Emerging Neuroprotective Strategies: Unraveling the Potential of HDAC Inhibitors in Traumatic Brain Injury Management


Cite item

Full Text

Abstract

:Traumatic brain injury (TBI) is a significant global health problem, leading to high rates of mortality and disability. It occurs when an external force damages the brain, causing immediate harm and triggering further pathological processes that exacerbate the condition. Despite its widespread impact, the underlying mechanisms of TBI remain poorly understood, and there are no specific pharmacological treatments available. This creates an urgent need for new, effective neuroprotective drugs and strategies tailored to the diverse needs of TBI patients. In the realm of gene expression regulation, chromatin acetylation plays a pivotal role. This process is controlled by two classes of enzymes: histone acetyltransferase (HAT) and histone deacetylase (HDAC). These enzymes modify lysine residues on histone proteins, thereby determining the acetylation status of chromatin. HDACs, in particular, are involved in the epigenetic regulation of gene expression in TBI. Recent research has highlighted the potential of HDAC inhibitors (HDACIs) as promising neuroprotective agents. These compounds have shown encouraging results in animal models of various neurodegenerative diseases. HDACIs offer multiple avenues for TBI management: they mitigate the neuroinflammatory response, alleviate oxidative stress, inhibit neuronal apoptosis, and promote neurogenesis and axonal regeneration. Additionally, they reduce glial activation, which is associated with TBI-induced neuroinflammation. This review aims to provide a comprehensive overview of the roles and mechanisms of HDACs in TBI and to evaluate the therapeutic potential of HDACIs. By summarizing current knowledge and emphasizing the neuroregenerative capabilities of HDACIs, this review seeks to advance TBI management and contribute to the development of targeted treatments.

About the authors

Lisha Ye

Department of Neurophysiology and Neuropharmacology, Institute of Special Environmental Medicine and Co-Innovation Center of Neuroregeneration, Nantong University

Email: info@benthamscience.net

Wenfeng Li

Department of Neurophysiology and Neuropharmacology, Institute of Special Environmental Medicine and Co-Innovation Center of Neuroregeneration, Nantong University

Email: info@benthamscience.net

Xiaoyan Tang

Department of Neurophysiology and Neuropharmacology, Institute of Special Environmental Medicine and Co-Innovation Center of Neuroregeneration, Nantong University

Email: info@benthamscience.net

Ting Xu

Department of Neurophysiology and Neuropharmacology, Institute of Special Environmental Medicine and Co-Innovation Center of Neuroregeneration, Nantong University

Email: info@benthamscience.net

Guohua Wang

Nantong University, Department of Neurophysiology and Neuropharmacology, Institute of Special Environmental Medicine and Co-Innovation Center of Neuroregeneration,

Author for correspondence.
Email: info@benthamscience.net

References

  1. Dewan, M.C.; Rattani, A.; Gupta, S.; Baticulon, R.E.; Hung, Y.C.; Punchak, M.; Agrawal, A.; Adeleye, A.O.; Shrime, M.G.; Rubiano, A.M.; Rosenfeld, J.V.; Park, K.B. Estimating the global incidence of traumatic brain injury. J. Neurosurg., 2019, 130(4), 1080-1097. doi: 10.3171/2017.10.JNS17352 PMID: 29701556
  2. Badhiwala, J.H.; Wilson, J.R.; Fehlings, M.G. Global burden of traumatic brain and spinal cord injury. Lancet Neurol., 2019, 18(1), 24-25. doi: 10.1016/S1474-4422(18)30444-7 PMID: 30497967
  3. Schneider, A.L.C.; Selvin, E.; Latour, L.; Turtzo, L.C.; Coresh, J.; Mosley, T.; Ling, G.; Gottesman, R.F. Head injury and 25‐year risk of dementia. Alzheimers Dement., 2021, 17(9), 1432-1441. doi: 10.1002/alz.12315 PMID: 33687142
  4. Kaur, P.; Sharma, S. Recent advances in pathophysiology of traumatic brain injury. Curr. Neuropharmacol., 2018, 16(8), 1224-1238. doi: 10.2174/1570159X15666170613083606 PMID: 28606040
  5. McGuire, J.L.; Ngwenya, L.B.; McCullumsmith, R.E. Neurotransmitter changes after traumatic brain injury: An update for new treatment strategies. Mol. Psychiatry, 2019, 24(7), 995-1012. doi: 10.1038/s41380-018-0239-6 PMID: 30214042
  6. Akamatsu, Y.; Hanafy, K.A. Cell death and recovery in traumatic brain injury. Neurotherapeutics, 2020, 17(2), 446-456. doi: 10.1007/s13311-020-00840-7 PMID: 32056100
  7. Kalra, S.; Malik, R.; Singh, G.; Bhatia, S.; Al-Harrasi, A.; Mohan, S.; Albratty, M.; Albarrati, A.; Tambuwala, M.M. Pathogenesis and management of traumatic brain injury (TBI): Role of neuroinflammation and anti-inflammatory drugs. Inflammopharmacology, 2022, 30(4), 1153-1166. doi: 10.1007/s10787-022-01017-8 PMID: 35802283
  8. Park, S.Y.; Kim, J.S. A short guide to histone deacetylases including recent progress on class II enzymes. Exp. Mol. Med., 2020, 52(2), 204-212. doi: 10.1038/s12276-020-0382-4 PMID: 32071378
  9. Demyanenko, S.; Sharifulina, S. The role of post-translational acetylation and deacetylation of signaling proteins and transcription factors after cerebral ischemia: facts and hypotheses. Int. J. Mol. Sci., 2021, 22(15), 7947. doi: 10.3390/ijms22157947 PMID: 34360712
  10. Irfan, J.; Febrianto, M.R.; Sharma, A.; Rose, T.; Mahmudzade, Y.; Di Giovanni, S.; Nagy, I.; Torres-Perez, J.V. DNA Methylation and Non-Coding RNAs during tissue-injury associated pain. Int. J. Mol. Sci., 2022, 23(2), 752. doi: 10.3390/ijms23020752 PMID: 35054943
  11. Dolinar, A.; Ravnik-Glavač, M.; Glavač, D. Epigenetic mechanisms in amyotrophic lateral sclerosis: A short review. Mech. Ageing Dev., 2018, 174, 103-110. doi: 10.1016/j.mad.2018.03.005 PMID: 29545202
  12. Kabir, F.; Atkinson, R.; Cook, A.L.; Phipps, A.J.; King, A.E. The role of altered protein acetylation in neurodegenerative disease. Front. Aging Neurosci., 2023, 14, 1025473. doi: 10.3389/fnagi.2022.1025473 PMID: 36688174
  13. Chatterjee, S.; Cassel, R.; Schneider-Anthony, A.; Merienne, K.; Cosquer, B.; Tzeplaeff, L.; Halder Sinha, S.; Kumar, M.; Chaturbedy, P.; Eswaramoorthy, M.; Le Gras, S.; Keime, C.; Bousiges, O.; Dutar, P.; Petsophonsakul, P.; Rampon, C.; Cassel, J.C.; Buée, L.; Blum, D.; Kundu, T.K.; Boutillier, A.L. Reinstating plasticity and memory in a tauopathy mouse model with an acetyltransferase activator. EMBO Mol. Med., 2018, 10(11), e8587. doi: 10.15252/emmm.201708587 PMID: 30275019
  14. Rodrigues, D.A.; Pinheiro, P.S.M.; Sagrillo, F.S.; Bolognesi, M.L.; Fraga, C.A.M. Histone deacetylases as targets for the treatment of neurodegenerative disorders: Challenges and future opportunities. Med. Res. Rev., 2020, 40(6), 2177-2211. doi: 10.1002/med.21701 PMID: 32588916
  15. Ziemka-Nalecz, M.; Jaworska, J.; Sypecka, J.; Zalewska, T. Histone deacetylase inhibitors: A therapeutic key in neurological disorders? J. Neuropathol. Exp. Neurol., 2018, 77(10), 855-870. doi: 10.1093/jnen/nly073 PMID: 30165682
  16. Matheson, R.; Chida, K.; Lu, H.; Clendaniel, V.; Fisher, M.; Thomas, A.; Lo, E.H.; Selim, M.; Shehadah, A. Neuroprotective effects of selective inhibition of histone deacetylase 3 in experimental stroke. Transl. Stroke Res., 2020, 11(5), 1052-1063. doi: 10.1007/s12975-020-00783-3 PMID: 32016769
  17. Sun, L.; Telles, E.; Karl, M.; Cheng, F.; Luetteke, N.; Sotomayor, E.M.; Miller, R.H.; Seto, E. Loss of HDAC11 ameliorates clinical symptoms in a multiple sclerosis mouse model. Life Sci. Alliance, 2018, 1(5), e201800039. doi: 10.26508/lsa.201800039 PMID: 30456376
  18. Nakatsuka, D.; Izumi, T.; Tsukamoto, T.; Oyama, M.; Nishitomi, K.; Deguchi, Y.; Niidome, K.; Yamakawa, H.; Ito, H.; Ogawa, K. Histone Deacetylase 2 knockdown ameliorates morphological abnormalities of dendritic branches and spines to improve synaptic plasticity in an APP/PS1 Transgenic Mouse Model. Front. Mol. Neurosci., 2021, 14, 782375. doi: 10.3389/fnmol.2021.782375 PMID: 34899185
  19. Macabuag, N.; Esmieu, W.; Breccia, P.; Jarvis, R.; Blackaby, W.; Lazari, O.; Urbonas, L.; Eznarriaga, M.; Williams, R.; Strijbosch, A.; Van de Bospoort, R.; Matthews, K.; Clissold, C.; Ladduwahetty, T.; Vater, H.; Heaphy, P.; Stafford, D.G.; Wang, H.J.; Mangette, J.E.; McAllister, G.; Beaumont, V.; Vogt, T.F.; Wilkinson, H.A.; Doherty, E.M.; Dominguez, C. Developing HDAC4-Selective protein degraders to investigate the role of hdac4 in huntington’s disease pathology. J. Med. Chem., 2022, 65(18), 12445-12459. doi: 10.1021/acs.jmedchem.2c01149 PMID: 36098485
  20. Lu, J.; Frerich, J.M.; Turtzo, L.C.; Li, S.; Chiang, J.; Yang, C.; Wang, X.; Zhang, C.; Wu, C.; Sun, Z.; Niu, G.; Zhuang, Z.; Brady, R.O.; Chen, X. Histone deacetylase inhibitors are neuroprotective and preserve NGF-mediated cell survival following traumatic brain injury. Proc. Natl. Acad. Sci. USA, 2013, 110(26), 10747-10752. doi: 10.1073/pnas.1308950110 PMID: 23754423
  21. Liang, D.Y.; Sahbaie, P.; Sun, Y.; Irvine, K.A.; Shi, X.; Meidahl, A.; Liu, P.; Guo, T.Z.; Yeomans, D.C.; Clark, J.D. TBI-induced nociceptive sensitization is regulated by histone acetylation. IBRO Rep., 2017, 2, 14-23. doi: 10.1016/j.ibror.2016.12.001 PMID: 30135929
  22. Lu, J.; Frerich, J.M.; Turtzo, L.C.; Li, S.; Chiang, J.; Yang, C.; Wang, X.; Zhang, C.; Wu, C.; Sun, Z.; Niu, G.; Zhuang, Z.; Brady, R.O.; Chen, X. Histone deacetylase inhibitors are neuroprotective and preserve NGF-mediated cell survival following traumatic brain injury. Proc. Natl. Acad. Sci. , 2013, 110(26), 10747-10752. doi: 10.1073/pnas.1308950110 PMID: 23754423
  23. Sorby-Adams, A.; Marcoionni, A.; Dempsey, E.; Woenig, J.; Turner, R. The role of neurogenic inflammation in blood-brain barrier disruption and development of cerebral oedema following acute central nervous system (CNS) injury. Int. J. Mol. Sci., 2017, 18(8), 1788. doi: 10.3390/ijms18081788 PMID: 28817088
  24. Hanscom, M.; Loane, D.J.; Shea-Donohue, T. Brain-gut axis dysfunction in the pathogenesis of traumatic brain injury. J. Clin. Invest., 2021, 131(12), e143777. doi: 10.1172/JCI143777 PMID: 34128471
  25. Salehi, A.; Zhang, J.H.; Obenaus, A. Response of the cerebral vasculature following traumatic brain injury. J. Cereb. Blood Flow Metab., 2017, 37(7), 2320-2339. doi: 10.1177/0271678X17701460 PMID: 28378621
  26. Nikolian, V.C.; Dekker, S.E.; Bambakidis, T.; Higgins, G.A.; Dennahy, I.S.; Georgoff, P.E.; Williams, A.M.; Andjelkovic, A.V.; Alam, H.B. Improvement of blood-brain barrier integrity in traumatic brain injury and hemorrhagic shock following treatment with valproic acid and fresh frozen plasma. Crit. Care Med., 2018, 46(1), e59-e66. doi: 10.1097/CCM.0000000000002800 PMID: 29095204
  27. Winkler, E.A.; Minter, D.; Yue, J.K.; Manley, G.T. Cerebral edema in traumatic brain injury. Neurosurg. Clin. N. Am., 2016, 27(4), 473-488. doi: 10.1016/j.nec.2016.05.008 PMID: 27637397
  28. Vella, M.A.; Crandall, M.L.; Patel, M.B. Acute management of traumatic brain injury. Surg. Clin. North Am., 2017, 97(5), 1015-1030. doi: 10.1016/j.suc.2017.06.003 PMID: 28958355
  29. Shi, M.; Chen, F.; Chen, Z.; Yang, W.; Yue, S.; Zhang, J.; Chen, X. Sigma-1 Receptor: A potential therapeutic target for traumatic brain injury. Front. Cell. Neurosci., 2021, 15, 685201. doi: 10.3389/fncel.2021.685201 PMID: 34658788
  30. Sande, A.; West, C. Traumatic brain injury: A review of pathophysiology and management. J. Vet. Emerg. Crit. Care (San Antonio), 2010, 20(2), 177-190. doi: 10.1111/j.1476-4431.2010.00527.x PMID: 20487246
  31. Desai, M.; Jain, A. Neuroprotection in traumatic brain injury. J. Neurosurg. Sci., 2018, 62(5), 563-573. doi: 10.23736/S0390-5616.18.04476-4 PMID: 29790724
  32. Saha, P.; Gupta, R.; Sen, T.; Sen, N. Histone deacetylase 4 downregulation elicits post-traumatic psychiatric disorders through impairment of neurogenesis. J. Neurotrauma, 2019, 36(23), 3284-3296. doi: 10.1089/neu.2019.6373 PMID: 31169064
  33. Biesterveld, B.E.; Pumiglia, L.; Iancu, A.; Shamshad, A.A.; Remmer, H.A.; Siddiqui, A.Z.; O’Connell, R.L.; Wakam, G.K.; Kemp, M.T.; Williams, A.M.; Pai, M.P.; Alam, H.B. Valproic acid treatment rescues injured tissues after traumatic brain injury. J. Trauma Acute Care Surg., 2020, 89(6), 1156-1165. doi: 10.1097/TA.0000000000002918 PMID: 32890344
  34. Sada, N.; Fujita, Y.; Mizuta, N.; Ueno, M.; Furukawa, T.; Yamashita, T. Inhibition of HDAC increases BDNF expression and promotes neuronal rewiring and functional recovery after brain injury. Cell Death Dis., 2020, 11(8), 655. doi: 10.1038/s41419-020-02897-w PMID: 32811822
  35. Pumiglia, L.; Williams, A.M.; Kemp, M.T.; Wakam, G.K.; Alam, H.B.; Biesterveld, B.E. Brain proteomic changes by histone deacetylase inhibition after traumatic brain injury. Trauma Surg. Acute Care Open, 2021, 6(1), e000682. doi: 10.1136/tsaco-2021-000682 PMID: 33880414
  36. Kim, H.J.; Rowe, M.; Ren, M.; Hong, J.S.; Chen, P.S.; Chuang, D.M. Histone deacetylase inhibitors exhibit anti-inflammatory and neuroprotective effects in a rat permanent ischemic model of stroke: multiple mechanisms of action. J. Pharmacol. Exp. Ther., 2007, 321(3), 892-901. doi: 10.1124/jpet.107.120188 PMID: 17371805
  37. Zhao, Y.; Mu, H.; Huang, Y.; Li, S.; Wang, Y.; Stetler, R.A.; Bennett, M.V.L.; Dixon, C.E.; Chen, J.; Shi, Y. Microglia-specific deletion of histone deacetylase 3 promotes inflammation resolution, white matter integrity, and functional recovery in a mouse model of traumatic brain injury. J. Neuroinflammation, 2022, 19(1), 201. doi: 10.1186/s12974-022-02563-2 PMID: 35933343
  38. Chen, X.; Wang, H.; Zhou, M.; Li, X.; Fang, Z.; Gao, H.; Li, Y.; Hu, W. Valproic acid attenuates traumatic brain injury-induced inflammation in vivo: Involvement of autophagy and the Nrf2/ARE Signaling Pathway. Front. Mol. Neurosci., 2018, 11, 117. doi: 10.3389/fnmol.2018.00117 PMID: 29719500
  39. Bowman, G.D.; Poirier, M.G. Post-translational modifications of histones that influence nucleosome dynamics. Chem. Rev., 2015, 115(6), 2274-2295. doi: 10.1021/cr500350x PMID: 25424540
  40. Bannister, A.J.; Kouzarides, T. Regulation of chromatin by histone modifications. Cell Res., 2011, 21(3), 381-395. doi: 10.1038/cr.2011.22 PMID: 21321607
  41. Luger, K.; Dechassa, M.L.; Tremethick, D.J. New insights into nucleosome and chromatin structure: an ordered state or a disordered affair? Nat. Rev. Mol. Cell Biol., 2012, 13(7), 436-447. doi: 10.1038/nrm3382 PMID: 22722606
  42. Fyodorov, D.V.; Zhou, B.R.; Skoultchi, A.I.; Bai, Y. Emerging roles of linker histones in regulating chromatin structure and function. Nat. Rev. Mol. Cell Biol., 2018, 19(3), 192-206. doi: 10.1038/nrm.2017.94 PMID: 29018282
  43. Nunez-Vazquez, R.; Desvoyes, B.; Gutierrez, C. Histone variants and modifications during abiotic stress response. Front. Plant Sci., 2022, 13, 984702. doi: 10.3389/fpls.2022.984702 PMID: 36589114
  44. Zovkic, I.B.; Paulukaitis, B.S.; Day, J.J.; Etikala, D.M.; Sweatt, J.D. Histone H2A.Z subunit exchange controls consolidation of recent and remote memory. Nature, 2014, 515(7528), 582-586. doi: 10.1038/nature13707 PMID: 25219850
  45. Allis, C.D.; Jenuwein, T. The molecular hallmarks of epigenetic control. Nat. Rev. Genet., 2016, 17(8), 487-500. doi: 10.1038/nrg.2016.59 PMID: 27346641
  46. Shen, Y.; Wei, W.; Zhou, D.X. Histone acetylation enzymes coordinate metabolism and gene expression. Trends Plant Sci., 2015, 20(10), 614-621. doi: 10.1016/j.tplants.2015.07.005 PMID: 26440431
  47. Dang, F.; Wei, W. Targeting the acetylation signaling pathway in cancer therapy. Semin. Cancer Biol., 2022, 85, 209-218. doi: 10.1016/j.semcancer.2021.03.001 PMID: 33705871
  48. Ramaiah, M.J.; Tangutur, A.D.; Manyam, R.R. Epigenetic modulation and understanding of HDAC inhibitors in cancer therapy. Life Sci., 2021, 277, 119504. doi: 10.1016/j.lfs.2021.119504 PMID: 33872660
  49. Chen, R.; Zhang, M.; Zhou, Y.; Guo, W.; Yi, M.; Zhang, Z.; Ding, Y.; Wang, Y. The application of histone deacetylases inhibitors in glioblastoma. J. Exp. Clin. Cancer Res., 2020, 39(1), 138. doi: 10.1186/s13046-020-01643-6 PMID: 32682428
  50. Ding, P.; Ma, Z.; Liu, D.; Pan, M.; Li, H.; Feng, Y.; Zhang, Y.; Shao, C.; Jiang, M.; Lu, D.; Han, J.; Wang, J.; Yan, X. Lysine Acetylation/Deacetylation modification of immune-related molecules in cancer immunotherapy. Front. Immunol., 2022, 13, 865975. doi: 10.3389/fimmu.2022.865975 PMID: 35585975
  51. Filippakopoulos, P.; Knapp, S. Targeting bromodomains: Epigenetic readers of lysine acetylation. Nat. Rev. Drug Discov., 2014, 13(5), 337-356. doi: 10.1038/nrd4286 PMID: 24751816
  52. Xue, J.; Wu, G.; Ejaz, U.; Akhtar, F.; Wan, X.; Zhu, Y.; Geng, A.; Chen, Y.; He, S. A novel histone deacetylase inhibitor LT-548-133-1 induces apoptosis by inhibiting HDAC and interfering with microtubule assembly in MCF-7 cells. Invest. New Drugs, 2021, 39(5), 1222-1231. doi: 10.1007/s10637-021-01102-9 PMID: 33788074
  53. Wang, P.; Wang, Z.; Liu, J. Correction to: Role of HDACs in normal and malignant hematopoiesis. Mol. Cancer, 2020, 19(1), 55. doi: 10.1186/s12943-020-01182-w PMID: 32164749
  54. Bahl, S.; Seto, E. Regulation of histone deacetylase activities and functions by phosphorylation and its physiological relevance. Cell. Mol. Life Sci., 2021, 78(2), 427-445. doi: 10.1007/s00018-020-03599-4 PMID: 32683534
  55. Dewanjee, S.; Vallamkondu, J.; Kalra, R.S.; Chakraborty, P.; Gangopadhyay, M.; Sahu, R.; Medala, V.; John, A.; Reddy, P.H.; De Feo, V.; Kandimalla, R. The Emerging Role of HDACs: Pathology and therapeutic targets in diabetes mellitus. Cells, 2021, 10(6), 1340. doi: 10.3390/cells10061340 PMID: 34071497
  56. Kelly, R.D.W.; Cowley, S.M. The physiological roles of histone deacetylase (HDAC) 1 and 2: Complex co-stars with multiple leading parts. Biochem. Soc. Trans., 2013, 41(3), 741-749. doi: 10.1042/BST20130010 PMID: 23697933
  57. Ferguson, B.S.; McKinsey, T.A. Non-sirtuin histone deacetylases in the control of cardiac aging. J. Mol. Cell. Cardiol., 2015, 83, 14-20. doi: 10.1016/j.yjmcc.2015.03.010 PMID: 25791169
  58. Wang, Y.; Abrol, R.; Mak, J.Y.W.; Das Gupta, K.; Ramnath, D.; Karunakaran, D.; Fairlie, D.P.; Sweet, M.J. Histone deacetylase 7: A signalling hub controlling development, inflammation, metabolism and disease. FEBS J., 2022. doi: 10.1111/febs.16437 PMID: 35303381
  59. Jiao, F.; Gong, Z. The beneficial roles of SIRT1 in neuroinflammation-related diseases. Oxid. Med. Cell. Longev., 2020, 2020, 1-19. doi: 10.1155/2020/6782872 PMID: 33014276
  60. Kee, H.J.; Kim, I.; Jeong, M.H. Zinc-dependent histone deacetylases: Potential therapeutic targets for arterial hypertension. Biochem. Pharmacol., 2022, 202, 115111. doi: 10.1016/j.bcp.2022.115111 PMID: 35640713
  61. Nayak, R.; Rosh, I.; Kustanovich, I.; Stern, S. Mood stabilizers in psychiatric disorders and mechanisms learnt from in vitro model systems. Int. J. Mol. Sci., 2021, 22(17), 9315. doi: 10.3390/ijms22179315 PMID: 34502224
  62. Tasneem, S.; Alam, M.M.; Amir, M.; Akhter, M.; Parvez, S.; Verma, G.; Nainwal, L.M.; Equbal, A.; Anwer, T.; Shaquiquzzaman, M. Heterocyclic Moieties as HDAC Inhibitors: Role in cancer therapeutics. Mini Rev. Med. Chem., 2022, 22(12), 1648-1706. doi: 10.2174/1389557519666211221144013 PMID: 34939540
  63. Singh, A.; Bishayee, A.; Pandey, A. Targeting histone deacetylases with natural and synthetic agents: An emerging anticancer strategy. Nutrients, 2018, 10(6), 731. doi: 10.3390/nu10060731 PMID: 29882797
  64. Eckschlager, T.; Plch, J.; Stiborova, M.; Hrabeta, J. Histone deacetylase inhibitors as anticancer drugs. Int. J. Mol. Sci., 2017, 18(7), 1414. doi: 10.3390/ijms18071414 PMID: 28671573
  65. He, J.; Chu, Y.; Li, J.; Meng, Q.; Liu, Y.; Jin, J.; Wang, Y.; Wang, J.; Huang, B.; Shi, L.; Shi, X.; Tian, J.; Zhufeng, Y.; Feng, R.; Xiao, W.; Gan, Y.; Guo, J.; Shao, C.; Su, Y.; Hu, F.; Sun, X.; Yu, J.; Kang, Y.; Li, Z. Intestinal butyrate-metabolizing species contribute to autoantibody production and bone erosion in rheumatoid arthritis. . Sci. Adv., , 2022, 8(6), eabm1511. doi: 10.1126/sciadv.abm1511
  66. Mazzocchi, M.; Goulding, S.R.; Morales-Prieto, N.; Foley, T.; Collins, L.M.; Sullivan, A.M.; O’Keeffe, G.W. Peripheral administration of the Class-IIa HDAC inhibitor MC1568 partially protects against nigrostriatal neurodegeneration in the striatal 6-OHDA rat model of Parkinson’s disease. Brain Behav. Immun., 2022, 102, 151-160. doi: 10.1016/j.bbi.2022.02.025 PMID: 35217173
  67. Brookes, R.L.; Crichton, S.; Wolfe, C.D.A.; Yi, Q.; Li, L.; Hankey, G.J.; Rothwell, P.M.; Markus, H.S. Sodium valproate, a histone deacetylase inhibitor, Is associated with reduced stroke risk after previous ischemic stroke or transient ischemic attack. Stroke, 2018, 49(1), 54-61. doi: 10.1161/STROKEAHA.117.016674 PMID: 29247141
  68. Gupta, R.; Ambasta, R.K.; Kumar, P. Histone deacetylase in neuropathology. Adv. Clin. Chem., 2021, 104, 151-231. doi: 10.1016/bs.acc.2020.09.004 PMID: 34462055
  69. Kumar, S.; Attrish, D.; Srivastava, A.; Banerjee, J.; Tripathi, M.; Chandra, P.S.; Dixit, A.B. Non-histone substrates of histone deacetylases as potential therapeutic targets in epilepsy. Expert Opin. Ther. Targets, 2021, 25(1), 75-85. doi: 10.1080/14728222.2021.1860016 PMID: 33275850
  70. Wang, G.; Jiang, X.; Pu, H.; Zhang, W.; An, C.; Hu, X.; Liou, A.K.F.; Leak, R.K.; Gao, Y.; Chen, J. Scriptaid, a novel histone deacetylase inhibitor, protects against traumatic brain injury via modulation of PTEN and AKT pathway: scriptaid protects against TBI via AKT. Neurotherapeutics, 2013, 10(1), 124-142. doi: 10.1007/s13311-012-0157-2 PMID: 23132328
  71. Wang, G.; Shi, Y.; Jiang, X.; Leak, R.K.; Hu, X.; Wu, Y.; Pu, H.; Li, W.W.; Tang, B.; Wang, Y.; Gao, Y.; Zheng, P.; Bennett, M.V.L.; Chen, J. HDAC inhibition prevents white matter injury by modulating microglia/macrophage polarization through the GSK3β/PTEN/Akt axis. Proc. Natl. Acad. Sci. USA, 2015, 112(9), 2853-2858. doi: 10.1073/pnas.1501441112 PMID: 25691750
  72. Meng, Q.; Yang, G.; Yang, Y.; Ding, F.; Hu, F. Protective effects of histone deacetylase inhibition by Scriptaid on brain injury in neonatal rat models of cerebral ischemia and hypoxia. Int. J. Clin. Exp. Pathol., 2020, 13(2), 179-191. PMID: 32211098
  73. Chang, P.; Williams, A.M.; Bhatti, U.F.; Biesterveld, B.E.; Liu, B.; Nikolian, V.C.; Dennahy, I.S.; Lee, J.; Li, Y.; Alam, H.B. Valproic acid and neural apoptosis, inflammation, and degeneration 30 days after traumatic brain injury, hemorrhagic shock, and polytrauma in a swine model. J. Am. Coll. Surg., 2019, 228(3), 265-275. doi: 10.1016/j.jamcollsurg.2018.12.026 PMID: 30639301
  74. Bambakidis, T.; Dekker, S.E.; Sillesen, M.; Liu, B.; Johnson, C.N.; Jin, G.; de Vries, H.E.; Li, Y.; Alam, H.B. Resuscitation with valproic acid alters inflammatory genes in a porcine model of combined traumatic brain injury and hemorrhagic shock. J. Neurotrauma, 2016, 33(16), 1514-1521. doi: 10.1089/neu.2015.4163 PMID: 26905959
  75. Wakam, G.K.; Biesterveld, B.E.; Pai, M.P.; Kemp, M.T.; O’Connell, R.L.; Williams, A.M.; Srinivasan, A.; Chtraklin, K.; Siddiqui, A.Z.; Bhatti, U.F.; Vercruysse, C.A.; Alam, H.B. Administration of valproic acid in clinically approved dose improves neurologic recovery and decreases brain lesion size in swine subjected to hemorrhagic shock and traumatic brain injury. J. Trauma Acute Care Surg., 2021, 90(2), 346-352. doi: 10.1097/TA.0000000000003036 PMID: 33230090
  76. Dash, P.K.; Orsi, S.A.; Zhang, M.; Grill, R.J.; Pati, S.; Zhao, J.; Moore, A.N. Valproate administered after traumatic brain injury provides neuroprotection and improves cognitive function in rats. PLoS One, 2010, 5(6), e11383. doi: 10.1371/journal.pone.0011383 PMID: 20614021
  77. Bhatti, U.F.; Karnovsky, A.; Dennahy, I.S.; Kachman, M.; Williams, A.M.; Nikolian, V.C.; Biesterveld, B.E.; Siddiqui, A.; O’Connell, R.L.; Liu, B.; Li, Y.; Alam, H.B. Pharmacologic modulation of brain metabolism by valproic acid can induce a neuroprotective environment. J. Trauma Acute Care Surg., 2021, 90(3), 507-514. doi: 10.1097/TA.0000000000003026 PMID: 33196629
  78. Jepsen, C.H.; deMoya, M.A.; Perner, A.; Sillesen, M.; Ostrowski, S.R.; Alam, H.B.; Johansson, P.I. Effect of valproic acid and injury on lesion size and endothelial glycocalyx shedding in a rodent model of isolated traumatic brain injury. J. Trauma Acute Care Surg., 2014, 77(2), 292-297. doi: 10.1097/TA.0000000000000333 PMID: 25058256
  79. Dekker, S.E.; Bambakidis, T.; Sillesen, M.; Liu, B.; Johnson, C.N.; Jin, G.; Li, Y.; Alam, H.B. Effect of pharmacologic resuscitation on the brain gene expression profiles in a swine model of traumatic brain injury and hemorrhage. J. Trauma Acute Care Surg., 2014, 77(6), 906-912. doi: 10.1097/TA.0000000000000345 PMID: 25051383
  80. Dekker, S.E.; Biesterveld, B.E.; Bambakidis, T.; Williams, A.M.; Tagett, R.; Johnson, C.N.; Sillesen, M.; Liu, B.; Li, Y.; Alam, H.B. modulation of brain transcriptome by combined histone deacetylase inhibition and plasma treatment following traumatic brain injury and hemorrhagic shock. Shock, 2021, 55(1), 110-120. doi: 10.1097/SHK.0000000000001605 PMID: 32925172
  81. Weykamp, M.; Nikolian, V.C.; Dennahy, I.S.; Higgins, G.A.; Georgoff, P.E.; Remmer, H.; Ghandour, M.H.; Alam, H.B. Rapid valproic acid-induced modulation of the traumatic proteome in a porcine model of traumatic brain injury and hemorrhagic shock. J. Surg. Res., 2018, 228, 84-92. doi: 10.1016/j.jss.2018.02.046 PMID: 29907235
  82. Shein, N.A.; Grigoriadis, N.; Alexandrovich, A.G.; Simeonidou, C.; Lourbopoulos, A.; Polyzoidou, E.; Trembovler, V.; Mascagni, P.; Dinarello, C.A.; Shohami, E. Histone deacetylase inhibitor ITF2357 is neuroprotective, improves functional recovery, and induces glial apoptosis following experimental traumatic brain injury. FASEB J., 2009, 23(12), 4266-4275. doi: 10.1096/fj.09-134700 PMID: 19723705
  83. Sagarkar, S.; Balasubramanian, N.; Mishra, S.; Choudhary, A.G.; Kokare, D.M.; Sakharkar, A.J. Repeated mild traumatic brain injury causes persistent changes in histone deacetylase function in hippocampus: Implications in learning and memory deficits in rats. Brain Res., 2019, 1711, 183-192. doi: 10.1016/j.brainres.2019.01.022 PMID: 30664848
  84. Li, T.; Zhang, Y.; Han, D.; Hua, R.; Guo, B.; Hu, S.; Yan, X.; Xu, T. Involvement of IL-17 in secondary brain injury after a traumatic brain injury in rats. Neuromol. Med., 2017, 19(4), 541-554. doi: 10.1007/s12017-017-8468-4 PMID: 28916896
  85. Xu, J.; Shi, J.; Zhang, J.; Zhang, Y. Vorinostat: a histone deacetylases (HDAC) inhibitor ameliorates traumatic brain injury by inducing iNOS/Nrf2/ARE pathway. Folia Neuropathol., 2018, 56(3), 179-186. doi: 10.5114/fn.2018.78697 PMID: 30509039
  86. Balasubramanian, N.; Sagarkar, S.; Jadhav, M.; Shahi, N.; Sirmaur, R.; Sakharkar, A.J. Role for histone deacetylation in traumatic brain injury-induced deficits in neuropeptide y in arcuate nucleus: Possible implications in feeding behavior. Neuroendocrinology, 2021, 111(12), 1187-1200. doi: 10.1159/000513638 PMID: 33291119
  87. Dash, P.K.; Orsi, S.A.; Moore, A.N. Histone deactylase inhibition combined with behavioral therapy enhances learning and memory following traumatic brain injury. Neuroscience, 2009, 163(1), 1-8. doi: 10.1016/j.neuroscience.2009.06.028 PMID: 19531374
  88. Nikolian, V.C.; Dennahy, I.S.; Weykamp, M.; Williams, A.M.; Bhatti, U.F.; Eidy, H.; Ghandour, M.H.; Chtraklin, K.; Li, Y.; Alam, H.B. Isoform 6–selective histone deacetylase inhibition reduces lesion size and brain swelling following traumatic brain injury and hemorrhagic shock. J. Trauma Acute Care Surg., 2019, 86(2), 232-239. doi: 10.1097/TA.0000000000002119 PMID: 30399139
  89. Zhang, B.; West, E.J.; Van, K.C.; Gurkoff, G.G.; Zhou, J.; Zhang, X.M.; Kozikowski, A.P.; Lyeth, B.G. HDAC inhibitor increases histone H3 acetylation and reduces microglia inflammatory response following traumatic brain injury in rats. Brain Res., 2008, 1226, 181-191. doi: 10.1016/j.brainres.2008.05.085 PMID: 18582446
  90. Dekker, S.E.; Sillesen, M.; Bambakidis, T.; Andjelkovic, A.V.; Jin, G.; Liu, B.; Boer, C.; Johansson, P.I.; Linzel, D.; Halaweish, I.; Alam, H.B. Treatment with a histone deacetylase inhibitor, valproic acid, is associated with increased platelet activation in a large animal model of traumatic brain injury and hemorrhagic shock. J. Surg. Res., 2014, 190(1), 312-318. doi: 10.1016/j.jss.2014.02.049 PMID: 24694719
  91. Yu, F.; Wang, Z.; Tanaka, M.; Chiu, C.T.; Leeds, P.; Zhang, Y.; Chuang, D.M. Posttrauma cotreatment with lithium and valproate: reduction of lesion volume, attenuation of blood-brain barrier disruption, and improvement in motor coordination in mice with traumatic brain injury. J. Neurosurg., 2013, 119(3), 766-773. doi: 10.3171/2013.6.JNS13135 PMID: 23848820
  92. Wang, W.; Tan, T.; Cao, Q.; Zhang, F.; Rein, B.; Duan, W.M.; Yan, Z. Histone deacetylase inhibition restores behavioral and synaptic function in a mouse model of 16p11.2 Deletion. Int. J. Neuropsychopharmacol., 2022, 25(10), 877-889. doi: 10.1093/ijnp/pyac048 PMID: 35907244
  93. Kusaczuk, M.; Krętowski, R.; Stypułkowska, A.; Cechowska-Pasko, M. Molecular and cellular effects of a novel hydroxamate-based HDAC inhibitor – belinostat – in glioblastoma cell lines: a preliminary report. Invest. New Drugs, 2016, 34(5), 552-564. doi: 10.1007/s10637-016-0372-5 PMID: 27468826
  94. Rodríguez-Gómez, J.A.; Kavanagh, E.; Engskog-Vlachos, P.; Engskog, M.K.R.; Herrera, A.J.; Espinosa-Oliva, A.M.; Joseph, B.; Hajji, N.; Venero, J.L.; Burguillos, M.A. Microglia: Agents of the CNS Pro-inflammatory response. Cells, 2020, 9(7), 1717. doi: 10.3390/cells9071717 PMID: 32709045
  95. Yadav, A.; Huang, T.C.; Chen, S.H.; Ramasamy, T.S.; Hsueh, Y.Y.; Lin, S.P.; Lu, F.I.; Liu, Y.H.; Wu, C.C. Sodium phenylbutyrate inhibits Schwann cell inflammation via HDAC and NFκB to promote axonal regeneration and remyelination. J. Neuroinflammation, 2021, 18(1), 238. doi: 10.1186/s12974-021-02273-1 PMID: 34656124
  96. Cho, W.; Hong, S.H.; Choe, J. IL-4 and HDAC Inhibitors Suppress Cyclooxygenase-2 expression in human follicular dendritic cells. Immune Netw., 2013, 13(2), 75-79. doi: 10.4110/in.2013.13.2.75 PMID: 23700398
  97. Yang, H.; Ni, W.; Wei, P.; Li, S.; Gao, X.; Su, J.; Jiang, H.; Lei, Y.; Zhou, L.; Gu, Y. HDAC inhibition reduces white matter injury after intracerebral hemorrhage. J. Cereb. Blood Flow Metab., 2021, 41(5), 958-974. doi: 10.1177/0271678X20942613 PMID: 32703113
  98. Patnala, R.; Arumugam, T.V.; Gupta, N.; Dheen, S.T. HDAC inhibitor sodium butyrate-mediated epigenetic regulation enhances neuroprotective function of microglia during ischemic stroke. Mol. Neurobiol., 2017, 54(8), 6391-6411. doi: 10.1007/s12035-016-0149-z PMID: 27722928
  99. Czapski, G.A.; Strosznajder, J.B. Glutamate and GABA in microglia-neuron cross-talk in alzheimer’s disease. Int. J. Mol. Sci., 2021, 22(21), 11677. doi: 10.3390/ijms222111677 PMID: 34769106
  100. Nathalie, M.; Polineni, S.P.; Chin, C.N.; Fawcett, D.; Clervius, H.; Maria, Q.S.L.; Legnay, F.; Rego, L.; Mahavadi, A.K.; Jermakowicz, W.J.; Sw-T, L.; Yokobori, S.; Gajavelli, S. Targeting microglial polarization to improve TBI outcomes. CNS Neurol. Disord. Drug Targets, 2021, 20(3), 216-227. doi: 10.2174/1871527319666200918145903 PMID: 32951588
  101. Shein, N.A.; Shohami, E. Histone deacetylase inhibitors as therapeutic agents for acute central nervous system injuries. Mol. Med., 2011, 17(5-6), 448-456. doi: 10.2119/molmed.2011.00038 PMID: 21274503
  102. Glauben, R.; Siegmund, B. Inhibition of histone deacetylases in inflammatory bowel diseases. Mol. Med., 2011, 17(5-6), 426-433. doi: 10.2119/molmed.2011.00069 PMID: 21365125
  103. Dietz, K.C.; Casaccia, P. HDAC inhibitors and neurodegeneration: At the edge between protection and damage. Pharmacol. Res., 2010, 62(1), 11-17. doi: 10.1016/j.phrs.2010.01.011 PMID: 20123018
  104. Gupta, R.; Ambasta, R.K.; Kumar, P. Pharmacological intervention of histone deacetylase enzymes in the neurodegenerative disorders. Life Sci., 2020, 243, 117278. doi: 10.1016/j.lfs.2020.117278 PMID: 31926248
  105. Chen, J.; Zhang, J.; Shaik, N.F.; Yi, B.; Wei, X.; Yang, X.F.; Naik, U.P.; Summer, R.; Yan, G.; Xu, X.; Sun, J. The histone deacetylase inhibitor tubacin mitigates endothelial dysfunction by up-regulating the expression of endothelial nitric oxide synthase. J. Biol. Chem., 2019, 294(51), 19565-19576. doi: 10.1074/jbc.RA119.011317 PMID: 31719145
  106. Shen, Y.; Yang, R.; Zhao, J.; Chen, M.; Chen, S.; Ji, B.; Chen, H.; Liu, D.; Li, L.; Du, G. The histone deacetylase inhibitor belinostat ameliorates experimental autoimmune encephalomyelitis in mice by inhibiting TLR2/MyD88 and HDAC3/NF-κB p65-mediated neuroinflammation. Pharmacol. Res., 2022, 176, 105969. doi: 10.1016/j.phrs.2021.105969 PMID: 34758400
  107. Royce, S.G.; Dang, W.; Yuan, G.; Tran, J.; El-Osta, A.; Karagiannis, T.C.; Tang, M.L.K. Effects of the histone deacetylase inhibitor, trichostatin A, in a chronic allergic airways disease model in mice. Arch. Immunol. Ther. Exp. (Warsz.), 2012, 60(4), 295-306. doi: 10.1007/s00005-012-0180-3 PMID: 22684086
  108. Dinarello, C.A. Anti-inflammatory agents: Present and future. Cell, 2010, 140(6), 935-950. doi: 10.1016/j.cell.2010.02.043 PMID: 20303881
  109. Khatri, N.; Thakur, M.; Pareek, V.; Kumar, S.; Sharma, S.; Datusalia, A.K. Oxidative stress: Major threat in traumatic brain injury. CNS Neurol. Disord. Drug Targets, 2018, 17(9), 689-695. doi: 10.2174/1871527317666180627120501 PMID: 29952272
  110. Calabrese, V.; Cornelius, C.; Dinkova-Kostova, A.T.; Calabrese, E.J.; Mattson, M.P. Cellular stress responses, the hormesis paradigm, and vitagenes: Novel targets for therapeutic intervention in neurodegenerative disorders. Antioxid. Redox Signal., 2010, 13(11), 1763-1811. doi: 10.1089/ars.2009.3074 PMID: 20446769
  111. Calabrese, V.; Cornelius, C.; Dinkova-Kostova, A.T.; Calabrese, E.J. Vitagenes, cellular stress response, and acetylcarnitine: Relevance to hormesis. Biofactors, 2009, 35(2), 146-160. doi: 10.1002/biof.22 PMID: 19449442
  112. Calabrese, V.; Mancuso, C.; Calvani, M.; Rizzarelli, E.; Butterfield, D.A.; Giuffrida Stella, A.M. Nitric oxide in the central nervous system: Neuroprotection versus neurotoxicity. Nat. Rev. Neurosci., 2007, 8(10), 766-775. doi: 10.1038/nrn2214 PMID: 17882254
  113. Renis, M.; Calabrese, V.; Russo, A.; Calderone, A.; Barcellona, M.L.; Rizza, V. Nuclear DNA strand breaks during ethanol-induced oxidative stress in rat brain. FEBS Lett., 1996, 390(2), 153-156. doi: 10.1016/0014-5793(96)00647-3 PMID: 8706848
  114. Misztak, P.; Sowa-Kućma, M.; Szewczyk, B.; Nowak, G. Vorinostat (SAHA) may exert its antidepressant-like effects through the modulation of oxidative stress pathways. Neurotox. Res., 2021, 39(2), 170-181. doi: 10.1007/s12640-020-00317-7 PMID: 33400178
  115. Valvassori, S.S.; Dal-Pont, G.C.; Steckert, A.V.; Varela, R.B.; Lopes-Borges, J.; Mariot, E.; Resende, W.R.; Arent, C.O.; Carvalho, A.F.; Quevedo, J. Sodium butyrate has an antimanic effect and protects the brain against oxidative stress in an animal model of mania induced by ouabain. Psychiatry Res., 2016, 235, 154-159. doi: 10.1016/j.psychres.2015.11.017 PMID: 26654753
  116. Varoglu, A.O.; Yildirim, A.; Aygul, R.; Gundogdu, O.L.; Sahin, Y.N. Effects of valproate, carbamazepine, and levetiracetam on the antioxidant and oxidant systems in epileptic patients and their clinical importance. Clin. Neuropharmacol., 2010, 33(3), 155-157. doi: 10.1097/WNF.0b013e3181d1e133 PMID: 20502135
  117. Fu, J.; Shao, C.J.; Chen, F.R.; Ng, H.K.; Chen, Z.P. Autophagy induced by valproic acid is associated with oxidative stress in glioma cell lines. Neuro-oncol., 2010, 12(4), 328-340. doi: 10.1093/neuonc/nop005 PMID: 20308311
  118. Fourcade, S.; Ruiz, M.; Guilera, C.; Hahnen, E.; Brichta, L.; Naudi, A.; Portero-Otín, M.; Dacremont, G.; Cartier, N.; Wanders, R.; Kemp, S.; Mandel, J.L.; Wirth, B.; Pamplona, R.; Aubourg, P.; Pujol, A. Valproic acid induces antioxidant effects in X-linked adrenoleukodystrophy. Hum. Mol. Genet., 2010, 19(10), 2005-2014. doi: 10.1093/hmg/ddq082 PMID: 20179078
  119. Iranpak, F.; Saberzadeh, J.; Vessal, M.; Takhshid, M.A. Sodium valproate ameliorates aluminum-induced oxidative stress and apoptosis of PC12 cells. Iran. J. Basic Med. Sci., 2019, 22(11), 1353-1358. doi: 10.22038/ijbms.2019.36930.8804 PMID: 32128102
  120. Sun, X.; Sun, Y.; Lin, S.; Xu, Y.; Zhao, D. Histone deacetylase inhibitor valproic acid attenuates high glucose induced endoplasmic reticulum stress and apoptosis in NRK 52E cells. Mol. Med. Rep., 2020, 22(5), 4041-4047. doi: 10.3892/mmr.2020.11496 PMID: 32901855
  121. Wu, M.S.; Li, X.J.; Liu, C.Y.; Xu, Q.; Huang, J.Q.; Gu, S.; Chen, J.X. Effects of histone modification in major depressive disorder. Curr. Neuropharmacol., 2022, 20(7), 1261-1277. doi: 10.2174/1570159X19666210922150043 PMID: 34551699
  122. Faraco, G.; Pancani, T.; Formentini, L.; Mascagni, P.; Fossati, G.; Leoni, F.; Moroni, F.; Chiarugi, A. Pharmacological inhibition of histone deacetylases by suberoylanilide hydroxamic acid specifically alters gene expression and reduces ischemic injury in the mouse brain. Mol. Pharmacol., 2006, 70(6), 1876-1884. doi: 10.1124/mol.106.027912 PMID: 16946032
  123. Lee, H.A.; Lee, E.; Do, G.Y.; Moon, E.K.; Quan, F.S.; Kim, I. Histone deacetylase inhibitor MGCD0103 protects the pancreas from streptozotocin-induced oxidative stress and β-cell death. Biomed. Pharmacother., 2019, 109, 921-929. doi: 10.1016/j.biopha.2018.10.163 PMID: 30551546
  124. Langley, B.; Gensert, J.; Beal, M.; Ratan, R. Remodeling chromatin and stress resistance in the central nervous system: histone deacetylase inhibitors as novel and broadly effective neuroprotective agents. Curr. Drug Targets CNS Neurol. Disord., 2005, 4(1), 41-50. doi: 10.2174/1568007053005091 PMID: 15723612
  125. Ferrante, R.J.; Kubilus, J.K.; Lee, J.; Ryu, H.; Beesen, A.; Zucker, B.; Smith, K.; Kowall, N.W.; Ratan, R.R.; Luthi-Carter, R.; Hersch, S.M. Histone deacetylase inhibition by sodium butyrate chemotherapy ameliorates the neurodegenerative phenotype in Huntington’s disease mice. J. Neurosci., 2003, 23(28), 9418-9427. doi: 10.1523/JNEUROSCI.23-28-09418.2003 PMID: 14561870
  126. Graham, N.S.N.; Sharp, D.J. Understanding neurodegeneration after traumatic brain injury: From mechanisms to clinical trials in dementia. J. Neurol. Neurosurg. Psychiatry, 2019, 90(11), 1221-1233. doi: 10.1136/jnnp-2017-317557 PMID: 31542723
  127. Toshkezi, G.; Kyle, M.; Longo, S.L.; Chin, L.S.; Zhao, L.R. Brain repair by hematopoietic growth factors in the subacute phase of traumatic brain injury. J. Neurosurg., 2018, 129(5), 1286-1294. doi: 10.3171/2017.7.JNS17878 PMID: 29372883
  128. Kitahara, M.; Inoue, T.; Mani, H.; Takamatsu, Y.; Ikegami, R.; Tohyama, H.; Maejima, H. Exercise and pharmacological inhibition of histone deacetylase improves cognitive function accompanied by an increase of gene expressions crucial for neuronal plasticity in the hippocampus. Neurosci. Lett., 2021, 749, 135749. doi: 10.1016/j.neulet.2021.135749 PMID: 33610667
  129. Pawelec, P.; Sypecka, J.; Zalewska, T.; Ziemka-Nalecz, M. Analysis of Givinostat/ITF2357 treatment in a rat model of neonatal hypoxic-ischemic brain damage. Int. J. Mol. Sci., 2022, 23(15), 8287. doi: 10.3390/ijms23158287 PMID: 35955430
  130. Francelle, L.; Outeiro, T.F.; Rappold, G.A. Inhibition of HDAC6 activity protects dopaminergic neurons from alpha-synuclein toxicity. Sci. Rep., 2020, 10(1), 6064. doi: 10.1038/s41598-020-62678-5 PMID: 32269243
  131. Gao, W.M.; Chadha, M.S.; Kline, A.E.; Clark, R.S.B.; Kochanek, P.M.; Dixon, C.E.; Jenkins, L.W. Immunohistochemical analysis of histone H3 acetylation and methylation—Evidence for altered epigenetic signaling following traumatic brain injury in immature rats. Brain Res., 2006, 1070(1), 31-34. doi: 10.1016/j.brainres.2005.11.038 PMID: 16406269
  132. Guan, J.S.; Haggarty, S.J.; Giacometti, E.; Dannenberg, J.H.; Joseph, N.; Gao, J.; Nieland, T.J.F.; Zhou, Y.; Wang, X.; Mazitschek, R.; Bradner, J.E.; DePinho, R.A.; Jaenisch, R.; Tsai, L.H. HDAC2 negatively regulates memory formation and synaptic plasticity. Nature, 2009, 459(7243), 55-60. doi: 10.1038/nature07925 PMID: 19424149
  133. Prior, R.; Van Helleputte, L.; Klingl, Y.E.; Van Den Bosch, L. HDAC6 as a potential therapeutic target for peripheral nerve disorders. Expert Opin. Ther. Targets, 2018, 22(12), 993-1007. doi: 10.1080/14728222.2018.1541235 PMID: 30360671
  134. Calliari, A.; Bobba, N.; Escande, C.; Chini, E.N. Resveratrol delays Wallerian degeneration in a NAD+ and DBC1 dependent manner. Exp. Neurol., 2014, 251, 91-100. doi: 10.1016/j.expneurol.2013.11.013 PMID: 24252177
  135. Zhan, X.; Cox, C.; Ander, B.P.; Liu, D.; Stamova, B.; Jin, L.W.; Jickling, G.C.; Sharp, F.R. Inflammation combined with ischemia produces myelin injury and plaque-like aggregates of myelin, amyloid-β and AβPP in adult rat brain. J. Alzheimers Dis., 2015, 46(2), 507-523. doi: 10.3233/JAD-143072 PMID: 25790832
  136. Xu, Z.; Lv, X.A.; Dai, Q.; Ge, Y.Q.; Xu, J. Acute upregulation of neuronal mitochondrial type-1 cannabinoid receptor and it’s role in metabolic defects and neuronal apoptosis after TBI. Mol. Brain, 2016, 9(1), 75. doi: 10.1186/s13041-016-0257-8 PMID: 27485212
  137. Buyandelger, B.; Bar, E.E.; Hung, K.S.; Chen, R.M.; Chiang, Y.H.; Liou, J.P.; Huang, H.M.; Wang, J.Y. Histone deacetylase inhibitor MPT0B291 suppresses glioma growth in vitro and in vivo partially through acetylation of p53. Int. J. Biol. Sci., 2020, 16(16), 3184-3199. doi: 10.7150/ijbs.45505 PMID: 33162824
  138. Uo, T.; Veenstra, T.D.; Morrison, R.S. Histone deacetylase inhibitors prevent p53-dependent and p53-independent Bax-mediated neuronal apoptosis through two distinct mechanisms. J. Neurosci., 2009, 29(9), 2824-2832. doi: 10.1523/JNEUROSCI.6186-08.2009 PMID: 19261878
  139. Cope, E.C.; Gould, E. Adult neurogenesis, glia, and the extracellular matrix. Cell Stem Cell, 2019, 24(5), 690-705. doi: 10.1016/j.stem.2019.03.023 PMID: 31051133
  140. Nieto-Estevez, V.; Changarathil, G.; Adeyeye, A.O.; Coppin, M.O.; Kassim, R.S.; Zhu, J.; Hsieh, J. HDAC1 regulates neuronal differentiation. Front. Mol. Neurosci., 2022, 14, 815808. doi: 10.3389/fnmol.2021.815808 PMID: 35095417
  141. Yoo, D.Y.; Kim, D.W.; Kim, M.J.; Choi, J.H.; Jung, H.Y.; Nam, S.M.; Kim, J.W.; Yoon, Y.S.; Choi, S.Y.; Hwang, I.K. Sodium butyrate, a histone deacetylase Inhibitor, ameliorates SIRT2-induced memory impairment, reduction of cell proliferation, and neuroblast differentiation in the dentate gyrus. Neurol. Res., 2015, 37(1), 69-76. doi: 10.1179/1743132814Y.0000000416 PMID: 24963697
  142. Uittenbogaard, M.; Brantner, C.A.; Chiaramello, A. Epigenetic modifiers promote mitochondrial biogenesis and oxidative metabolism leading to enhanced differentiation of neuroprogenitor cells. Cell Death Dis., 2018, 9(3), 360. doi: 10.1038/s41419-018-0396-1 PMID: 29500414
  143. Moon, B.S.; Lu, W.; Park, H.J. Valproic acid promotes the neuronal differentiation of spiral ganglion neural stem cells with robust axonal growth. Biochem. Biophys. Res. Commun., 2018, 503(4), 2728-2735. doi: 10.1016/j.bbrc.2018.08.032 PMID: 30119886
  144. Wu, C.H.; Tsai, Y.C.; Tsai, T.H.; Kuo, K.L.; Su, Y.F.; Chang, C.H.; Lin, C.L. Valproic acid reduces vasospasm through modulation of Akt phosphorylation and attenuates neuronal apoptosis in subarachnoid hemorrhage rats. Int. J. Mol. Sci., 2021, 22(11), 5975. doi: 10.3390/ijms22115975 PMID: 34205883
  145. Yu, I.T.; Park, J.Y.; Kim, S.H.; Lee, J.; Kim, Y.S.; Son, H. Valproic acid promotes neuronal differentiation by induction of proneural factors in association with H4 acetylation. Neuropharmacology, 2009, 56(2), 473-480. doi: 10.1016/j.neuropharm.2008.09.019 PMID: 19007798
  146. Rao, T.; Wu, F.; Xing, D.; Peng, Z.; Ren, D.; Feng, W.; Chen, Y.; Zhao, Z.; Wang, H.; Wang, J.; Kan, W.; Zhang, Q. Effects of valproic Acid on axonal regeneration and recovery of motor function after peripheral nerve injury in the rat. Arch. Bone Jt. Surg., 2014, 2(1), 17-24. PMID: 25207308
  147. Rozenbaum, M.; Rajman, M.; Rishal, I.; Koppel, I.; Koley, S.; Medzihradszky, K.F.; Oses-Prieto, J.A.; Kawaguchi, R.; Amieux, P.S.; Burlingame, A.L.; Coppola, G.; Fainzilber, M. Translatome regulation in neuronal injury and axon regrowth. eNeuro, 2018, 5(2), ENEURO.0276, 17.2018. doi: 10.1523/ENEURO.0276-17.2018 PMID: 29756027
  148. Petrova, V.; Eva, R. The virtuous cycle of axon growth: Axonal transport of growth-promoting machinery as an intrinsic determinant of axon regeneration. Dev. Neurobiol., 2018, 78(10), 898-925. doi: 10.1002/dneu.22608 PMID: 29989351
  149. Mahgoub, M.; Monteggia, L.M. A role for histone deacetylases in the cellular and behavioral mechanisms underlying learning and memory. Learn. Mem., 2014, 21(10), 564-568. doi: 10.1101/lm.036012.114 PMID: 25227251
  150. Fischer, A.; Sananbenesi, F.; Wang, X.; Dobbin, M.; Tsai, L.H. Recovery of learning and memory is associated with chromatin remodelling. Nature, 2007, 447(7141), 178-182. doi: 10.1038/nature05772 PMID: 17468743
  151. Gaub, P.; Tedeschi, A.; Puttagunta, R.; Nguyen, T.; Schmandke, A.; Di Giovanni, S. HDAC inhibition promotes neuronal outgrowth and counteracts growth cone collapse through CBP/p300 and P/CAF-dependent p53 acetylation. Cell Death Differ., 2010, 17(9), 1392-1408. doi: 10.1038/cdd.2009.216 PMID: 20094059
  152. Johnson, E.C.B.; Dammer, E.B.; Duong, D.M.; Ping, L.; Zhou, M.; Yin, L.; Higginbotham, L.A.; Guajardo, A.; White, B.; Troncoso, J.C.; Thambisetty, M.; Montine, T.J.; Lee, E.B.; Trojanowski, J.Q.; Beach, T.G.; Reiman, E.M.; Haroutunian, V.; Wang, M.; Schadt, E.; Zhang, B.; Dickson, D.W.; Ertekin-Taner, N.; Golde, T.E.; Petyuk, V.A.; De Jager, P.L.; Bennett, D.A.; Wingo, T.S.; Rangaraju, S.; Hajjar, I.; Shulman, J.M.; Lah, J.J.; Levey, A.I.; Seyfried, N.T. Large-scale proteomic analysis of Alzheimer’s disease brain and cerebrospinal fluid reveals early changes in energy metabolism associated with microglia and astrocyte activation. Nat. Med., 2020, 26(5), 769-780. doi: 10.1038/s41591-020-0815-6 PMID: 32284590
  153. Shanaki-Bavarsad, M.; Almolda, B.; González, B.; Castellano, B. Astrocyte-targeted overproduction of IL-10 reduces neurodegeneration after TBI. Exp. Neurobiol., 2022, 31(3), 173-195. doi: 10.5607/en21035 PMID: 35786640
  154. Liu, Z.; Chopp, M. Astrocytes, therapeutic targets for neuroprotection and neurorestoration in ischemic stroke. Prog. Neurobiol., 2016, 144, 103-120. doi: 10.1016/j.pneurobio.2015.09.008 PMID: 26455456
  155. Wang, J.; Hou, Y.; Zhang, L.; Liu, M.; Zhao, J.; Zhang, Z.; Ma, Y.; Hou, W. Estrogen attenuates traumatic brain injury by inhibiting the activation of microglia and astrocyte-mediated neuroinflammatory responses. Mol. Neurobiol., 2021, 58(3), 1052-1061. doi: 10.1007/s12035-020-02171-2 PMID: 33085047
  156. Borgonetti, V.; Meacci, E.; Pierucci, F.; Romanelli, M.N.; Galeotti, N. Dual HDAC/BRD4 inhibitors relieves neuropathic pain by attenuating inflammatory response in microglia after spared nerve injury. Neurotherapeutics, 2022, 19(5), 1634-1648. doi: 10.1007/s13311-022-01243-6 PMID: 35501470
  157. Prozorovski, T.; Schulze-Topphoff, U.; Glumm, R.; Baumgart, J.; Schröter, F.; Ninnemann, O.; Siegert, E.; Bendix, I.; Brüstle, O.; Nitsch, R.; Zipp, F.; Aktas, O. Sirt1 contributes critically to the redox-dependent fate of neural progenitors. Nat. Cell Biol., 2008, 10(4), 385-394. doi: 10.1038/ncb1700 PMID: 18344989
  158. Zhang, Y.; Du, Z.; Zhuang, Z.; Wang, Y.; Wang, F.; Liu, S.; Wang, H.; Feng, H.; Li, H.; Wang, L.; Zhang, X.; Hao, A. E804 induces growth arrest, differentiation and apoptosis of glioblastoma cells by blocking Stat3 signaling. J. Neurooncol., 2015, 125(2), 265-275. doi: 10.1007/s11060-015-1917-8 PMID: 26386687
  159. Michinaga, S.; Koyama, Y. Pathophysiological responses and roles of astrocytes in traumatic brain injury. Int. J. Mol. Sci., 2021, 22(12), 6418. doi: 10.3390/ijms22126418 PMID: 34203960
  160. Li, X.; Su, X.; Liu, R.; Pan, Y.; Fang, J.; Cao, L.; Feng, C.; Shang, Q.; Chen, Y.; Shao, C.; Shi, Y. HDAC inhibition potentiates anti-tumor activity of macrophages and enhances anti-PD-L1-mediated tumor suppression. Oncogene, 2021, 40(10), 1836-1850. doi: 10.1038/s41388-020-01636-x PMID: 33564072
  161. Dong, Z.; Yang, Y.; Liu, S.; Lu, J.; Huang, B.; Zhang, Y. HDAC inhibitor PAC-320 induces G2/M cell cycle arrest and apoptosis in human prostate cancer. Oncotarget, 2018, 9(1), 512-523. doi: 10.18632/oncotarget.23070 PMID: 29416632
  162. Dashwood, R.; Ho, E. Dietary histone deacetylase inhibitors: From cells to mice to man. Semin. Cancer Biol., 2007, 17(5), 363-369. doi: 10.1016/j.semcancer.2007.04.001 PMID: 17555985
  163. Jaworska, J.; Zalewska, T.; Sypecka, J.; Ziemka-Nalecz, M. Effect of the HDAC inhibitor, sodium butyrate, on neurogenesis in a rat model of neonatal hypoxia–ischemia: Potential mechanism of action. Mol. Neurobiol., 2019, 56(9), 6341-6370. doi: 10.1007/s12035-019-1518-1 PMID: 30767185
  164. Tung, B.; Ma, D.; Wang, S.; Oyinlade, O.; Laterra, J.; Ying, M.; Lv, S.Q.; Wei, S.; Xia, S. Krüppel-like factor 9 and histone deacetylase inhibitors synergistically induce cell death in glioblastoma stem-like cells. BMC Cancer, 2018, 18(1), 1025. doi: 10.1186/s12885-018-4874-8 PMID: 30348136

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers