M.; Tarasov, K.V.; Bhatta, S.; Ivanova, S.; Melnitchenko, L.; Tsymbalyuk, N.; West, G.A.; Gerzanich, V. Newly expressed SUR1-regulated NCCa-ATP channel mediates cerebral edema after ischemic stroke. Nat. Med., 2006, 12(4), 433-440. doi: 10.1038/nm1390 PMID: 16550187
  164. Deng, G.; Ma, C.; Zhao, H.; Zhang, S.; Liu, J.; Liu, F.; Chen, Z.; Chen, A.T.; Yang, X.; Avery, J.; Zou, P.; Du, F.; Lim, K.; Holden, D.; Li, S.; Carson, R.E.; Huang, Y.; Chen, Q.; Kimberly, W.T.; Simard, J.M.; Sheth, K.N.; Zhou, J. Anti-edema and antioxidant combination therapy for ischemic stroke via glyburide-loaded betulinic acid nanoparticles. Theranostics, 2019, 9(23), 6991-7002. doi: 10.7150/thno.35791 PMID: 31660082
  165. Papadopoulos, M.C.; Verkman, A.S. Aquaporin water channels in the nervous system. Nat. Rev. Neurosci., 2013, 14(4), 265-277. doi: 10.1038/nrn3468 PMID: 23481483
  166. Mdzinarishvili, A.; Sutariya, V.; Talasila, P.K.; Geldenhuys, W.J.; Sadana, P. Engineering triiodothyronine (T3) nanoparticle for use in ischemic brain stroke. Drug Deliv. Transl. Res., 2013, 3(4), 309-317. doi: 10.1007/s13346-012-0117-8 PMID: 23864999
  167. Sadana, P.; Coughlin, L.; Burke, J.; Woods, R.; Mdzinarishvili, A. Anti-edema action of thyroid hormone in MCAO model of ischemic brain stroke: Possible association with AQP4 modulation. J. Neurol. Sci., 2015, 354(1-2), 37-45. doi: 10.1016/j.jns.2015.04.042 PMID: 25963308
  168. Wei, X.; Zhang, B.; Cheng, L.; Chi, M.; Deng, L.; Pan, H.; Yao, X.; Wang, G. Hydrogen sulfide induces neuroprotection against experimental stroke in rats by down-regulation of AQP4 via activating PKC. Brain Res., 2015, 1622, 292-299. doi: 10.1016/j.brainres.2015.07.001 PMID: 26168888
  169. Catalin, B.; Rogoveanu, O.C.; Pirici, I.; Balseanu, T.A.; Stan, A.; Tudorica, V.; Balea, M.; Mindrila, I.; Albu, C.V.; Mohamed, G.; Pirici, D.; Muresanu, D.F. Cerebrolysin and aquaporin 4 inhibition improve pathological and motor recovery after ischemic stroke. CNS Neurol. Disord. Drug Targets, 2018, 17(4), 299-308. doi: 10.2174/1871527317666180425124340 PMID: 29692268
  170. Yao, Y.; Zhang, Y.; Liao, X.; Yang, R.; Lei, Y.; Luo, J. Potential therapies for cerebral edema after ischemic stroke: A mini review. Front. Aging Neurosci., 2021, 12, 618819. doi: 10.3389/fnagi.2020.618819 PMID: 33613264
  171. Farr, G.W.; Hall, C.H.; Farr, S.M.; Wade, R.; Detzel, J.M.; Adams, A.G.; Buch, J.M.; Beahm, D.L.; Flask, C.A.; Xu, K.; LaManna, J.C.; McGuirk, P.R.; Boron, W.F.; Pelletier, M.F. Functionalized phenylbenzamides inhibit aquaporin-4 reducing cerebral edema and improving outcome in two models of CNS Injury. Neuroscience, 2019, 404, 484-498. doi: 10.1016/j.neuroscience.2019.01.034 PMID: 30738082
  172. Löscher, W.; Kaila, K. CNS pharmacology of NKCC1 inhibitors. Neuropharmacology, 2022, 205, 108910. doi: 10.1016/j.neuropharm.2021.108910 PMID: 34883135
  173. Wang, F.; Wang, X.; Shapiro, L.A.; Cotrina, M.L.; Liu, W.; Wang, E.W.; Gu, S.; Wang, W.; He, X.; Nedergaard, M.; Huang, J.H. NKCC1 up-regulation contributes to early post-traumatic seizures and increased post-traumatic seizure susceptibility. Brain Struct. Funct., 2017, 222(3), 1543-1556. doi: 10.1007/s00429-016-1292-z PMID: 27586142
  174. Zhang, M.; Cui, Z.; Cui, H.; Cao, Y.; Wang, Y.; Zhong, C. Astaxanthin alleviates cerebral edema by modulating NKCC1 and AQP4 expression after traumatic brain injury in mice. BMC Neurosci., 2016, 17(1), 60. doi: 10.1186/s12868-016-0295-2 PMID: 27581370
  175. Zhang, J.; Pu, H.; Zhang, H.; Wei, Z.; Jiang, X.; Xu, M.; Zhang, L.; Zhang, W.; Liu, J.; Meng, H.; Stetler, R.A.; Sun, D.; Chen, J.; Gao, Y.; Chen, L. Inhibition of Na+-K+-2Cl− cotransporter attenuates blood-brain-barrier disruption in a mouse model of traumatic brain injury. Neurochem. Int., 2017, 111, 23-31. doi: 10.1016/j.neuint.2017.05.020 PMID: 28577991
  176. Yan, X.; Liu, J.; Wang, X.; Li, W.; Chen, J.; Sun, H. Pretreatment with AQP4 and NKCC1 inhibitors concurrently attenuated spinal cord edema and tissue damage after spinal cord injury in rats. Front. Physiol., 2018, 9, 6. doi: 10.3389/fphys.2018.00006 PMID: 29403391
  177. Jayakumar, A.R.; Panickar, K.S.; Curtis, K.M.; Tong, X.Y.; Moriyama, M.; Norenberg, M.D. Na-K-Cl cotransporter-1 in the mechanism of cell swelling in cultured astrocytes after fluid percussion injury. J. Neurochem., 2011, 117(3), 437-448. doi: 10.1111/j.1471-4159.2011.07211.x PMID: 21306384
  178. Dobrogowska, D.H.; Lossinsky, A.S.; Tarnawski, M.; Vorbrodt, A.W. Increased blood-brain barrier permeability and endothelial abnormalities induced by vascular endothelial growth factor. J. Neurocytol., 1998, 27(3), 163-173. doi: 10.1023/A:1006907608230 PMID: 10640176
  179. Machein, M.R.; Kullmer, J.; Rönicke, V.; Machein, U.; Krieg, M.; Damert, A.; Breier, G.; Risau, W.; Plate, K.H. Differential downregulation of vascular endothelial growth factor by dexamethasone in normoxic and hypoxic rat glioma cells. Neuropathol. Appl. Neurobiol., 1999, 25(2), 104-112. doi: 10.1046/j.1365-2990.1999.00166.x PMID: 10215998
  180. Gonzalez, J.; Kumar, A.J.; Conrad, C.A.; Levin, V.A. Effect of bevacizumab on radiation necrosis of the brain. Int. J. Radiat. Oncol. Biol. Phys., 2007, 67(2), 323-326. doi: 10.1016/j.ijrobp.2006.10.010 PMID: 17236958
  181. Hsu, S.J.; Zhang, C.; Jeong, J.; Lee, S.; McConnell, M.; Utsumi, T.; Iwakiri, Y. Enhanced meningeal lymphatic drainage ameliorates neuroinflammation and hepatic encephalopathy in cirrhotic rats. Gastroenterology, 2021, 160(4), 1315-1329.e13. doi: 10.1053/j.gastro.2020.11.036 PMID: 33227282
  182. Yao, Z-B.; Wen, Y-R.; Yang, J-H.; Wang, X. Induced dural lymphangiogenesis facilities soluble amyloid-beta clearance from brain in a transgenic mouse model of Alzheimer’s disease. Neural Regen. Res., 2018, 13(4), 709-716. doi: 10.4103/1673-5374.230299 PMID: 29722325
  183. Hauglund, N.L.; Kusk, P.; Kornum, B.R.; Nedergaard, M. Meningeal lymphangiogenesis and enhanced glymphatic activity in mice with chronically implanted EEG electrodes. J. Neurosci., 2020, 40(11), 2371-2380. doi: 10.1523/JNEUROSCI.2223-19.2020 PMID: 32047056
  184. Semyachkina-Glushkovskaya, O.; Terskov, A.; Khorovodov, A.; Telnova, V.; Blokhina, I.; Saranceva, E.; Kurths, J. Photodynamic opening of the blood-brain barrier and the meningeal lymphatic system: The new niche in immunotherapy for brain tumors. Pharmaceutics, 2022, 14(12), 2612. doi: 10.3390/pharmaceutics14122612 PMID: 36559105
  185. Jha, R.M.; Raikwar, S.P.; Mihaljevic, S.; Casabella, A.M.; Catapano, J.S.; Rani, A.; Desai, S.; Gerzanich, V.; Simard, J.M. Emerging therapeutic targets for cerebral edema. Expert Opin. Ther. Targets, 2021, 25(11), 917-938. doi: 10.1080/14728222.2021.2010045 PMID: 34844502
  186. Hsu, M.; Rayasam, A.; Kijak, J.A.; Choi, Y.H.; Harding, J.S.; Marcus, S.A.; Karpus, W.J.; Sandor, M.; Fabry, Z. Neuroinflammation-induced lymphangiogenesis near the cribriform plate contributes to drainage of CNS-derived antigens and immune cells. Nat. Commun., 2019, 10(1), 229. doi: 10.1038/s41467-018-08163-0 PMID: 30651548
  187. Hablitz, L.M.; Vinitsky, H.S.; Sun, Q.; Stæger, F.F.; Sigurdsson, B.; Mortensen, K.N.; Lilius, T.O.; Nedergaard, M. Increased glymphatic influx is correlated with high EEG delta power and low heart rate in mice under anesthesia. Sci. Adv., 2019, 5(2), eaav5447. doi: 10.1126/sciadv.aav5447 PMID: 30820460
  188. Song, E.; Mao, T.; Dong, H.; Boisserand, L.S.B.; Antila, S.; Bosenberg, M.; Alitalo, K.; Thomas, J.L.; Iwasaki, A. VEGF-C-driven lymphatic drainage enables immunosurveillance of brain tumours. Nature, 2020, 577(7792), 689-694. doi: 10.1038/s41586-019-1912-x PMID: 31942068
  189. Shibata-Germanos, S.; Goodman, J.R.; Grieg, A.; Trivedi, C.A.; Benson, B.C.; Foti, S.C.; Faro, A.; Castellan, R.F.P.; Correra, R.M.; Barber, M.; Ruhrberg, C.; Weller, R.O.; Lashley, T.; Iliff, J.J.; Hawkins, T.A.; Rihel, J. Structural and functional conservation of non-lumenized lymphatic endothelial cells in the mammalian leptomeninges. Acta Neuropathol., 2020, 139(2), 383-401. doi: 10.1007/s00401-019-02091-z PMID: 31696318
  190. Mezey, É.; Szalayova, I.; Hogden, C.T.; Brady, A.; Dósa, Á.; Sótonyi, P.; Palkovits, M. An immunohistochemical study of lymphatic elements in the human brain. Proc. Natl. Acad. Sci. USA, 2021, 118(3), e2002574118. doi: 10.1073/pnas.2002574118 PMID: 33446503
  191. Da Mesquita, S.; Papadopoulos, Z.; Dykstra, T.; Brase, L.; Farias, F.G.; Wall, M.; Jiang, H.; Kodira, C.D.; de Lima, K.A.; Herz, J.; Louveau, A.; Goldman, D.H.; Salvador, A.F.; Onengut-Gumuscu, S.; Farber, E.; Dabhi, N.; Kennedy, T.; Milam, M.G.; Baker, W.; Smirnov, I.; Rich, S.S.; Benitez, B.A.; Karch, C.M.; Perrin, R.J.; Farlow, M.; Chhatwal, J.P.; Holtzman, D.M.; Cruchaga, C.; Harari, O.; Kipnis, J. Meningeal lymphatics affect microglia responses and anti-Aβ immunotherapy. Nature, 2021, 593(7858), 255-260. doi: 10.1038/s41586-021-03489-0 PMID: 33911285
  192. Hsu, M.; Laaker, C.; Madrid, A.; Herbath, M.; Choi, Y.H.; Sandor, M.; Fabry, Z. Neuroinflammation creates an immune regulatory niche at the meningeal lymphatic vasculature near the cribriform plate. Nat. Immunol., 2022, 23(4), 581-593. doi: 10.1038/s41590-022-01158-6 PMID: 35347285
  193. Dai, W.; Yang, M.; Xia, P.; Xiao, C.; Huang, S.; Zhang, Z.; Cheng, X.; Li, W.; Jin, J.; Zhang, J.; Wu, B.; Zhang, Y.; Wu, P.; Lin, Y.; Wu, W.; Zhao, H.; Zhang, Y.; Lin, W.J.; Ye, X. A functional role of meningeal lymphatics in sex difference of stress susceptibility in mice. Nat. Commun., 2022, 13(1), 4825. doi: 10.1038/s41467-022-32556-x PMID: 35974004
  194. Holstein-Rønsbo, S.; Gan, Y.; Giannetto, M.J.; Rasmussen, M.K.; Sigurdsson, B.; Beinlich, F.R.M.; Rose, L.; Untiet, V.; Hablitz, L.M.; Kelley, D.H.; Nedergaard, M. Glymphatic influx and clearance are accelerated by neurovascular coupling. Nat. Neurosci., 2023, 26(6), 1042-1053. doi: 10.1038/s41593-023-01327-2 PMID: 37264158
  195. Wang, X.; Zhang, A.; Yu, Q.; Wang, Z.; Wang, J.; Xu, P.; Liu, Y.; Lu, J.; Zheng, J.; Li, H.; Qi, Y.; Zhang, J.; Fang, Y.; Xu, S.; Zhou, J.; Wang, K.; Chen, S.; Zhang, J. Single‐Cell RNA sequencing and spatial transcriptomics reveal pathogenesis of meningeal lymphatic dysfunction after experimental subarachnoid hemorrhage. Adv. Sci. (Weinh.), 2023, 10(21), 2301428. doi: 10.1002/advs.202301428 PMID: 37211686
  196. Ye, D.; Chen, S.; Liu, Y.; Weixel, C.; Hu, Z.; Yuan, J.; Chen, H. Mechanically manipulating glymphatic transport by ultrasound combined with microbubbles. Proc. Natl. Acad. Sci. USA, 2023, 120(21), e2212933120. doi: 10.1073/pnas.2212933120 PMID: 37186852
  197. Sheth, K.N.; Elm, J.J.; Beslow, L.A.; Sze, G.K.; Kimberly, W.T. Glyburide advantage in malignant edema and stroke (GAMES-RP) Trial: Rationale and design. Neurocrit. Care, 2016, 24(1), 132-139. doi: 10.1007/s12028-015-0189-7 PMID: 26268138
  198. Vaz, R.; Sarmento, A.; Borges, N.; Cruz, C.; Azevedo, I. Effect of mechanogated membrane ion channel blockers on experimental traumatic brain oedema. Acta Neurochir. (Wien), 1998, 140(4), 371-375. doi: 10.1007/s007010050111 PMID: 9689329
  199. Frelin, C.; Barbry, P.; Vigne, P.; Chassande, O.; Cragoe, E.J., Jr; Lazdunski, M. Amiloride and its analogs as tools to inhibit Na+ transport via the Na+ channel, the Na+/H+ antiport and the Na+/Ca2+ exchanger. Biochimie, 1988, 70(9), 1285-1290. doi: 10.1016/0300-9084(88)90196-4 PMID: 2852509
  200. van Megen, W.H.; Beggs, M.R.; An, S.W.; Ferreira, P.G.; Lee, J.J.; Wolf, M.T.; Alexander, R.T.; Dimke, H. Gentamicin inhibits Ca2+ channel TRPV5 and induces calciuresis independent of the calcium-sensing receptor-claudin-14 pathway. J. Am. Soc. Nephrol., 2022, 33(3), 547-564. doi: 10.1681/ASN.2021030392 PMID: 35022312
  201. Ermakov, Y.A.; Kamaraju, K.; Sengupta, K.; Sukharev, S. Gadolinium ions block mechanosensitive channels by altering the packing and lateral pressure of anionic lipids. Biophys. J., 2010, 98(6), 1018-1027. doi: 10.1016/j.bpj.2009.11.044 PMID: 20303859
  202. Li, X.; Zhu, J.; Liu, K.; Hu, Y.; Huang, K.; Pan, S. Heparin ameliorates cerebral edema and improves outcomes following status epilepticus by protecting endothelial glycocalyx in mice. Exp. Neurol., 2020, 330, 113320. doi: 10.1016/j.expneurol.2020.113320 PMID: 32305420
  203. Krieg, S.M.; Sonanini, S.; Plesnila, N.; Trabold, R. Effect of small molecule vasopressin V1a and V2 receptor antagonists on brain edema formation and secondary brain damage following traumatic brain injury in mice. J. Neurotrauma, 2015, 32(4), 221-227. doi: 10.1089/neu.2013.3274 PMID: 25111427
  204. Serradeil-Le Gal, C.; Wagnon, J.; Garcia, C.; Lacour, C.; Guiraudou, P.; Christophe, B.; Villanova, G.; Nisato, D.; Maffrand, J.P.; Le Fur, G. Biochemical and pharmacological properties of SR 49059, a new, potent, nonpeptide antagonist of rat and human vasopressin V1a receptors. J. Clin. Invest., 1993, 92(1), 224-231. doi: 10.1172/JCI116554 PMID: 8392086
  205. Luh, C.; Kuhlmann, C.R.; Ackermann, B.; Timaru-Kast, R.; Luhmann, H.J.; Behl, C.; Werner, C.; Engelhard, K.; Thal, S.C. Inhibition of myosin light chain kinase reduces brain edema formation after traumatic brain injury. J. Neurochem., 2010, 112(4), 1015-1025. doi: 10.1111/j.1471-4159.2009.06514.x PMID: 19943851
  206. Liu, J.; Jin, X.; Liu, K.J.; Liu, W. Matrix metalloproteinase-2-mediated occludin degradation and caveolin-1-mediated claudin-5 redistribution contribute to blood-brain barrier damage in early ischemic stroke stage. J. Neurosci., 2012, 32(9), 3044-3057. doi: 10.1523/JNEUROSCI.6409-11.2012 PMID: 22378877
  207. Zhou, J.; Tao, P.; Fisher, J.F.; Shi, Q.; Mobashery, S.; Schlegel, H.B. QM/MM studies of the matrix metalloproteinase 2 (MMP2) inhibition mechanism of (S)-SB-3CT and its oxirane analogue. J. Chem. Theory Comput., 2010, 6(11), 3580-3587. doi: 10.1021/ct100382k PMID: 21076643
  208. Besson, V.C.; Chen, X.R.; Plotkine, M.; Marchand-Verrecchia, C. Fenofibrate, a peroxisome proliferator-activated receptor α agonist, exerts neuroprotective effects in traumatic brain injury. Neurosci. Lett., 2005, 388(1), 7-12. doi: 10.1016/j.neulet.2005.06.019 PMID: 16087294
  209. Chen, X.R.; Besson, V.C.; Palmier, B.; Garcia, Y.; Plotkine, M.; Marchand-Leroux, C. Neurological recovery-promoting, anti-inflammatory, and anti-oxidative effects afforded by fenofibrate, a PPAR alpha agonist, in traumatic brain injury. J. Neurotrauma, 2007, 24(7), 1119-1131. doi: 10.1089/neu.2006.0216 PMID: 17610352
  210. Yi, J.H.; Park, S.W.; Brooks, N.; Lang, B.T.; Vemuganti, R. PPARγ agonist rosiglitazone is neuroprotective after traumatic brain injury via anti-inflammatory and anti-oxidative mechanisms. Brain Res., 2008, 1244, 164-172. doi: 10.1016/j.brainres.2008.09.074 PMID: 18948087
  211. Qureshi, M.; Al-Suhaimi, E.A.; Wahid, F.; Shehzad, O.; Shehzad, A. Therapeutic potential of curcumin for multiple sclerosis. Neurol. Sci., 2018, 39(2), 207-214. doi: 10.1007/s10072-017-3149-5 PMID: 29079885
  212. Zhang, Z.; Jiang, M.; Fang, J.; Yang, M.; Zhang, S.; Yin, Y.; Li, D.; Mao, L.; Fu, X.; Hou, Y.; Fu, X.; Fan, C.; Sun, B. Enhanced therapeutic potential of nano-curcumin against subarachnoid hemorrhage-induced blood-brain barrier disruption through inhibition of inflammatory response and oxidative stress. Mol. Neurobiol., 2017, 54(1), 1-14. doi: 10.1007/s12035-015-9635-y PMID: 26708209
  213. Yu, L.; Yi, J.; Ye, G.; Zheng, Y.; Song, Z.; Yang, Y.; Song, Y.; Wang, Z.; Bao, Q. Effects of curcumin on levels of nitric oxide synthase and AQP-4 in a rat model of hypoxia-ischemic brain damage. Brain Res., 2012, 1475, 88-95. doi: 10.1016/j.brainres.2012.07.055 PMID: 22902770
  214. Pan, Y.; Zhang, Y.; Yuan, J.; Ma, X.; Zhao, Y.; Li, Y.; Li, F.; Gong, X.; Zhao, J.; Tang, H.; Wang, J. Tetrahydrocurcumin mitigates acute hypobaric hypoxia‐induced cerebral oedema and inflammation through the NF‐κB/VEGF/MMP‐9 pathway. Phytother. Res., 2020, 34(11), 2963-2977. doi: 10.1002/ptr.6724 PMID: 32573860
  215. Yuan, J.; Liu, W.; Zhu, H.; Zhang, X.; Feng, Y.; Chen, Y.; Feng, H.; Lin, J. Curcumin attenuates blood-brain barrier disruption after subarachnoid hemorrhage in mice. J. Surg. Res., 2017, 207, 85-91. doi: 10.1016/j.jss.2016.08.090 PMID: 27979493
  216. Gao, W.; Zhao, Z.; Yu, G.; Zhou, Z.; Zhou, Y.; Hu, T.; Jiang, R.; Zhang, J. VEGI attenuates the inflammatory injury and disruption of blood-brain barrier partly by suppressing the TLR4/NF-κB signaling pathway in experimental traumatic brain injury. Brain Res., 2015, 1622, 230-239. doi: 10.1016/j.brainres.2015.04.035 PMID: 26080076
  217. Furuse, M.; Nonoguchi, N.; Kawabata, S.; Miyata, T.; Toho, T.; Kuroiwa, T.; Miyatake, S.I. Intratumoral and peritumoral post-irradiation changes, but not viable tumor tissue, may respond to bevacizumab in previously irradiated meningiomas. Radiat. Oncol., 2015, 10(1), 156. doi: 10.1186/s13014-015-0446-0 PMID: 26223253

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers