Pathomechanistic Networks of Motor System Injury in Amyotrophic Lateral Sclerosis
- Authors: Dey B.1, Kumar A.1, Patel A.1
-
Affiliations:
- , CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB)
- Issue: Vol 22, No 11 (2024)
- Pages: 1778-1806
- Section: Neurology
- URL: https://rjsocmed.com/1570-159X/article/view/644371
- DOI: https://doi.org/10.2174/1570159X21666230824091601
- ID: 644371
Cite item
Full Text
Abstract
Amyotrophic Lateral Sclerosis (ALS) is the most common, adult-onset, progressive motor neurodegenerative disorder that results in death within 3 years of the clinical diagnosis. Due to the clinicopathological heterogeneity, any reliable biomarkers for diagnosis or prognosis of ALS have not been identified till date. Moreover, the only three clinically approved treatments are not uniformly effective in slowing the disease progression. Over the last 15 years, there has been a rapid advancement in research on the complex pathomechanistic landscape of ALS that has opened up new avenues for successful clinical translation of targeted therapeutics. Multiple studies suggest that the age-dependent interaction of risk-associated genes with environmental factors and endogenous modifiers is critical to the multi-step process of ALS pathogenesis. In this review, we provide an updated discussion on the dysregulated cross-talk between intracellular homeostasis processes, the unique molecular networks across selectively vulnerable cell types, and the multisystemic nature of ALS pathomechanisms. Importantly, this work highlights the alteration in epigenetic and epitranscriptomic landscape due to gene-environment interactions, which have been largely overlooked in the context of ALS pathology. Finally, we suggest that precision medicine research in ALS will be largely benefitted from the stratification of patient groups based on the clinical phenotype, onset and progression, genome, exposome, and metabolic identities.
About the authors
Bedaballi Dey
, CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB)
Email: info@benthamscience.net
Arvind Kumar
, CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB)
Email: info@benthamscience.net
Anant Patel
, CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB)
Author for correspondence.
Email: info@benthamscience.net
References
- Checkoway, H.; Lundin, J.I.; Kelada, S.N. Neurodegenerative diseases. IARC Sci. Publ., 2011, (163), 407-419. PMID: 22997874
- Logroscino, G.; Piccininni, M.; Marin, B.; Nichols, E.; Abd-Allah, F.; Abdelalim, A.; Alahdab, F.; Asgedom, S.W.; Awasthi, A.; Chaiah, Y.; Daryani, A.; Do, H.P.; Dubey, M.; Elbaz, A.; Eskandarieh, S.; Farhadi, F.; Farzadfar, F.; Fereshtehnejad, S-M.; Fernandes, E.; Filip, I.; Foreman, K.J.; Gebre, A.K.; Gnedovskaya, E.V.; Hamidi, S.; Hay, S.I.; Irvani, S.S.N.; Ji, J.S.; Kasaeian, A.; Kim, Y.J.; Mantovani, L.G.; Mashamba-Thompson, T.P.; Mehndiratta, M.M.; Mokdad, A.H.; Nagel, G.; Nguyen, T.H.; Nixon, M.R.; Olagunju, A.T.; Owolabi, M.O.; Piradov, M.A.; Qorbani, M.; Radfar, A.; Reiner, R.C.; Sahraian, M.A.; Sarvi, S.; Sharif, M.; Temsah, O.; Tran, B.X.; Truong, N.T.; Venketasubramanian, N.; Winkler, A.S.; Yimer, E.M.; Feigin, V.L.; Vos, T.; Murray, C.J.L. Global, regional, and national burden of motor neuron diseases 19902016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol., 2018, 17(12), 1083-1097. doi: 10.1016/S1474-4422(18)30404-6 PMID: 30409709
- Longinetti, E.; Fang, F. Epidemiology of amyotrophic lateral sclerosis: an update of recent literature. Curr. Opin. Neurol., 2019, 32(5), 771-776. doi: 10.1097/WCO.0000000000000730 PMID: 31361627
- Grad, L.I.; Rouleau, G.A.; Ravits, J.; Cashman, N.R. Clinical spectrum of amyotrophic lateral sclerosis (ALS). Cold Spring Harb. Perspect. Med., 2017, 7(8), a024117. doi: 10.1101/cshperspect.a024117 PMID: 28003278
- Abramzon, Y.A.; Fratta, P.; Traynor, B.J.; Chia, R. The overlapping genetics of amyotrophic lateral sclerosis and frontotemporal dementia. Front. Neurosci., 2020, 14, 42. doi: 10.3389/fnins.2020.00042 PMID: 32116499
- Masrori, P.; Van Damme, P. Amyotrophic lateral sclerosis: A clinical review. Eur. J. Neurol., 2020, 27(10), 1918-1929. doi: 10.1111/ene.14393 PMID: 32526057
- Ferraiuolo, L.; Kirby, J.; Grierson, A.J.; Sendtner, M.; Shaw, P.J. Molecular pathways of motor neuron injury in amyotrophic lateral sclerosis. Nat. Rev. Neurol., 2011, 7(11), 616-630. doi: 10.1038/nrneurol.2011.152 PMID: 22051914
- Manjaly, Z.R.; Scott, K.M.; Abhinav, K.; Wijesekera, L.; Ganesalingam, J.; Goldstein, L.H.; Janssen, A.; Dougherty, A.; Willey, E.; Stanton, B.R.; Turner, M.R.; Ampong, M.A.; Sakel, M.; Orrell, R.W.; Howard, R.; Shaw, C.E.; Leigh, P.N.; Al-Chalabi, A. The sex ratio in amyotrophic lateral sclerosis: A population based study. Amyotroph. Lateral Scler., 2010, 11(5), 439-442. doi: 10.3109/17482961003610853 PMID: 20225930
- Palese, F.; Sartori, A.; Verriello, L.; Ros, S.; Passadore, P.; Manganotti, P.; Barbone, F.; Pisa, F.E. Epidemiology of amyotrophic lateral sclerosis in Friuli-Venezia Giulia, North-Eastern Italy, 20022014: A retrospective population-based study. Amyotroph. Lateral Scler. Frontotemporal Degener., 2019, 20(1-2), 90-99. doi: 10.1080/21678421.2018.1511732 PMID: 30430867
- Leighton, D.J.; Newton, J.; Stephenson, L.J.; Colville, S.; Davenport, R.; Gorrie, G.; Morrison, I.; Swingler, R.; Chandran, S.; Pal, S. Changing epidemiology of motor neurone disease in Scotland. J. Neurol., 2019, 266(4), 817-825. doi: 10.1007/s00415-019-09190-7 PMID: 30805795
- Chiò, A.; Logroscino, G.; Traynor, B.J.; Collins, J.; Simeone, J.C.; Goldstein, L.A.; White, L.A. Global epidemiology of amyotrophic lateral sclerosis: A systematic review of the published literature. Neuroepidemiology, 2013, 41(2), 118-130. doi: 10.1159/000351153 PMID: 23860588
- Hardiman, O.; Al-Chalabi, A.; Brayne, C.; Beghi, E.; van den Berg, L.H.; Chio, A.; Martin, S.; Logroscino, G.; Rooney, J. The changing picture of amyotrophic lateral sclerosis: Lessons from European registers. J. Neurol. Neurosurg. Psychiatry, 2017, 88(7), 557-563. doi: 10.1136/jnnp-2016-314495 PMID: 28285264
- Brooks, B.R.; Miller, R.G.; Swash, M.; Munsat, T.L. El Escorial revisited: Revised criteria for the diagnosis of amyotrophic lateral sclerosis. Amyotroph. Lateral Scler. Other Motor Neuron Disord., 2000, 1(5), 293-299. doi: 10.1080/146608200300079536 PMID: 11464847
- van den Berg, L.H.; Sorenson, E.; Gronseth, G.; Macklin, E.A.; Andrews, J.; Baloh, R.H.; Benatar, M.; Berry, J.D.; Chio, A.; Corcia, P.; Genge, A.; Gubitz, A.K.; Lomen-Hoerth, C.; McDermott, C.J.; Pioro, E.P.; Rosenfeld, J.; Silani, V.; Turner, M.R.; Weber, M.; Brooks, B.R.; Miller, R.G.; Mitsumoto, H. Revised Airlie House consensus guidelines for design and implementation of ALS clinical trials. Neurology, 2019, 92(14), e1610-e1623. doi: 10.1212/WNL.0000000000007242 PMID: 30850440
- Shefner, J.M.; Al-Chalabi, A.; Baker, M.R.; Cui, L.Y.; de Carvalho, M.; Eisen, A.; Grosskreutz, J.; Hardiman, O.; Henderson, R.; Matamala, J.M.; Mitsumoto, H.; Paulus, W.; Simon, N.; Swash, M.; Talbot, K.; Turner, M.R.; Ugawa, Y.; van den Berg, L.H.; Verdugo, R.; Vucic, S.; Kaji, R.; Burke, D.; Kiernan, M.C. A proposal for new diagnostic criteria for ALS. Clin. Neurophysiol., 2020, 131(8), 1975-1978. doi: 10.1016/j.clinph.2020.04.005 PMID: 32387049
- Bradley, W.G.; Andrew, A.S.; Traynor, B.J.; Chiò, A.; Butt, T.H.; Stommel, E.W. Gene-environment-time interactions in neurodegenerative diseases: Hypotheses and research approaches. Ann. Neurosci., 2018, 25(4), 261-267. doi: 10.1159/000495321 PMID: 31000966
- Rossi, F.H. Pathophysiology of Amyotrophic Lateral Sclerosis; IntechOpen: Rijeka, 2013. doi: 10.5772/56562
- Schweingruber, C.; Hedlund, E. The cell autonomous and non-cell autonomous aspects of neuronal vulnerability and resilience in amyotrophic lateral sclerosis. Biology, 2022, 11(8), 1191. doi: 10.3390/biology11081191 PMID: 36009818
- Turner, M.R.; Hardiman, O.; Benatar, M.; Brooks, B.R.; Chio, A.; de Carvalho, M.; Ince, P.G.; Lin, C.; Miller, R.G.; Mitsumoto, H.; Nicholson, G.; Ravits, J.; Shaw, P.J.; Swash, M.; Talbot, K.; Traynor, B.J.; Van den Berg, L.H.; Veldink, J.H.; Vucic, S.; Kiernan, M.C. Controversies and priorities in amyotrophic lateral sclerosis. Lancet Neurol., 2013, 12(3), 310-322. doi: 10.1016/S1474-4422(13)70036-X PMID: 23415570
- Mejzini, R.; Flynn, L.L.; Pitout, I.L.; Fletcher, S.; Wilton, S.D.; Akkari, P.A. ALS genetics, mechanisms, and therapeutics: Where are we now? Front. Neurosci., 2019, 13, 1310. doi: 10.3389/fnins.2019.01310 PMID: 31866818
- Ryan, M.; Heverin, M.; McLaughlin, R.L.; Hardiman, O. Lifetime risk and heritability of amyotrophic lateral sclerosis. JAMA Neurol., 2019, 76(11), 1367-1374. doi: 10.1001/jamaneurol.2019.2044 PMID: 31329211
- Fifita, J.A.; Williams, K.L.; Sundaramoorthy, V.; Mccann, E.P.; Nicholson, G.A.; Atkin, J.D.; Blair, I.P. A novel amyotrophic lateral sclerosis mutation in OPTN induces ER stress and Golgi fragmentation in vitro. Amyotroph. Lateral Scler. Frontotemporal Degener., 2017, 18(1-2), 126-133. doi: 10.1080/21678421.2016.1218517 PMID: 27534431
- Brown, C. Non-Familial ALS: A tangled web. Nature, 2017, 550(7676), S109-S111. doi: 10.1038/550S109a PMID: 29045373
- Cooper-Knock, J.; Harvey, C.; Zhang, S.; Moll, T.; Timpanaro, I.S.; Kenna, K.P.; Iacoangeli, A.; Veldink, J.H. Advances in the genetic classification of amyotrophic lateral sclerosis. Curr. Opin. Neurol., 2021, 34(5), 756-764. doi: 10.1097/WCO.0000000000000986 PMID: 34343141
- van Rheenen, W.; van der Spek, R.A.A.; Bakker, M.K.; van Vugt, J.J.F.A.; Hop, P.J.; Zwamborn, R.A.J.; de Klein, N.; Westra, H.J.; Bakker, O.B.; Deelen, P.; Shireby, G.; Hannon, E.; Moisse, M.; Baird, D.; Restuadi, R.; Dolzhenko, E.; Dekker, A.M.; Gawor, K.; Westeneng, H.J.; Tazelaar, G.H.P.; van Eijk, K.R.; Kooyman, M.; Byrne, R.P.; Doherty, M.; Heverin, M.; Al Khleifat, A.; Iacoangeli, A.; Shatunov, A.; Ticozzi, N.; Cooper-Knock, J.; Smith, B.N.; Gromicho, M.; Chandran, S.; Pal, S.; Morrison, K.E.; Shaw, P.J.; Hardy, J.; Orrell, R.W.; Sendtner, M.; Meyer, T.; Başak, N.; van der Kooi, A.J.; Ratti, A.; Fogh, I.; Gellera, C.; Lauria, G.; Corti, S.; Cereda, C.; Sproviero, D.; DAlfonso, S.; Sorarù, G.; Siciliano, G.; Filosto, M.; Padovani, A.; Chiò, A.; Calvo, A.; Moglia, C.; Brunetti, M.; Canosa, A.; Grassano, M.; Beghi, E.; Pupillo, E.; Logroscino, G.; Nefussy, B.; Osmanovic, A.; Nordin, A.; Lerner, Y.; Zabari, M.; Gotkine, M.; Baloh, R.H.; Bell, S.; Vourch, P.; Corcia, P.; Couratier, P.; Millecamps, S.; Meininger, V.; Salachas, F.; Mora Pardina, J.S.; Assialioui, A.; Rojas-García, R.; Dion, P.A.; Ross, J.P.; Ludolph, A.C.; Weishaupt, J.H.; Brenner, D.; Freischmidt, A.; Bensimon, G.; Brice, A.; Durr, A.; Payan, C.A.M.; Saker-Delye, S.; Wood, N.W.; Topp, S.; Rademakers, R.; Tittmann, L.; Lieb, W.; Franke, A.; Ripke, S.; Braun, A.; Kraft, J.; Whiteman, D.C.; Olsen, C.M.; Uitterlinden, A.G.; Hofman, A.; Rietschel, M.; Cichon, S.; Nöthen, M.M.; Amouyel, P.; Comi, G.; Riva, N.; Lunetta, C.; Gerardi, F.; Cotelli, M.S.; Rinaldi, F.; Chiveri, L.; Guaita, M.C.; Perrone, P.; Ceroni, M.; Diamanti, L.; Ferrarese, C.; Tremolizzo, L.; Delodovici, M.L.; Bono, G.; Canosa, A.; Manera, U.; Vasta, R.; Bombaci, A.; Casale, F.; Fuda, G.; Salamone, P.; Iazzolino, B.; Peotta, L.; Cugnasco, P.; De Marco, G.; Torrieri, M.C.; Palumbo, F.; Gallone, S.; Barberis, M.; Sbaiz, L.; Gentile, S.; Mauro, A.; Mazzini, L.; De Marchi, F.; Corrado, L.; DAlfonso, S.; Bertolotto, A.; Gionco, M.; Leotta, D.; Odddenino, E.; Imperiale, D.; Cavallo, R.; Pignatta, P.; De Mattei, M.; Geda, C.; Papurello, D.M.; Gusmaroli, G.; Comi, C.; Labate, C.; Ruiz, L.; Ferrandi, D.; Rota, E.; Aguggia, M.; Di Vito, N.; Meineri, P.; Ghiglione, P.; Launaro, N.; Dotta, M.; Di Sapio, A.; Giardini, G.; Tiloca, C.; Peverelli, S.; Taroni, F.; Pensato, V.; Castellotti, B.; Comi, G.P.; Del Bo, R.; Ceroni, M.; Gagliardi, S.; Corrado, L.; Mazzini, L.; Raggi, F.; Simoncini, C.; Lo Gerfo, A.; Inghilleri, M.; Ferlini, A.; Simone, I.L.; Passarella, B.; Guerra, V.; Zoccolella, S.; Nozzoli, C.; Mundi, C.; Leone, M.; Zarrelli, M.; Tamma, F.; Valluzzi, F.; Calabrese, G.; Boero, G.; Rini, A.; Traynor, B.J.; Singleton, A.B.; Mitne Neto, M.; Cauchi, R.J.; Ophoff, R.A.; Wiedau-Pazos, M.; Lomen-Hoerth, C.; van Deerlin, V.M.; Grosskreutz, J.; Roediger, A.; Gaur, N.; Jörk, A.; Barthel, T.; Theele, E.; Ilse, B.; Stubendorff, B.; Witte, O.W.; Steinbach, R.; Hübner, C.A.; Graff, C.; Brylev, L.; Fominykh, V.; Demeshonok, V.; Ataulina, A.; Rogelj, B.; Koritnik, B.; Zidar, J.; Ravnik-Glavač, M.; Glavač, D.; Stević, Z.; Drory, V.; Povedano, M.; Blair, I.P.; Kiernan, M.C.; Benyamin, B.; Henderson, R.D.; Furlong, S.; Mathers, S.; McCombe, P.A.; Needham, M.; Ngo, S.T.; Nicholson, G.A.; Pamphlett, R.; Rowe, D.B.; Steyn, F.J.; Williams, K.L.; Mather, K.A.; Sachdev, P.S.; Henders, A.K.; Wallace, L.; de Carvalho, M.; Pinto, S.; Petri, S.; Weber, M.; Rouleau, G.A.; Silani, V.; Curtis, C.J.; Breen, G.; Glass, J.D.; Brown, R.H., Jr; Landers, J.E.; Shaw, C.E.; Andersen, P.M.; Groen, E.J.N.; van Es, M.A.; Pasterkamp, R.J.; Fan, D.; Garton, F.C.; McRae, A.F.; Davey Smith, G.; Gaunt, T.R.; Eberle, M.A.; Mill, J.; McLaughlin, R.L.; Hardiman, O.; Kenna, K.P.; Wray, N.R.; Tsai, E.; Runz, H.; Franke, L.; Al-Chalabi, A.; Van Damme, P.; van den Berg, L.H.; Veldink, J.H. Common and rare variant association analyses in amyotrophic lateral sclerosis identify 15 risk loci with distinct genetic architectures and neuron-specific biology. Nat. Genet., 2021, 53(12), 1636-1648. doi: 10.1038/s41588-021-00973-1 PMID: 34873335
- Casas, C.; Manzano, R.; Vaz, R.; Osta, R.; Brites, D. Synaptic failure: Focus in an integrative view of ALS. Brain Plast., 2016, 1(2), 159-175. doi: 10.3233/BPL-140001 PMID: 29765840
- Fogarty, M. Amyotrophic lateral sclerosis as a synaptopathy. Neural Regen. Res., 2019, 14(2), 189-192. doi: 10.4103/1673-5374.244782 PMID: 30530995
- Genç, B.; Jara, J.H.; Lagrimas, A.K.B.; Pytel, P.; Roos, R.P.; Mesulam, M.M.; Geula, C.; Bigio, E.H.; Özdinler, P.H. Apical dendrite degeneration, a novel cellular pathology for Betz cells in ALS. Sci. Rep., 2017, 7(1), 41765. doi: 10.1038/srep41765 PMID: 28165465
- Guidotti, G.; Scarlata, C.; Brambilla, L.; Rossi, D. Tumor necrosis factor alpha in amyotrophic lateral sclerosis: Friend or foe? Cells, 2021, 10(3), 518. doi: 10.3390/cells10030518 PMID: 33804386
- Bursch, F.; Kalmbach, N.; Naujock, M.; Staege, S.; Eggenschwiler, R.; Abo-Rady, M.; Japtok, J.; Guo, W.; Hensel, N.; Reinhardt, P.; Boeckers, T.M.; Cantz, T.; Sterneckert, J.; Van Den Bosch, L.; Hermann, A.; Petri, S.; Wegner, F. Altered calcium dynamics and glutamate receptor properties in iPSC-derived motor neurons from ALS patients with C9orf72, FUS, SOD1 or TDP43 mutations. Hum. Mol. Genet., 2019, 28(17), 2835-2850. doi: 10.1093/hmg/ddz107 PMID: 31108504
- Bonifacino, T.; Provenzano, F.; Gallia, E.; Ravera, S.; Torazza, C.; Bossi, S.; Ferrando, S.; Puliti, A.; Van Den Bosch, L.; Bonanno, G.; Milanese, M. In-vivo genetic ablation of metabotropic glutamate receptor type 5 slows down disease progression in the SOD1G93A mouse model of amyotrophic lateral sclerosis. Neurobiol. Dis., 2019, 129, 79-92. doi: 10.1016/j.nbd.2019.05.007 PMID: 31102766
- Vermeiren, Y.; Janssens, J.; Van Dam, D.; De Deyn, P.P. Serotonergic dysfunction in amyotrophic lateral sclerosis and parkinsons disease: Similar mechanisms, dissimilar outcomes. Front. Neurosci., 2018, 12, 185. doi: 10.3389/fnins.2018.00185 PMID: 29615862
- Yang, Y.; Gozen, O.; Watkins, A.; Lorenzini, I.; Lepore, A.; Gao, Y.; Vidensky, S.; Brennan, J.; Poulsen, D.; Won Park, J.; Li Jeon, N.; Robinson, M.B.; Rothstein, J.D. Presynaptic regulation of astroglial excitatory neurotransmitter transporter GLT1. Neuron, 2009, 61(6), 880-894. doi: 10.1016/j.neuron.2009.02.010 PMID: 19323997
- Scamps, F.; Aimond, F.; Hilaire, C.; Raoul, C. Synaptic transmission and motoneuron excitability defects in amyotrophic lateral sclerosis. In: Amyotrophic Lateral Sclerosis; Exon Publications: Brisbane (AU), 2021. doi: 10.36255/exonpublications.amyotrophiclateralsclerosis.synaptictransmission.2021
- Sunico, C.R.; Domínguez, G.; García-Verdugo, J.M.; Osta, R.; Montero, F.; Moreno-López, B. Reduction in the motoneuron inhibitory/excitatory synaptic ratio in an early-symptomatic mouse model of amyotrophic lateral sclerosis. Brain Pathol., 2011, 21(1), 1-15. doi: 10.1111/j.1750-3639.2010.00417.x PMID: 20653686
- Sirabella, R.; Valsecchi, V.; Anzilotti, S.; Cuomo, O.; Vinciguerra, A.; Cepparulo, P.; Brancaccio, P.; Guida, N.; Blondeau, N.; Canzoniero, L.M.T.; Franco, C.; Amoroso, S.; Annunziato, L.; Pignataro, G. Ionic homeostasis maintenance in ALS: Focus on new therapeutic targets. Front. Neurosci., 2018, 12, 510. doi: 10.3389/fnins.2018.00510 PMID: 30131665
- Ragagnin, A.M.G.; Shadfar, S.; Vidal, M.; Jamali, M.S.; Atkin, J.D. Motor neuron susceptibility in ALS/FTD. Front. Neurosci., 2019, 13, 532. doi: 10.3389/fnins.2019.00532 PMID: 31316328
- Tateno, M.; Kato, S.; Sakurai, T.; Nukina, N.; Takahashi, R.; Araki, T. Mutant SOD1 impairs axonal transport of choline acetyltransferase and acetylcholine release by sequestering KAP3. Hum. Mol. Genet., 2009, 18(5), 942-955. doi: 10.1093/hmg/ddn422 PMID: 19088126
- Verma, S.; Khurana, S.; Vats, A.; Sahu, B.; Ganguly, N.K.; Chakraborti, P.; Gourie-Devi, M.; Taneja, V. Neuromuscular junction dysfunction in amyotrophic lateral sclerosis. Mol. Neurobiol., 2022, 59(3), 1502-1527. doi: 10.1007/s12035-021-02658-6 PMID: 34997540
- Lin, C.Y.; Wu, C.L.; Lee, K.Z.; Chen, Y.J.; Zhang, P.H.; Chang, C.Y.; Harn, H.J.; Lin, S.Z.; Tsai, H.J. Extracellular Pgk1 enhances neurite outgrowth of motoneurons through Nogo66/NgR-independent targeting of NogoA. eLife, 2019, 8, e49175. doi: 10.7554/eLife.49175 PMID: 31361595
- Venkova, K.; Christov, A.; Kamaluddin, Z.; Kobalka, P.; Siddiqui, S.; Hensley, K. Semaphorin 3A signaling through neuropilin-1 is an early trigger for distal axonopathy in the SOD1G93A mouse model of amyotrophic lateral sclerosis. J. Neuropathol. Exp. Neurol., 2014, 73(7), 702-713. doi: 10.1097/NEN.0000000000000086 PMID: 24918638
- Moloney, E.B.; de Winter, F.; Verhaagen, J. ALS as a distal axonopathy: Molecular mechanisms affecting neuromuscular junction stability in the presymptomatic stages of the disease. Front. Neurosci., 2014, 8, 252. doi: 10.3389/fnins.2014.00252 PMID: 25177267
- Krieger, C.; Wang, S.J.H.; Yoo, S.H.; Harden, N. Adducin at the neuromuscular junction in amyotrophic lateral sclerosis: Hanging on for dear life. Front. Cell. Neurosci., 2016, 10, 11. doi: 10.3389/fncel.2016.00011 PMID: 26858605
- Palma, E.; Reyes-Ruiz, J.M.; Lopergolo, D.; Roseti, C.; Bertollini, C.; Ruffolo, G.; Cifelli, P.; Onesti, E.; Limatola, C.; Miledi, R.; Inghilleri, M. Acetylcholine receptors from human muscle as pharmacological targets for ALS therapy. Proc. Natl. Acad. Sci. USA, 2016, 113(11), 3060-3065. doi: 10.1073/pnas.1600251113 PMID: 26929355
- Van Hoecke, A.; Schoonaert, L.; Lemmens, R.; Timmers, M.; Staats, K.A.; Laird, A.S.; Peeters, E.; Philips, T.; Goris, A.; Dubois, B.; Andersen, P.M.; Al-Chalabi, A.; Thijs, V.; Turnley, A.M.; van Vught, P.W.; Veldink, J.H.; Hardiman, O.; Van Den Bosch, L.; Gonzalez-Perez, P.; Van Damme, P.; Brown, R.H., Jr; van den Berg, L.H.; Robberecht, W. EPHA4 is a disease modifier of amyotrophic lateral sclerosis in animal models and in humans. Nat. Med., 2012, 18(9), 1418-1422. doi: 10.1038/nm.2901 PMID: 22922411
- Murray, L.M.; Talbot, K.; Gillingwater, T.H. Review: Neuromuscular synaptic vulnerability in motor neurone disease: amyotrophic lateral sclerosis and spinal muscular atrophy. Neuropathol. Appl. Neurobiol., 2010, 36(2), 133-156. doi: 10.1111/j.1365-2990.2010.01061.x PMID: 20202121
- Schomburg, E.D.; Steffens, H.; Zschüntzsch, J.; Dibaj, P.; Keller, B.U. Fatigability of spinal reflex transmission in a mouse model (SOD1G93A ) of amyotrophic lateral sclerosis. Muscle Nerve, 2011, 43(2), 230-236. doi: 10.1002/mus.21835 PMID: 21254088
- Rocha, M.C.; Pousinha, P.A.; Correia, A.M.; Sebastião, A.M.; Ribeiro, J.A. Early changes of neuromuscular transmission in the (SOD1G93A ) mice model of ALS start long before motor symptoms onset. PLoS One, 2013, 8(9), e73846. doi: 10.1371/journal.pone.0073846 PMID: 24040091
- Carrasco, D.I.; Seburn, K.L.; Pinter, M.J. Altered terminal Schwann cell morphology precedes denervation in SOD1 mice. Exp. Neurol., 2016, 275(0 1), 172-181. doi: 10.1016/j.expneurol.2015.09.014 PMID: 26416261
- Manzano, R.; Toivonen, J.M.; Calvo, A.C.; Oliván, S.; Zaragoza, P.; Rodellar, C.; Montarras, D.; Osta, R. Altered in vitro proliferation of mouse SOD1-G93A skeletal muscle satellite cells. Neurodegener. Dis., 2013, 11(3), 153-164. doi: 10.1159/000338061 PMID: 22797053
- Nijssen, J.; Comley, L.H.; Hedlund, E. Motor neuron vulnerability and resistance in amyotrophic lateral sclerosis. Acta Neuropathol., 2017, 133(6), 863-885. doi: 10.1007/s00401-017-1708-8 PMID: 28409282
- Rochat, C.; Schneider, B.L.; Bernard-Marissal, N. Selective vulnerability of neuronal subtypes in ALS: A fertile ground for the identification of therapeutic targets. In: Update on Amyotrophic Lateral Sclerosis; InTech, 2016. doi: 10.5772/63703
- Ruegsegger, C.; Maharjan, N.; Goswami, A.; Filézac de LEtang, A.; Weis, J.; Troost, D.; Heller, M.; Gut, H.; Saxena, S. Aberrant association of misfolded SOD1 with Na+/K+ATPase-α3 impairs its activity and contributes to motor neuron vulnerability in ALS. Acta Neuropathol., 2016, 131(3), 427-451. doi: 10.1007/s00401-015-1510-4 PMID: 26619836
- Ramírez-Jarquín, U.N.; Tapia, R. Excitatory and inhibitory neuronal circuits in the spinal cord and their role in the control of motor neuron function and degeneration. ACS Chem. Neurosci., 2018, 9(2), 211-216. doi: 10.1021/acschemneuro.7b00503 PMID: 29350907
- Orr, B.O.; Hauswirth, A.G.; Celona, B.; Fetter, R.D.; Zunino, G.; Kvon, E.Z.; Zhu, Y.; Pennacchio, L.A.; Black, B.L.; Davis, G.W. Presynaptic homeostasis opposes disease progression in mouse models of ALS-Like degeneration: Evidence for homeostatic neuroprotection. Neuron, 2020, 107(1), 95-111.e6. doi: 10.1016/j.neuron.2020.04.009 PMID: 32380032
- Wijesekera, L.C.; Nigel Leigh, P. Amyotrophic lateral sclerosis. Orphanet J. Rare Dis., 2009, 4(1), 3. doi: 10.1186/1750-1172-4-3 PMID: 19192301
- Isaacs, J.D.; Dean, A.F.; Shaw, C.E.; Al-Chalabi, A.; Mills, K.R.; Leigh, P.N. Amyotrophic lateral sclerosis with sensory neuropathy: Part of a multisystem disorder? J. Neurol. Neurosurg. Psychiatry, 2006, 78(7), 750-753. doi: 10.1136/jnnp.2006.098798 PMID: 17575021
- Seki, S.; Yamamoto, T.; Quinn, K.; Spigelman, I.; Pantazis, A.; Olcese, R.; Wiedau-Pazos, M.; Chandler, S.H.; Venugopal, S. Circuit-specific early impairment of proprioceptive sensory neurons in the SOD1G93A mouse model for ALS. J. Neurosci., 2019, 39(44), 8798-8815. doi: 10.1523/JNEUROSCI.1214-19.2019 PMID: 31530644
- Vaughan, S.K.; Sutherland, N.M.; Zhang, S.; Hatzipetros, T.; Vieira, F.; Valdez, G. The ALS-inducing factors, TDP43A315T and SOD1G93A , directly affect and sensitize sensory neurons to stress. Sci. Rep., 2018, 8(1), 16582. doi: 10.1038/s41598-018-34510-8 PMID: 30410094
- Lalancette-Hebert, M.; Sharma, A.; Lyashchenko, A.K.; Shneider, N.A. Gamma motor neurons survive and exacerbate alpha motor neuron degeneration in ALS. Proc. Natl. Acad. Sci. USA, 2016, 113(51), E8316-E8325. doi: 10.1073/pnas.1605210113 PMID: 27930290
- Brownstone, R.M.; Lancelin, C. Escape from homeostasis: spinal microcircuits and progression of amyotrophic lateral sclerosis. J. Neurophysiol., 2018, 119(5), 1782-1794. doi: 10.1152/jn.00331.2017 PMID: 29384454
- Ashford, B.A.; Boche, D.; Cooper-Knock, J.; Heath, P.R.; Simpson, J.E.; Highley, J.R. Review: Microglia in motor neuron disease. Neuropathol. Appl. Neurobiol., 2021, 47(2), 179-197. doi: 10.1111/nan.12640 PMID: 32594542
- Gomes, C.; Sequeira, C.; Barbosa, M.; Cunha, C.; Vaz, A.R.; Brites, D. Astrocyte regional diversity in ALS includes distinct aberrant phenotypes with common and causal pathological processes. Exp. Cell Res., 2020, 395(2), 112209. doi: 10.1016/j.yexcr.2020.112209 PMID: 32739211
- Geloso, M.C.; Corvino, V.; Marchese, E.; Serrano, A.; Michetti, F.; DAmbrosi, N. The dual role of microglia in ALS: Mechanisms and therapeutic approaches. Front. Aging Neurosci., 2017, 9, 242. doi: 10.3389/fnagi.2017.00242 PMID: 28790913
- Trolese, M.C.; Mariani, A.; Terao, M.; de Paola, M.; Fabbrizio, P.; Sironi, F.; Kurosaki, M.; Bonanno, S.; Marcuzzo, S.; Bernasconi, P.; Trojsi, F.; Aronica, E.; Bendotti, C.; Nardo, G. CXCL13/ CXCR5 signalling is pivotal to preserve motor neurons in amyotrophic lateral sclerosis. EBioMedicine, 2020, 62, 103097. doi: 10.1016/j.ebiom.2020.103097 PMID: 33161233
- Hensley, K.; Mhatre, M.; Mou, S.; Pye, Q.N.; Stewart, C.; West, M.; Williamson, K.S. On the relation of oxidative stress to neuroinflammation: Lessons learned from the G93A-SOD1 mouse model of amyotrophic lateral sclerosis. Antioxid. Redox Signal., 2006, 8(11-12), 2075-2087. doi: 10.1089/ars.2006.8.2075 PMID: 17034351
- Puentes, F.; Malaspina, A.; van Noort, J.M.; Amor, S. Non-neuronal cells in ALS: Role of glial, immune cells and blood-CNS barriers. Brain Pathol., 2016, 26(2), 248-257. doi: 10.1111/bpa.12352 PMID: 26780491
- Santoni, G.; Cardinali, C.; Morelli, M.; Santoni, M.; Nabissi, M.; Amantini, C. Danger- and pathogen-associated molecular patterns recognition by pattern-recognition receptors and ion channels of the transient receptor potential family triggers the inflammasome activation in immune cells and sensory neurons. J. Neuroinflammation, 2015, 12(1), 21. doi: 10.1186/s12974-015-0239-2 PMID: 25644504
- Ouali, A.N.; Schurr, C.; Olde Heuvel, F.; Tang, L.; Li, Q.; Tasdogan, A.; Kimbara, A.; Nettekoven, M.; Ottaviani, G.; Raposo, C.; Röver, S.; Rogers-Evans, M.; Rothenhäusler, B.; Ullmer, C.; Fingerle, J.; Grether, U.; Knuesel, I.; Boeckers, T.M.; Ludolph, A.; Wirth, T.; Roselli, F.; Baumann, B. NF‐κB activation in astrocytes drives a stage‐specific beneficial neuroimmunological response in ALS. EMBO J., 2018, 37(16), e98697. doi: 10.15252/embj.201798697 PMID: 29875132
- Liddelow, S.A.; Guttenplan, K.A.; Clarke, L.E.; Bennett, F.C.; Bohlen, C.J.; Schirmer, L.; Bennett, M.L.; Münch, A.E.; Chung, W.S.; Peterson, T.C.; Wilton, D.K.; Frouin, A.; Napier, B.A.; Panicker, N.; Kumar, M.; Buckwalter, M.S.; Rowitch, D.H.; Dawson, V.L.; Dawson, T.M.; Stevens, B.; Barres, B.A. Neurotoxic reactive astrocytes are induced by activated microglia. Nature, 2017, 541(7638), 481-487. doi: 10.1038/nature21029 PMID: 28099414
- Vaz, S.H.; Pinto, S.; Sebastião, A.M.; Brites, D. Astrocytes in amyotrophic lateral sclerosis. Amyotroph. Lateral Scler; Araki, T., Ed.; Exon Publications: Brisbane, 2021. doi: 10.36255/exonpublications.amyotrophiclateralsclerosis.astrocytes.2021
- Zhao, W.; Beers, D.R.; Appel, S.H. Immune-mediated mechanisms in the pathoprogression of amyotrophic lateral sclerosis. J. Neuroimmune Pharmacol., 2013, 8(4), 888-899. doi: 10.1007/s11481-013-9489-x PMID: 23881705
- Johann, S.; Heitzer, M.; Kanagaratnam, M.; Goswami, A.; Rizo, T.; Weis, J.; Troost, D.; Beyer, C. NLRP3 inflammasome is expressed by astrocytes in the SOD1 mouse model of ALS and in human sporadic ALS patients. Glia, 2015, 63(12), 2260-2273. doi: 10.1002/glia.22891 PMID: 26200799
- MacLean, M.; Juranek, J.; Cuddapah, S.; López-Díez, R.; Ruiz, H.H.; Hu, J.; Frye, L.; Li, H.; Gugger, P.F.; Schmidt, A.M. Microglia RAGE exacerbates the progression of neurodegeneration within the SOD1G93A murine model of amyotrophic lateral sclerosis in a sex-dependent manner. J. Neuroinflammation, 2021, 18(1), 139. doi: 10.1186/s12974-021-02191-2 PMID: 34130712
- Eitan, C.; Siany, A.; Barkan, E.; Olender, T.; van Eijk, K.R.; Moisse, M.; Farhan, S.M.K.; Danino, Y.M.; Yanowski, E.; Marmor-Kollet, H.; Rivkin, N.; Yacovzada, N.S.; Hung, S.T.; Cooper-Knock, J.; Yu, C.H.; Louis, C.; Masters, S.L.; Kenna, K.P.; van der Spek, R.A.A.; Sproviero, W.; Al Khleifat, A.; Iacoangeli, A.; Shatunov, A.; Jones, A.R.; Elbaz-Alon, Y.; Cohen, Y.; Chapnik, E.; Rothschild, D.; Weissbrod, O.; Beck, G.; Ainbinder, E.; Ben-Dor, S.; Werneburg, S.; Schafer, D.P.; Brown, R.H., Jr; Shaw, P.J.; Van Damme, P.; van den Berg, L.H.; Phatnani, H.; Segal, E.; Ichida, J.K.; Al-Chalabi, A.; Veldink, J.H.; Cooper-Knock, J.; Kenna, K.P.; Van Damme, P.; van den Berg, L.H.; Hornstein, E.; Hornstein, E. Whole-genome sequencing reveals that variants in the Interleukin 18 Receptor Accessory Protein 3′UTR protect against ALS. Nat. Neurosci., 2022, 25(4), 433-445. doi: 10.1038/s41593-022-01040-6 PMID: 35361972
- Beers, D.R.; Henkel, J.S.; Zhao, W.; Wang, J.; Appel, S.H. CD4+ T cells support glial neuroprotection, slow disease progression, and modify glial morphology in an animal model of inherited ALS. Proc. Natl. Acad. Sci. USA, 2008, 105(40), 15558-15563. doi: 10.1073/pnas.0807419105 PMID: 18809917
- Henkel, J.S.; Beers, D.R.; Wen, S.; Rivera, A.L.; Toennis, K.M.; Appel, J.E.; Zhao, W.; Moore, D.H.; Powell, S.Z.; Appel, S.H. Regulatory T‐lymphocytes mediate amyotrophic lateral sclerosis progression and survival. EMBO Mol. Med., 2013, 5(1), 64-79. doi: 10.1002/emmm.201201544 PMID: 23143995
- McCombe, P.A.; Lee, J.D.; Woodruff, T.M.; Henderson, R.D. The peripheral immune system and amyotrophic lateral sclerosis. Front. Neurol., 2020, 11, 279. doi: 10.3389/fneur.2020.00279 PMID: 32373052
- Volonté, C.; Apolloni, S.; Parisi, C.; Amadio, S. Purinergic contribution to amyotrophic lateral sclerosis. Neuropharmacology, 2016, 104, 180-193. doi: 10.1016/j.neuropharm.2015.10.026 PMID: 26514402
- Sta, M.; Sylva-Steenland, R.M.R.; Casula, M.; de Jong, J.M.B.V.; Troost, D.; Aronica, E.; Baas, F. Innate and adaptive immunity in amyotrophic lateral sclerosis: Evidence of complement activation. Neurobiol. Dis., 2011, 42(3), 211-220. doi: 10.1016/j.nbd.2011.01.002 PMID: 21220013
- Kakaroubas, N.; Brennan, S.; Keon, M.; Saksena, N.K. Pathomechanisms of blood-brain barrier disruption in ALS. Neurosci. J., 2019, 2019, 1-16. doi: 10.1155/2019/2537698 PMID: 31380411
- Saul, J.; Hutchins, E.; Reiman, R.; Saul, M.; Ostrow, L.W.; Harris, B.T.; Van Keuren-Jensen, K.; Bowser, R.; Bakkar, N. Global alterations to the choroid plexus blood-CSF barrier in amyotrophic lateral sclerosis. Acta Neuropathol. Commun., 2020, 8(1), 92. doi: 10.1186/s40478-020-00968-9 PMID: 32586411
- Bowerman, M. The neuroinflammation in the physiopathology of amyotrophic lateral sclerosis. In: Curr. Adv. Amyotrophic Lateral Sclerosis; InTech, 2013. doi: 10.5772/56489
- Jiang, L.L.; Zhu, B.; Zhao, Y.; Li, X.; Liu, T.; Pina-Crespo, J.; Zhou, L.; Xu, W.; Rodriguez, M.J.; Yu, H.; Cleveland, D.W.; Ravits, J.; Da Cruz, S.; Long, T.; Zhang, D.; Huang, T.Y.; Xu, H. Membralin deficiency dysregulates astrocytic glutamate homeostasis, leading to ALS-like impairment. J. Clin. Invest., 2019, 129(8), 3103-3120. doi: 10.1172/JCI127695 PMID: 31112137
- Yin, X.; Wang, S.; Qi, Y.; Wang, X.; Jiang, H.; Wang, T.; Yang, Y.; Wang, Y.; Zhang, C.; Feng, H. Astrocyte elevated gene-1 is a novel regulator of astrogliosis and excitatory amino acid transporter-2 via interplaying with nuclear factor-κB signaling in astrocytes from amyotrophic lateral sclerosis mouse model with hSOD1 G93A mutation. Mol. Cell. Neurosci., 2018, 90, 1-11. doi: 10.1016/j.mcn.2018.05.004 PMID: 29777762
- Rosenblum, L.T.; Shamamandri-Markandaiah, S.; Ghosh, B.; Foran, E.; Lepore, A.C.; Pasinelli, P.; Trotti, D. Mutation of the caspase-3 cleavage site in the astroglial glutamate transporter EAAT2 delays disease progression and extends lifespan in the SOD1-G93A mouse model of ALS. Exp. Neurol., 2017, 292, 145-153. doi: 10.1016/j.expneurol.2017.03.014 PMID: 28342750
- Chen, L.C.; Smith, A.P.; Ben, Y.; Zukic, B.; Ignacio, S.; Moore, D.; Lee, N.M. Temporal gene expression patterns in G93A/SOD1 mouse. Amyotroph. Lateral Scler. Other Motor Neuron Disord., 2004, 5(3), 164-171. doi: 10.1080/14660820410017091 PMID: 15512905
- Lopez-Lopez, A.; Gamez, J.; Syriani, E.; Morales, M.; Salvado, M.; Rodríguez, M.J.; Mahy, N.; Vidal-Taboada, J.M. CX3CR1 is a modifying gene of survival and progression in amyotrophic lateral sclerosis. PLoS One, 2014, 9(5), e96528. doi: 10.1371/journal.pone.0096528 PMID: 24806473
- Tripathi, P.; Rodriguez-Muela, N.; Klim, J.R.; de Boer, A.S.; Agrawal, S.; Sandoe, J.; Lopes, C.S.; Ogliari, K.S.; Williams, L.A.; Shear, M.; Rubin, L.L.; Eggan, K.; Zhou, Q. Reactive astrocytes promote ALS-like degeneration and intracellular protein aggregation in human motor neurons by disrupting autophagy through TGF-β1. Stem Cell Reports, 2017, 9(2), 667-680. doi: 10.1016/j.stemcr.2017.06.008 PMID: 28712846
- Cassina, P.; Miquel, E.; Martínez-Palma, L.; Cassina, A. Glial metabolic reprogramming in amyotrophic lateral sclerosis. Neuroimmunomodulation, 2021, 28(4), 204-212. doi: 10.1159/000516926 PMID: 34175843
- Moisse, K.; Strong, M.J. Innate immunity in amyotrophic lateral sclerosis. Biochim. Biophys. Acta Mol. Basis Dis., 2006, 1762(11-12), 1083-1093. doi: 10.1016/j.bbadis.2006.03.001 PMID: 16624536
- Raffaele, S.; Boccazzi, M.; Fumagalli, M. Oligodendrocyte dysfunction in amyotrophic lateral sclerosis: Mechanisms and therapeutic perspectives. Cells, 2021, 10(3), 565. doi: 10.3390/cells10030565 PMID: 33807572
- Ito, Y.; Ofengeim, D.; Najafov, A.; Das, S.; Saberi, S.; Li, Y.; Hitomi, J.; Zhu, H.; Chen, H.; Mayo, L.; Geng, J.; Amin, P.; DeWitt, J.P.; Mookhtiar, A.K.; Florez, M.; Ouchida, A.T.; Fan, J.; Pasparakis, M.; Kelliher, M.A.; Ravits, J.; Yuan, J. RIPK1 mediates axonal degeneration by promoting inflammation and necroptosis in ALS. Science, 2016, 353(6299), 603-608. doi: 10.1126/science.aaf6803 PMID: 27493188
- Liu, J.F.; Zheng, O.X.; Xin, J.G.; Chen, H.H.; Xin, J.J. How are necroptosis, immune dysfunction, and motoneuron death connected in amyotrophic lateral sclerosis? Neuroimmunol. Neuroinflamm., 2017, 4(6), 109-116. doi: 10.20517/2347-8659.2017.12
- Endo, F.; Komine, O.; Yamanaka, K. Neuroinflammation in motor neuron disease. Clin. Exp. Neuroimmunol., 2016, 7(2), 126-138. doi: 10.1111/cen3.12309
- Trias, E.; King, P.H.; Si, Y.; Kwon, Y.; Varela, V.; Ibarburu, S.; Kovacs, M.; Moura, I.C.; Beckman, J.S.; Hermine, O.; Barbeito, L. Mast cells and neutrophils mediate peripheral motor pathway degeneration in ALS. JCI Insight, 2018, 3(19), e123249. doi: 10.1172/jci.insight.123249 PMID: 30282815
- Kang, S.H.; Li, Y.; Fukaya, M.; Lorenzini, I.; Cleveland, D.W.; Ostrow, L.W.; Rothstein, J.D.; Bergles, D.E. Degeneration and impaired regeneration of gray matter oligodendrocytes in amyotrophic lateral sclerosis. Nat. Neurosci., 2013, 16(5), 571-579. doi: 10.1038/nn.3357 PMID: 23542689
- Filipi, T.; Hermanova, Z.; Tureckova, J.; Vanatko, O.; Anderova, M. Glial cellsthe strategic targets in amyotrophic lateral sclerosis treatment. J. Clin. Med., 2020, 9(1), 261. doi: 10.3390/jcm9010261 PMID: 31963681
- Mishra, P.S.; Boutej, H.; Soucy, G.; Bareil, C.; Kumar, S.; Picher-Martel, V.; Dupré, N.; Kriz, J.; Julien, J.P. Transmission of ALS pathogenesis by the cerebrospinal fluid. Acta Neuropathol. Commun., 2020, 8(1), 65. doi: 10.1186/s40478-020-00943-4 PMID: 32381112
- Sumitha, R.; Manjunatha, V.M.; Sabitha, R.K.; Alladi, P.A.; Nalini, A.; Rao, L.T.; Chandrasekhar Sagar, B.K.; Steinbusch, H.W.M.; Kramer, B.W.; Sathyaprabha, T.N.; Raju, T.R. Cerebrospinal fluid from patients with sporadic amyotrophic lateral sclerosis induces degeneration of motor neurons derived from human embryonic stem cells. Mol. Neurobiol., 2019, 56(2), 1014-1034. doi: 10.1007/s12035-018-1149-y PMID: 29858777
- Mishra, P.S.; Vijayalakshmi, K.; Nalini, A.; Sathyaprabha, T.N.; Kramer, B.W.; Alladi, P.A.; Raju, T.R. Etiogenic factors present in the cerebrospinal fluid from amyotrophic lateral sclerosis patients induce predominantly pro-inflammatory responses in microglia. J. Neuroinflammation, 2017, 14(1), 251. doi: 10.1186/s12974-017-1028-x PMID: 29246232
- Clement, A.M.; Nguyen, M.D.; Roberts, E.A.; Garcia, M.L.; Boillée, S.; Rule, M.; McMahon, A.P.; Doucette, W.; Siwek, D.; Ferrante, R.J.; Brown, R.H., Jr; Julien, J.P.; Goldstein, L.S.B.; Cleveland, D.W. Wild-type nonneuronal cells extend survival of SOD1 mutant motor neurons in ALS mice. Science, 2003, 302(5642), 113-117. doi: 10.1126/science.1086071 PMID: 14526083
- Lobsiger, C.S.; Boillee, S.; McAlonis-Downes, M.; Khan, A.M.; Feltri, M.L.; Yamanaka, K.; Cleveland, D.W. Schwann cells expressing dismutase active mutant SOD1 unexpectedly slow disease progression in ALS mice. Proc. Natl. Acad. Sci. USA, 2009, 106(11), 4465-4470. doi: 10.1073/pnas.0813339106 PMID: 19251638
- Boillée, S.; Yamanaka, K.; Lobsiger, C.S.; Copeland, N.G.; Jenkins, N.A.; Kassiotis, G.; Kollias, G.; Cleveland, D.W. Onset and progression in inherited ALS determined by motor neurons and microglia. Science, 2006, 312(5778), 1389-1392. doi: 10.1126/science.1123511 PMID: 16741123
- Van Harten, A.C.M.; Phatnani, H.; Przedborski, S. Non-cell-autonomous pathogenic mechanisms in amyotrophic lateral sclerosis. Trends Neurosci., 2021, 44(8), 658-668. doi: 10.1016/j.tins.2021.04.008 PMID: 34006386
- Damme, M.; Suntio, T.; Saftig, P.; Eskelinen, E.L. Autophagy in neuronal cells: general principles and physiological and pathological functions. Acta Neuropathol., 2015, 129(3), 337-362. doi: 10.1007/s00401-014-1361-4 PMID: 25367385
- Sasaki, S. Autophagy in spinal cord motor neurons in sporadic amyotrophic lateral sclerosis. J. Neuropathol. Exp. Neurol., 2011, 70(5), 349-359. doi: 10.1097/NEN.0b013e3182160690 PMID: 21487309
- Fernando, R.; Castro, J.P.; Flore, T.; Deubel, S.; Grune, T.; Ott, C. Age-related maintenance of the autophagy-lysosomal system is dependent on skeletal muscle type. Oxid. Med. Cell. Longev., 2020, 2020, 1-8. doi: 10.1155/2020/4908162 PMID: 32774673
- Amin, A.; Perera, N.D.; Beart, P.M.; Turner, B.J.; Shabanpoor, F. Amyotrophic lateral sclerosis and autophagy: Dysfunction and therapeutic targeting. Cells, 2020, 9(11), 2413. doi: 10.3390/cells9112413 PMID: 33158177
- Fujikake, N.; Shin, M.; Shimizu, S. Association between autophagy and neurodegenerative diseases. Front. Neurosci., 2018, 12, 255. doi: 10.3389/fnins.2018.00255 PMID: 29872373
- Chen, A.I.; Xiong, L.J.; Tong, Y.U.; Mao, M. Neuroprotective effect of brain-derived neurotrophic factor mediated by autophagy through the PI3K/Akt/mTOR pathway. Mol. Med. Rep., 2013, 8(4), 1011-1016. doi: 10.3892/mmr.2013.1628 PMID: 23942837
- Ugolino, J.; Ji, Y.J.; Conchina, K.; Chu, J.; Nirujogi, R.S.; Pandey, A.; Brady, N.R.; Hamacher-Brady, A.; Wang, J. Loss of C9orf72 enhances autophagic activity via deregulated mTOR and TFEB signaling. PLoS Genet., 2016, 12(11), e1006443-e1006443. doi: 10.1371/journal.pgen.1006443 PMID: 27875531
- Budini, M.; Buratti, E.; Morselli, E.; Criollo, A. Autophagy and its impact on neurodegenerative diseases: New roles for TDP-43 and C9orf72. Front. Mol. Neurosci., 2017, 10, 170. doi: 10.3389/fnmol.2017.00170 PMID: 28611593
- Chew, J.; Cook, C.; Gendron, T.F.; Jansen-West, K.; del Rosso, G.; Daughrity, L.M.; Castanedes-Casey, M.; Kurti, A.; Stankowski, J.N.; Disney, M.D.; Rothstein, J.D.; Dickson, D.W.; Fryer, J.D.; Zhang, Y.J.; Petrucelli, L. Aberrant deposition of stress granule-resident proteins linked to C9orf72-associated TDP-43 proteinopathy. Mol. Neurodegener., 2019, 14(1), 9. doi: 10.1186/s13024-019-0310-z PMID: 30767771
- Nguyen, D.K.H.; Thombre, R.; Wang, J. Autophagy as a common pathway in amyotrophic lateral sclerosis. Neurosci. Lett., 2019, 697, 34-48. doi: 10.1016/j.neulet.2018.04.006 PMID: 29626651
- Oakes, J.A.; Davies, M.C.; Collins, M.O. TBK1: a new player in ALS linking autophagy and neuroinflammation. Mol. Brain, 2017, 10(1), 5. doi: 10.1186/s13041-017-0287-x PMID: 28148298
- Tak, Y.J.; Park, J.H.; Rhim, H.; Kang, S. ALS-related mutant SOD1 aggregates interfere with mitophagy by sequestering the autophagy receptor optineurin. Int. J. Mol. Sci., 2020, 21(20), 7525. doi: 10.3390/ijms21207525 PMID: 33065963
- Zhang, Y.J.; Jansen-West, K.; Xu, Y.F.; Gendron, T.F.; Bieniek, K.F.; Lin, W.L.; Sasaguri, H.; Caulfield, T.; Hubbard, J.; Daughrity, L.; Chew, J.; Belzil, V.V.; Prudencio, M.; Stankowski, J.N.; Castanedes-Casey, M.; Whitelaw, E.; Ash, P.E.A.; DeTure, M.; Rademakers, R.; Boylan, K.B.; Dickson, D.W.; Petrucelli, L. Aggregation-prone c9FTD/ALS poly(GA) RAN-translated proteins cause neurotoxicity by inducing ER stress. Acta Neuropathol., 2014, 128(4), 505-524. doi: 10.1007/s00401-014-1336-5 PMID: 25173361
- Soo, K.Y.; Sultana, J.; King, A.E.; Atkinson, R.A.K.; Warraich, S.T.; Sundaramoorthy, V.; Blair, I.; Farg, M.A.; Atkin, J.D. ALS-associated mutant FUS inhibits macroautophagy which is restored by overexpression of Rab1. Cell Death Discov., 2015, 1(1), 15030. doi: 10.1038/cddiscovery.2015.30 PMID: 27551461
- Purice, M.D.; Taylor, J.P. Linking hnRNP function to ALS and FTD pathology. Front. Neurosci., 2018, 12, 326. doi: 10.3389/fnins.2018.00326 PMID: 29867335
- Renaud, L.; Picher-Martel, V.; Codron, P.; Julien, J.P. Key role of UBQLN2 in pathogenesis of amyotrophic lateral sclerosis and frontotemporal dementia. Acta Neuropathol. Commun., 2019, 7(1), 103. doi: 10.1186/s40478-019-0758-7 PMID: 31319884
- Burk, K.; Pasterkamp, R.J. Disrupted neuronal trafficking in amyotrophic lateral sclerosis. Acta Neuropathol., 2019, 137(6), 859-877. doi: 10.1007/s00401-019-01964-7 PMID: 30721407
- Theunissen, F.; West, P.K.; Brennan, S.; Petrović, B.; Hooshmand, K.; Akkari, P.A.; Keon, M.; Guennewig, B. New perspectives on cytoskeletal dysregulation and mitochondrial mislocalization in amyotrophic lateral sclerosis. Transl. Neurodegener., 2021, 10(1), 46. doi: 10.1186/s40035-021-00272-z PMID: 34789332
- Kieran, D.; Hafezparast, M.; Bohnert, S.; Dick, J.R.T.; Martin, J.; Schiavo, G.; Fisher, E.M.C.; Greensmith, L. A mutation in dynein rescues axonal transport defects and extends the life span of ALS mice. J. Cell Biol., 2005, 169(4), 561-567. doi: 10.1083/jcb.200501085 PMID: 15911875
- Shi, Y.; Lin, S.; Staats, K.A.; Li, Y.; Chang, W.H.; Hung, S.T.; Hendricks, E.; Linares, G.R.; Wang, Y.; Son, E.Y.; Wen, X.; Kisler, K.; Wilkinson, B.; Menendez, L.; Sugawara, T.; Woolwine, P.; Huang, M.; Cowan, M.J.; Ge, B.; Koutsodendris, N.; Sandor, K.P.; Komberg, J.; Vangoor, V.R.; Senthilkumar, K.; Hennes, V.; Seah, C.; Nelson, A.R.; Cheng, T.Y.; Lee, S.J.J.; August, P.R.; Chen, J.A.; Wisniewski, N.; Hanson-Smith, V.; Belgard, T.G.; Zhang, A.; Coba, M.; Grunseich, C.; Ward, M.E.; van den Berg, L.H.; Pasterkamp, R.J.; Trotti, D.; Zlokovic, B.V.; Ichida, J.K. Haploinsufficiency leads to neurodegeneration in C9ORF72 ALS/FTD human induced motor neurons. Nat. Med., 2018, 24(3), 313-325. doi: 10.1038/nm.4490 PMID: 29400714
- Slowicka, K.; Vereecke, L.; van Loo, G. Cellular functions of optineurin in health and disease. Trends Immunol., 2016, 37(9), 621-633. doi: 10.1016/j.it.2016.07.002 PMID: 27480243
- Rademakers, R.; van Blitterswijk, M. Excess of rare damaging TUBA4A variants suggests cytoskeletal defects in ALS. Neuron, 2014, 84(2), 241-243. doi: 10.1016/j.neuron.2014.10.002 PMID: 25374348
- Laird, F.M.; Farah, M.H.; Ackerley, S.; Hoke, A.; Maragakis, N.; Rothstein, J.D.; Griffin, J.; Price, D.L.; Martin, L.J.; Wong, P.C. Motor neuron disease occurring in a mutant dynactin mouse model is characterized by defects in vesicular trafficking. J. Neurosci., 2008, 28(9), 1997-2005. doi: 10.1523/JNEUROSCI.4231-07.2008 PMID: 18305234
- Nicolas, A.; Kenna, K.P.; Renton, A.E.; Ticozzi, N.; Faghri, F.; Chia, R.; Dominov, J.A.; Kenna, B.J.; Nalls, M.A.; Keagle, P.; Rivera, A.M.; van Rheenen, W.; Murphy, N.A.; van Vugt, J.J.F.A.; Geiger, J.T.; Van der Spek, R.A.; Pliner, H.A. Shankaracharya; Smith, B.N.; Marangi, G.; Topp, S.D.; Abramzon, Y.; Gkazi, A.S.; Eicher, J.D.; Kenna, A.; Mora, G.; Calvo, A.; Mazzini, L.; Riva, N.; Mandrioli, J.; Caponnetto, C.; Battistini, S.; Volanti, P.; La Bella, V.; Conforti, F.L.; Borghero, G.; Messina, S.; Simone, I.L.; Trojsi, F.; Salvi, F.; Logullo, F.O.; DAlfonso, S.; Corrado, L.; Capasso, M.; Ferrucci, L.; Moreno, C.A.M.; Kamalakaran, S.; Goldstein, D.B.; Gitler, A.D.; Harris, T.; Myers, R.M.; Phatnani, H.; Musunuri, R.L.; Evani, U.S.; Abhyankar, A.; Zody, M.C.; Kaye, J.; Finkbeiner, S.; Wyman, S.K.; LeNail, A.; Lima, L.; Fraenkel, E.; Svendsen, C.N.; Thompson, L.M.; Van Eyk, J.E.; Berry, J.D.; Miller, T.M.; Kolb, S.J.; Cudkowicz, M.; Baxi, E.; Benatar, M.; Taylor, J.P.; Rampersaud, E.; Wu, G.; Wuu, J.; Lauria, G.; Verde, F.; Fogh, I.; Tiloca, C.; Comi, G.P.; Sorarù, G.; Cereda, C.; Corcia, P.; Laaksovirta, H.; Myllykangas, L.; Jansson, L.; Valori, M.; Ealing, J.; Hamdalla, H.; Rollinson, S.; Pickering-Brown, S.; Orrell, R.W.; Sidle, K.C.; Malaspina, A.; Hardy, J.; Singleton, A.B.; Johnson, J.O.; Arepalli, S.; Sapp, P.C.; McKenna-Yasek, D.; Polak, M.; Asress, S.; Al-Sarraj, S.; King, A.; Troakes, C.; Vance, C.; de Belleroche, J.; Baas, F.; ten Asbroek, A.L.M.A.; Muñoz-Blanco, J.L.; Hernandez, D.G.; Ding, J.; Gibbs, J.R.; Scholz, S.W.; Floeter, M.K.; Campbell, R.H.; Landi, F.; Bowser, R.; Pulst, S.M.; Ravits, J.M.; MacGowan, D.J.L.; Kirby, J.; Pioro, E.P.; Pamphlett, R.; Broach, J.; Gerhard, G.; Dunckley, T.L.; Brady, C.B.; Kowall, N.W.; Troncoso, J.C.; Le Ber, I.; Mouzat, K.; Lumbroso, S.; Heiman-Patterson, T.D.; Kamel, F.; Van Den Bosch, L.; Baloh, R.H.; Strom, T.M.; Meitinger, T.; Shatunov, A.; Van Eijk, K.R.; de Carvalho, M.; Kooyman, M.; Middelkoop, B.; Moisse, M.; McLaughlin, R.L.; Van Es, M.A.; Weber, M.; Boylan, K.B.; Van Blitterswijk, M.; Rademakers, R.; Morrison, K.E.; Basak, A.N.; Mora, J.S.; Drory, V.E.; Shaw, P.J.; Turner, M.R.; Talbot, K.; Hardiman, O.; Williams, K.L.; Fifita, J.A.; Nicholson, G.A.; Blair, I.P.; Rouleau, G.A.; Esteban-Pérez, J.; García-Redondo, A.; Al-Chalabi, A.; Rogaeva, E.; Zinman, L.; Ostrow, L.W.; Maragakis, N.J.; Rothstein, J.D.; Simmons, Z.; Cooper-Knock, J.; Brice, A.; Goutman, S.A.; Feldman, E.L.; Gibson, S.B.; Taroni, F.; Ratti, A.; Gellera, C.; Van Damme, P.; Robberecht, W.; Fratta, P.; Sabatelli, M.; Lunetta, C.; Ludolph, A.C.; Andersen, P.M.; Weishaupt, J.H.; Camu, W.; Trojanowski, J.Q.; Van Deerlin, V.M.; Brown, R.H., Jr; van den Berg, L.H.; Veldink, J.H.; Harms, M.B.; Glass, J.D.; Stone, D.J.; Tienari, P.; Silani, V.; Chiò, A.; Shaw, C.E.; Traynor, B.J.; Landers, J.E.; Logullo, F.O.; Simone, I.; Logroscino, G.; Salvi, F.; Bartolomei, I.; Borghero, G.; Murru, M.R.; Costantino, E.; Pani, C.; Puddu, R.; Caredda, C.; Piras, V.; Tranquilli, S.; Cuccu, S.; Corongiu, D.; Melis, M.; Milia, A.; Marrosu, F.; Marrosu, M.G.; Floris, G.; Cannas, A.; Tranquilli, S.; Capasso, M.; Caponnetto, C.; Mancardi, G.; Origone, P.; Mandich, P.; Conforti, F.L.; Cavallaro, S.; Mora, G.; Marinou, K.; Sideri, R.; Penco, S.; Mosca, L.; Lunetta, C.; Pinter, G.L.; Corbo, M.; Riva, N.; Carrera, P.; Volanti, P.; Mandrioli, J.; Fini, N.; Fasano, A.; Tremolizzo, L.; Arosio, A.; Ferrarese, C.; Trojsi, F.; Tedeschi, G.; Monsurrò, M.R.; Piccirillo, G.; Femiano, C.; Ticca, A.; Ortu, E.; La Bella, V.; Spataro, R.; Colletti, T.; Sabatelli, M.; Zollino, M.; Conte, A.; Luigetti, M.; Lattante, S.; Marangi, G.; Santarelli, M.; Petrucci, A.; Pugliatti, M.; Pirisi, A.; Parish, L.D.; Occhineri, P.; Giannini, F.; Battistini, S.; Ricci, C.; Benigni, M.; Cau, T.B.; Loi, D.; Calvo, A.; Moglia, C.; Brunetti, M.; Barberis, M.; Restagno, G.; Casale, F.; Marrali, G.; Fuda, G.; Ossola, I.; Cammarosano, S.; Canosa, A.; Ilardi, A.; Manera, U.; Grassano, M.; Tanel, R.; Pisano, F.; Harms, M.B.; Goldstein, D.B.; Shneider, N.A.; Goutman, S.; Simmons, Z.; Miller, T.M.; Chandran, S.; Pal, S.; Manousakis, G.; Appel, S.H.; Simpson, E.; Wang, L.; Baloh, R.H.; Gibson, S.; Bedlack, R.; Lacomis, D.; Sareen, D.; Sherman, A.; Bruijn, L.; Penny, M.; Allen, A.S.; Appel, S.; Baloh, R.H.; Bedlack, R.S.; Boone, B.E.; Brown, R.; Carulli, J.P.; Chesi, A.; Chung, W.K.; Cirulli, E.T.; Cooper, G.M.; Couthouis, J.; Day-Williams, A.G.; Dion, P.A.; Gibson, S.; Gitler, A.D.; Glass, J.D.; Goldstein, D.B.; Han, Y.; Harms, M.B.; Harris, T.; Hayes, S.D.; Jones, A.L.; Keebler, J.; Krueger, B.J.; Lasseigne, B.N.; Levy, S.E.; Lu, Y-F.; Maniatis, T.; McKenna-Yasek, D.; Miller, T.M.; Myers, R.M.; Petrovski, S.; Pulst, S.M.; Raphael, A.R.; Ravits, J.M.; Ren, Z.; Rouleau, G.A.; Sapp, P.C.; Shneider, N.A.; Simpson, E.; Sims, K.B.; Staropoli, J.F.; Waite, L.L.; Wang, Q.; Wimbish, J.R.; Xin, W.W.; Phatnani, H.; Kwan, J.; Sareen, D.; Broach, J.R.; Simmons, Z.; Arcila-Londono, X.; Lee, E.B.; Van Deerlin, V.M.; Shneider, N.A.; Fraenkel, E.; Ostrow, L.W.; Baas, F.; Zaitlen, N.; Berry, J.D.; Malaspina, A.; Fratta, P.; Cox, G.A.; Thompson, L.M.; Finkbeiner, S.; Dardiotis, E.; Miller, T.M.; Chandran, S.; Pal, S.; Hornstein, E.; MacGowan, D.J.; Heiman-Patterson, T.; Hammell, M.G.; Patsopoulos, N.A.; Dubnau, J.; Nath, A.; Kaye, J.; Finkbeiner, S.; Wyman, S.; LeNail, A.; Lima, L.; Fraenkel, E.; Rothstein, J.D.; Svendsen, C.N.; Thompson, L.M.; Van Eyk, J.; Maragakis, N.J.; Berry, J.D.; Glass, J.D.; Miller, T.M.; Kolb, S.J.; Baloh, R.H.; Cudkowicz, M.; Baxi, E.; Benatar, M.; Taylor, J.P.; Wu, G.; Rampersaud, E.; Wuu, J.; Rademakers, R.; Züchner, S.; Schule, R.; McCauley, J.; Hussain, S.; Cooley, A.; Wallace, M.; Clayman, C.; Barohn, R.; Statland, J.; Ravits, J.; Swenson, A.; Jackson, C.; Trivedi, J.; Khan, S.; Katz, J.; Jenkins, L.; Burns, T.; Gwathmey, K.; Caress, J.; McMillan, C.; Elman, L.; Pioro, E.; Heckmann, J.; So, Y.; Walk, D.; Maiser, S.; Zhang, J.; Silani, V.; Ticozzi, N.; Gellera, C.; Ratti, A.; Taroni, F.; Lauria, G.; Verde, F.; Fogh, I.; Tiloca, C.; Comi, G.P.; Sorarù, G.; Cereda, C.; DAlfonso, S.; Corrado, L.; De Marchi, F.; Corti, S.; Ceroni, M.; Mazzini, L.; Siciliano, G.; Filosto, M.; Inghilleri, M.; Peverelli, S.; Colombrita, C.; Poletti, B.; Maderna, L.; Del Bo, R.; Gagliardi, S.; Querin, G.; Bertolin, C.; Pensato, V.; Castellotti, B.; Camu, W.; Mouzat, K.; Lumbroso, S.; Corcia, P.; Meininger, V.; Besson, G.; Lagrange, E.; Clavelou, P.; Guy, N.; Couratier, P.; Vourch, P.; Danel, V.; Bernard, E.; Lemasson, G.; Al Kheifat, A.; Al-Chalabi, A.; Andersen, P.; Basak, A.N.; Blair, I.P.; Chio, A.; Cooper-Knock, J.; Corcia, P.; Couratier, P.; de Carvalho, M.; Dekker, A.; Drory, V.; Redondo, A.G.; Gotkine, M.; Hardiman, O.; Hide, W.; Iacoangeli, A.; Glass, J.; Kenna, K.; Kiernan, M.; Kooyman, M.; Landers, J.; McLaughlin, R.; Middelkoop, B.; Mill, J.; Neto, M.M.; Moisse, M.; Pardina, J.M.; Morrison, K.; Newhouse, S.; Pinto, S.; Pulit, S.; Robberecht, W.; Shatunov, A.; Shaw, P.; Shaw, C.; Silani, V.; Sproviero, W.; Tazelaar, G.; Ticozzi, N.; van Damme, P.; van den Berg, L.; van der Spek, R.; van Eijk, K.; van Es, M.; van Rheenen, W.; van Vugt, J.; Veldink, J.; Weber, M.; Williams, K.L.; Zatz, M.; Bauer, D.C.; Twine, N.A. Genome-wide Analyses Identify KIF5A as a Novel ALS Gene. Neuron, 2018, 97(6), 1268-1283.e6. doi: 10.1016/j.neuron.2018.02.027 PMID: 29566793
- Ackerley, S.; Grierson, A.J.; Banner, S.; Perkinton, M.S.; Brownlees, J.; Byers, H.L.; Ward, M.; Thornhill, P.; Hussain, K.; Waby, J.S.; Anderton, B.H.; Cooper, J.D.; Dingwall, C.; Leigh, P.N.; Shaw, C.E.; Miller, C.C.J. p38α stress-activated protein kinase phosphorylates neurofilaments and is associated with neurofilament pathology in amyotrophic lateral sclerosis. Mol. Cell. Neurosci., 2004, 26(2), 354-364. doi: 10.1016/j.mcn.2004.02.009 PMID: 15207859
- Brownlees, J.; Yates, A.; Bajaj, N.P.; Davis, D.; Anderton, B.H.; Leigh, P.N. Phosphorylation of neurofilament heavy chain side-arms by stress activated protein kinase-1b/Jun N-terminal kinase-3. J. Cell Sci., 2000, 113(Pt 3), 401-407. doi: 10.1242/jcs.113.3.401
- Deshpande, M.; Feiger, Z.; Shilton, A.K.; Luo, C.C.; Silverman, E.; Rodal, A.A. Role of BMP receptor traffic in synaptic growth defects in an ALS model. Mol. Biol. Cell, 2016, 27(19), 2898-2910. doi: 10.1091/mbc.E16-07-0519 PMID: 27535427
- Aoki, Y.; Manzano, R.; Lee, Y.; Dafinca, R.; Aoki, M.; Douglas, A.G.L.; Varela, M.A.; Sathyaprakash, C.; Scaber, J.; Barbagallo, P.; Vader, P.; Mäger, I.; Ezzat, K.; Turner, M.R.; Ito, N.; Gasco, S.; Ohbayashi, N.; El Andaloussi, S.; Takeda, S.; Fukuda, M.; Talbot, K.; Wood, M.J.A. C9orf72 and RAB7L1 regulate vesicle trafficking in amyotrophic lateral sclerosis and frontotemporal dementia. Brain, 2017, 140(4), 887-897. doi: 10.1093/brain/awx024 PMID: 28334866
- Zhen, Y.; Stenmark, H. Cellular functions of Rab GTPases at a glance. J. Cell Sci., 2015, 128(17), jcs.166074. doi: 10.1242/jcs.166074 PMID: 26272922
- Lai, C.; Xie, C.; McCormack, S.G.; Chiang, H.C.; Michalak, M.K.; Lin, X.; Chandran, J.; Shim, H.; Shimoji, M.; Cookson, M.R.; Huganir, R.L.; Rothstein, J.D.; Price, D.L.; Wong, P.C.; Martin, L.J.; Zhu, J.J.; Cai, H. Amyotrophic lateral sclerosis 2-deficiency leads to neuronal degeneration in amyotrophic lateral sclerosis through altered AMPA receptor trafficking. J. Neurosci., 2006, 26(45), 11798-11806. doi: 10.1523/JNEUROSCI.2084-06.2006 PMID: 17093100
- Ritson, G.P.; Custer, S.K.; Freibaum, B.D.; Guinto, J.B.; Geffel, D.; Moore, J.; Tang, W.; Winton, M.J.; Neumann, M.; Trojanowski, J.Q.; Lee, V.M.Y.; Forman, M.S.; Taylor, J.P. TDP-43 mediates degeneration in a novel Drosophila model of disease caused by mutations in VCP/p97. J. Neurosci., 2010, 30(22), 7729-7739. doi: 10.1523/JNEUROSCI.5894-09.2010 PMID: 20519548
- Gwon, Y.; Maxwell, B.A.; Kolaitis, R.M.; Zhang, P.; Kim, H.J.; Taylor, J.P. Ubiquitination of G3BP1 mediates stress granule disassembly in a context-specific manner. Science, 2021, 372(6549), eabf6548. doi: 10.1126/science.abf6548 PMID: 34739333
- Bertolin, C.; Querin, G.; Bozzoni, V.; Martinelli, I.; De Bortoli, M.; Rampazzo, A.; Gellera, C.; Pegoraro, E.; Sorarù, G. NewFIG 4 gene mutations causing aggressive ALS. Eur. J. Neurol., 2018, 25(3), e41-e42. doi: 10.1111/ene.13559 PMID: 29464931
- Zhang, K.; Daigle, J.G.; Cunningham, K.M.; Coyne, A.N.; Ruan, K.; Grima, J.C.; Bowen, K.E.; Wadhwa, H.; Yang, P.; Rigo, F.; Taylor, J.P.; Gitler, A.D.; Rothstein, J.D.; Lloyd, T.E. Stress granule assembly disrupts nucleocytoplasmic transport. Cell, 2018, 173(4), 958-971.e17. doi: 10.1016/j.cell.2018.03.025 PMID: 29628143
- Ederle, H.; Funk, C.; Abou-Ajram, C.; Hutten, S.; Funk, E.B.E.; Kehlenbach, R.H.; Bailer, S.M.; Dormann, D. Nuclear egress of TDP-43 and FUS occurs independently of Exportin-1/CRM1. Sci. Rep., 2018, 8(1), 7084. doi: 10.1038/s41598-018-25007-5 PMID: 29728564
- Ciryam, P.; Antalek, M.; Cid, F.; Tartaglia, G.G.; Dobson, C.M.; Guettsches, A.K.; Eggers, B.; Vorgerd, M.; Marcus, K.; Kley, R.A.; Morimoto, R.I.; Vendruscolo, M.; Weihl, C.C. A metastable subproteome underlies inclusion formation in muscle proteinopathies. Acta Neuropathol. Commun., 2019, 7(1), 197. doi: 10.1186/s40478-019-0853-9 PMID: 31796104
- Yerbury, J.J.; Farrawell, N.E.; McAlary, L. Proteome homeostasis dysfunction: A unifying principle in ALS pathogenesis. Trends Neurosci., 2020, 43(5), 274-284. doi: 10.1016/j.tins.2020.03.002 PMID: 32353332
- Medinas, D.B.; Valenzuela, V.; Hetz, C. Proteostasis disturbance in amyotrophic lateral sclerosis. Hum. Mol. Genet., 2017, 26(R2), R91-R104. doi: 10.1093/hmg/ddx274 PMID: 28977445
- Bendotti, C.; Marino, M.; Cheroni, C.; Fontana, E.; Crippa, V.; Poletti, A.; De Biasi, S. Dysfunction of constitutive and inducible ubiquitin-proteasome system in amyotrophic lateral sclerosis: Implication for protein aggregation and immune response. Prog. Neurobiol., 2012, 97(2), 101-126. doi: 10.1016/j.pneurobio.2011.10.001 PMID: 22033150
- Ramesh, N.; Pandey, U.B. Autophagy dysregulation in ALS: When protein aggregates get out of hand. Front. Mol. Neurosci., 2017, 10, 263. doi: 10.3389/fnmol.2017.00263 PMID: 28878620
- Prasad, A.; Bharathi, V.; Sivalingam, V.; Girdhar, A.; Patel, B.K. Molecular mechanisms of TDP-43 misfolding and pathology in amyotrophic lateral sclerosis. Front. Mol. Neurosci., 2019, 12, 25. doi: 10.3389/fnmol.2019.00025 PMID: 30837838
- Ivanova, M.I.; Sievers, S.A.; Guenther, E.L.; Johnson, L.M.; Winkler, D.D.; Galaleldeen, A. Aggregation-triggering segments of SOD1 fibril formation support a common pathway for familial and sporadic ALS. Proc. Natl. Acad. Sci., 2014, 111, 197. doi: 10.1073/pnas.1320786110
- Deng, H.X.; Zhai, H.; Bigio, E.H.; Yan, J.; Fecto, F.; Ajroud, K.; Mishra, M.; Ajroud-Driss, S.; Heller, S.; Sufit, R.; Siddique, N.; Mugnaini, E.; Siddique, T. FUS-immunoreactive inclusions are a common feature in sporadic and non-SOD1 familial amyotrophic lateral sclerosis. Ann. Neurol., 2010, 67(6), NA. doi: 10.1002/ana.22051 PMID: 20517935
- Pokrishevsky, E.; Grad, L.I.; Yousefi, M.; Wang, J.; Mackenzie, I.R.; Cashman, N.R. Aberrant localization of FUS and TDP43 is associated with misfolding of SOD1 in amyotrophic lateral sclerosis. PLoS One, 2012, 7(4), e35050. doi: 10.1371/journal.pone.0035050 PMID: 22493728
- Williams, K.L.; Warraich, S.T.; Yang, S.; Solski, J.A.; Fernando, R.; Rouleau, G.A.; Nicholson, G.A.; Blair, I.P. UBQLN2/ubiquilin 2 mutation and pathology in familial amyotrophic lateral sclerosis. Neurobiol. Aging, 2012, 33(10), 2527.e3-2527.e10. doi: 10.1016/j.neurobiolaging.2012.05.008 PMID: 22717235
- Schmitz, A.; Pinheiro, M.J.; Oertig, I.; Maharjan, N.; Saxena, S. Emerging perspectives on dipeptide repeat proteins in C9ORF72 ALS/FTD. Front. Cell. Neurosci., 2021, 15, 637548. doi: 10.3389/fncel.2021.637548 PMID: 33679328
- Gafson, A.R.; Barthélemy, N.R.; Bomont, P.; Carare, R.O.; Durham, H.D.; Julien, J.P.; Kuhle, J.; Leppert, D.; Nixon, R.A.; Weller, R.O.; Zetterberg, H.; Matthews, P.M. Neurofilaments: neurobiological foundations for biomarker applications. Brain, 2020, 143(7), 1975-1998. doi: 10.1093/brain/awaa098 PMID: 32408345
- Kabashi, E.; Agar, J.N.; Strong, M.J.; Durham, H.D. Impaired proteasome function in sporadic amyotrophic lateral sclerosis. Amyotroph. Lateral Scler., 2012, 13(4), 367-371. doi: 10.3109/17482968.2012.686511 PMID: 22632443
- Cheroni, C.; Marino, M.; Tortarolo, M.; Veglianese, P.; De Biasi, S.; Fontana, E.; Zuccarello, L.V.; Maynard, C.J.; Dantuma, N.P.; Bendotti, C. Functional alterations of the ubiquitin-proteasome system in motor neurons of a mouse model of familial amyotrophic lateral sclerosis. Hum. Mol. Genet., 2009, 18(1), 82-96. doi: 10.1093/hmg/ddn319 PMID: 18826962
- Kabashi, E.; Agar, J.N.; Taylor, D.M.; Minotti, S.; Durham, H.D. Focal dysfunction of the proteasome: a pathogenic factor in a mouse model of amyotrophic lateral sclerosis. J. Neurochem., 2004, 89(6), 1325-1335. doi: 10.1111/j.1471-4159.2004.02453.x PMID: 15189335
- Kitajima, Y.; Yoshioka, K.; Suzuki, N. The ubiquitinproteasome system in regulation of the skeletal muscle homeostasis and atrophy: from basic science to disorders. J. Physiol. Sci., 2020, 70(1), 40. doi: 10.1186/s12576-020-00768-9 PMID: 32938372
- Barthelme, D.; Jauregui, R.; Sauer, R.T. An ALS disease mutation in Cdc48/p97 impairs 20S proteasome binding and proteolytic communication. Protein Sci., 2015, 24(9), 1521-1527. doi: 10.1002/pro.2740 PMID: 26134898
- Le, N.T.T.; Chang, L.; Kovlyagina, I.; Georgiou, P.; Safren, N.; Braunstein, K.E.; Kvarta, M.D.; Van Dyke, A.M.; LeGates, T.A.; Philips, T.; Morrison, B.M.; Thompson, S.M.; Puche, A.C.; Gould, T.D.; Rothstein, J.D.; Wong, P.C.; Monteiro, M.J. Motor neuron disease, TDP-43 pathology, and memory deficits in mice expressing ALSFTD-linked UBQLN2 mutations. Proc. Natl. Acad. Sci. USA, 2016, 113(47), E7580-E7589. doi: 10.1073/pnas.1608432113 PMID: 27834214
- Williams, K.L.; Topp, S.; Yang, S.; Smith, B.; Fifita, J.A.; Warraich, S.T.; Zhang, K.Y.; Farrawell, N.; Vance, C.; Hu, X.; Chesi, A.; Leblond, C.S.; Lee, A.; Rayner, S.L.; Sundaramoorthy, V.; Dobson-Stone, C.; Molloy, M.P.; van Blitterswijk, M.; Dickson, D.W.; Petersen, R.C.; Graff-Radford, N.R.; Boeve, B.F.; Murray, M.E.; Pottier, C.; Don, E.; Winnick, C.; McCann, E.P.; Hogan, A.; Daoud, H.; Levert, A.; Dion, P.A.; Mitsui, J.; Ishiura, H.; Takahashi, Y.; Goto, J.; Kost, J.; Gellera, C.; Gkazi, A.S.; Miller, J.; Stockton, J.; Brooks, W.S.; Boundy, K.; Polak, M.; Muñoz-Blanco, J.L.; Esteban-Pérez, J.; Rábano, A.; Hardiman, O.; Morrison, K.E.; Ticozzi, N.; Silani, V.; de Belleroche, J.; Glass, J.D.; Kwok, J.B.J.; Guillemin, G.J.; Chung, R.S.; Tsuji, S.; Brown, R.H., Jr; García-Redondo, A.; Rademakers, R.; Landers, J.E.; Gitler, A.D.; Rouleau, G.A.; Cole, N.J.; Yerbury, J.J.; Atkin, J.D.; Shaw, C.E.; Nicholson, G.A.; Blair, I.P. CCNF mutations in amyotrophic lateral sclerosis and frontotemporal dementia. Nat. Commun., 2016, 7(1), 11253. doi: 10.1038/ncomms11253 PMID: 27080313
- Ling, S.C.; Polymenidou, M.; Cleveland, D.W. Converging mechanisms in ALS and FTD: disrupted RNA and protein homeostasis. Neuron, 2013, 79(3), 416-438. doi: 10.1016/j.neuron.2013.07.033 PMID: 23931993
- Dudman, J.; Qi, X. Stress Granule Dysregulation in Amyotrophic Lateral Sclerosis. Front. Cell. Neurosci., 2020, 14, 598517. doi: 10.3389/fncel.2020.598517 PMID: 33281563
- McAlary, L.; Plotkin, S.S.; Yerbury, J.J.; Cashman, N.R. Prion-like propagation of protein misfolding and aggregation in amyotrophic lateral sclerosis. Front. Mol. Neurosci., 2019, 12, 262. doi: 10.3389/fnmol.2019.00262 PMID: 31736708
- Nolan, M.; Talbot, K.; Ansorge, O. Pathogenesis of FUS-associated ALS and FTD: insights from rodent models. Acta Neuropathol. Commun., 2016, 4(1), 99. doi: 10.1186/s40478-016-0358-8 PMID: 27600654
- Kitamura, A.; Nakayama, Y.; Shibasaki, A.; Taki, A.; Yuno, S.; Takeda, K.; Yahara, M.; Tanabe, N.; Kinjo, M. Interaction of RNA with a C-terminal fragment of the amyotrophic lateral sclerosis-associated TDP43 reduces cytotoxicity. Sci. Rep., 2016, 6(1), 19230. doi: 10.1038/srep19230 PMID: 26757674
- Birsa, N.; Bentham, M.P.; Fratta, P. Cytoplasmic functions of TDP-43 and FUS and their role in ALS. Semin. Cell Dev. Biol., 2020, 99, 193-201. doi: 10.1016/j.semcdb.2019.05.023 PMID: 31132467
- Ratti, A.; Buratti, E. Physiological functions and pathobiology of TDP-43 and FUS/TLS proteins. J. Neurochem., 2016, 138(Suppl. 1), 95-111. doi: 10.1111/jnc.13625 PMID: 27015757
- Balendra, R.; Isaacs, A.M. C9orf72-mediated ALS and FTD: multiple pathways to disease. Nat. Rev. Neurol., 2018, 14(9), 544-558. doi: 10.1038/s41582-018-0047-2 PMID: 30120348
- Tang, X.; Toro, A. T G, S.; Gao, J.; Chalk, J.; Oskarsson, B.; Zhang, K. Divergence, convergence, and therapeutic implications: A cell biology perspective of C9ORF72-ALS/FTD. Mol. Neurodegener., 2020, 15(1), 34. doi: 10.1186/s13024-020-00383-7 PMID: 32513219
- Ayaki, T.; Ito, H.; Komure, O.; Kamada, M.; Nakamura, M.; Wate, R.; Kusaka, H.; Yamaguchi, Y.; Li, F.; Kawakami, H.; Urushitani, M.; Takahashi, R. Multiple proteinopathies in familial ALS cases with optineurin mutations. J. Neuropathol. Exp. Neurol., 2018, 77(2), 128-138. doi: 10.1093/jnen/nlx109 PMID: 29272468
- Münch, C.; OBrien, J. Bertolotti, A Prion-like propagation of mutant superoxide dismutase-1 misfolding in neuronal cells. Proc. Natl. Acad. Sci., 2011, 108(9), 3548-3553. doi: 10.1073/pnas.1017275108
- Geser, F.; Brandmeir, N.J.; Kwong, L.K.; Martinez-Lage, M.; Elman, L.; McCluskey, L.; Xie, S.X.; Lee, V.M.Y.; Trojanowski, J.Q. Evidence of multisystem disorder in whole-brain map of pathological TDP-43 in amyotrophic lateral sclerosis. Arch. Neurol., 2008, 65(5), 636-641. doi: 10.1001/archneur.65.5.636 PMID: 18474740
- Sun, Y.; Curle, A.J.; Haider, A.M.; Balmus, G. The role of DNA damage response in amyotrophic lateral sclerosis. Essays Biochem., 2020, 64(5), 847-861. doi: 10.1042/EBC20200002 PMID: 33078197
- Hewitt, G.; Carroll, B.; Sarallah, R.; Correia-Melo, C.; Ogrodnik, M.; Nelson, G.; Otten, E.G.; Manni, D.; Antrobus, R.; Morgan, B.A.; von Zglinicki, T.; Jurk, D.; Seluanov, A.; Gorbunova, V.; Johansen, T.; Passos, J.F.; Korolchuk, V.I. SQSTM1/p62 mediates crosstalk between autophagy and the UPS in DNA repair. Autophagy, 2016, 12(10), 1917-1930. doi: 10.1080/15548627.2016.1210368 PMID: 27391408
- Konopka, A.; Whelan, D.R.; Jamali, M.S.; Perri, E.; Shahheydari, H.; Toth, R.P.; Parakh, S.; Robinson, T.; Cheong, A.; Mehta, P.; Vidal, M.; Ragagnin, A.M.G.; Khizhnyak, I.; Jagaraj, C.J.; Galper, J.; Grima, N.; Deva, A.; Shadfar, S.; Nicholson, G.A.; Yang, S.; Cutts, S.M.; Horejsi, Z.; Bell, T.D.M.; Walker, A.K.; Blair, I.P.; Atkin, J.D. Impaired NHEJ repair in amyotrophic lateral sclerosis is associated with TDP-43 mutations. Mol. Neurodegener., 2020, 15(1), 51. doi: 10.1186/s13024-020-00386-4 PMID: 32907630
- Wang, H.; Guo, W.; Mitra, J.; Hegde, P.M.; Vandoorne, T.; Eckelmann, B.J.; Mitra, S.; Tomkinson, A.E.; Van Den Bosch, L.; Hegde, M.L. Mutant FUS causes DNA ligation defects to inhibit oxidative damage repair in Amyotrophic Lateral Sclerosis. Nat. Commun., 2018, 9(1), 3683. doi: 10.1038/s41467-018-06111-6 PMID: 30206235
- Kawaguchi, T.; Rollins, M.G.; Moinpour, M.; Morera, A.A.; Ebmeier, C.C.; Old, W.M.; Schwartz, J.C. Changes to the TDP-43 and FUS Interactomes Induced by DNA Damage. J. Proteome Res., 2020, 19(1), 360-370. doi: 10.1021/acs.jproteome.9b00575 PMID: 31693373
- Haeusler, A.R.; Donnelly, C.J.; Periz, G.; Simko, E.A.J.; Shaw, P.G.; Kim, M.S.; Maragakis, N.J.; Troncoso, J.C.; Pandey, A.; Sattler, R.; Rothstein, J.D.; Wang, J. C9orf72 nucleotide repeat structures initiate molecular cascades of disease. Nature, 2014, 507(7491), 195-200. doi: 10.1038/nature13124 PMID: 24598541
- Farg, M.A.; Konopka, A.; Soo, K.Y.; Ito, D.; Atkin, J.D. The DNA damage response (DDR) is induced by the C9orf72 repeat expansion in amyotrophic lateral sclerosis. Hum. Mol. Genet., 2017, 26(15), 2882-2896. doi: 10.1093/hmg/ddx170 PMID: 28481984
- Nihei, Y.; Mori, K.; Werner, G.; Arzberger, T.; Zhou, Q.; Khosravi, B.; Japtok, J.; Hermann, A.; Sommacal, A.; Weber, M.; Kamp, F.; Nuscher, B.; Edbauer, D.; Haass, C. Poly-glycinealanine exacerbates C9orf72 repeat expansion-mediated DNA damage via sequestration of phosphorylated ATM and loss of nuclear hnRNPA3. Acta Neuropathol., 2020, 139(1), 99-118. doi: 10.1007/s00401-019-02082-0 PMID: 31642962
- Kok, J.R.; Palminha, N.M.; Dos Santos Souza, C.; El-Khamisy, S.F.; Ferraiuolo, L. DNA damage as a mechanism of neurodegeneration in ALS and a contributor to astrocyte toxicity. Cell. Mol. Life Sci., 2021, 78(15), 5707-5729. doi: 10.1007/s00018-021-03872-0 PMID: 34173837
- Zhang, Y.J.; Guo, L.; Gonzales, P.K.; Gendron, T.F.; Wu, Y.; Jansen-West, K.; ORaw, A.D.; Pickles, S.R.; Prudencio, M.; Carlomagno, Y.; Gachechiladze, M.A.; Ludwig, C.; Tian, R.; Chew, J.; DeTure, M.; Lin, W.L.; Tong, J.; Daughrity, L.M.; Yue, M.; Song, Y.; Andersen, J.W.; Castanedes-Casey, M.; Kurti, A.; Datta, A.; Antognetti, G.; McCampbell, A.; Rademakers, R.; Oskarsson, B.; Dickson, D.W.; Kampmann, M.; Ward, M.E.; Fryer, J.D.; Link, C.D.; Shorter, J.; Petrucelli, L. Heterochromatin anomalies and double-stranded RNA accumulation underlie C9orf72 poly(PR) toxicity. Science, 2019, 363(6428), eaav2606. doi: 10.1126/science.aav2606 PMID: 30765536
- Tanaka, Y.; Chen, Z.J. STING specifies IRF3 phosphorylation by TBK1 in the cytosolic DNA signaling pathway. Sci. Signal., 2012, 5(214), ra20. doi: 10.1126/scisignal.2002521 PMID: 22394562
- Tadic, V.; Prell, T.; Lautenschlaeger, J.; Grosskreutz, J. The ER mitochondria calcium cycle and ER stress response as therapeutic targets in amyotrophic lateral sclerosis. Front. Cell. Neurosci., 2014, 8, 147. doi: 10.3389/fncel.2014.00147 PMID: 24910594
- Stoica, R.; Paillusson, S.; Gomez-Suaga, P.; Mitchell, J.C.; Lau, D.H.W.; Gray, E.H.; Sancho, R.M.; Vizcay-Barrena, G.; De Vos, K.J.; Shaw, C.E.; Hanger, D.P.; Noble, W.; Miller, C.C.J. ALS/FTD ‐associated FUS activates GSK ‐3β to disrupt the VAPB PTPIP 51 interaction and ER mitochondria associations. EMBO Rep., 2016, 17(9), 1326-1342. doi: 10.15252/embr.201541726 PMID: 27418313
- Vicencio, E.; Beltrán, S.; Labrador, L.; Manque, P.; Nassif, M.; Woehlbier, U. Implications of selective autophagy dysfunction for ALS pathology. Cells, 2020, 9(2), 381. doi: 10.3390/cells9020381 PMID: 32046060
- Sprenkle, N.T.; Sims, S.G.; Sánchez, C.L.; Meares, G.P. Endoplasmic reticulum stress and inflammation in the central nervous system. Mol. Neurodegener., 2017, 12(1), 42. doi: 10.1186/s13024-017-0183-y PMID: 28545479
- Lee, D.Y.; Jeon, G.S.; Sung, J.J. ALS-Linked Mutant SOD1 associates with TIA-1 and alters stress granule dynamics. Neurochem. Res., 2020, 45(12), 2884-2893. doi: 10.1007/s11064-020-03137-5 PMID: 33025330
- Matus, S.; Valenzuela, V.; Medinas, D.B.; Hetz, C. Er dysfunction and protein folding stress in ALS. Int. J. Cell Biol., 2013, 2013, 1-12. doi: 10.1155/2013/674751 PMID: 24324498
- Perri, E.; Parakh, S.; Atkin, J. Protein Disulphide Isomerases: emerging roles of PDI and ERp57 in the nervous system and as therapeutic targets for ALS. Expert Opin. Ther. Targets, 2017, 21(1), 37-49. doi: 10.1080/14728222.2016.1254197 PMID: 27786579
- Wang, L.; Popko, B.; Roos, R.P. The unfolded protein response in familial amyotrophic lateral sclerosis. Hum. Mol. Genet., 2011, 20(5), 1008-1015. doi: 10.1093/hmg/ddq546 PMID: 21159797
- Borgese, N.; Iacomino, N.; Colombo, S.F.; Navone, F. The Link between VAPB loss of function and amyotrophic lateral sclerosis. Cells, 2021, 10(8), 1865. doi: 10.3390/cells10081865 PMID: 34440634
- Sundaramoorthy, V.; Sultana, J.M.; Atkin, J.D. Golgi fragmentation in amyotrophic lateral sclerosis, an overview of possible triggers and consequences. Front. Neurosci., 2015, 9, 400. doi: 10.3389/fnins.2015.00400 PMID: 26578862
- van Dis, V.; Kuijpers, M.; Haasdijk, E.D.; Teuling, E.; Oakes, S.A.; Hoogenraad, C.C.; Jaarsma, D. Golgi fragmentation precedes neuromuscular denervation and is associated with endosome abnormalities in SOD1-ALS mouse motor neurons. Acta Neuropathol. Commun., 2014, 2(1), 38. doi: 10.1186/2051-5960-2-38 PMID: 24708899
- Sasaki, S.; Iwata, M. Mitochondrial alterations in the spinal cord of patients with sporadic amyotrophic lateral sclerosis. J. Neuropathol. Exp. Neurol., 2007, 66(1), 10-16. doi: 10.1097/nen.0b013e31802c396b PMID: 17204932
- Singh, T.; Jiao, Y.; Ferrando, L.M.; Yablonska, S.; Li, F.; Horoszko, E.C.; Lacomis, D.; Friedlander, R.M.; Carlisle, D.L. Neuronal mitochondrial dysfunction in sporadic amyotrophic lateral sclerosis is developmentally regulated. Sci. Rep., 2021, 11(1), 18916. doi: 10.1038/s41598-021-97928-7 PMID: 34556702
- Thau, N.; Knippenberg, S.; Körner, S.; Rath, K.J.; Dengler, R.; Petri, S. Decreased mRNA expression of PGC-1α and PGC-1α-regulated factors in the SOD1G93A ALS mouse model and in human sporadic ALS. J. Neuropathol. Exp. Neurol., 2012, 71(12), 1064-1074. doi: 10.1097/NEN.0b013e318275df4b PMID: 23147503
- Moller, A.; Bauer, C.S.; Cohen, R.N.; Webster, C.P.; De Vos, K.J. Amyotrophic lateral sclerosis-associated mutant SOD1 inhibits anterograde axonal transport of mitochondria by reducing Miro1 levels. Hum. Mol. Genet., 2017, 26(23), 4668-4679. doi: 10.1093/hmg/ddx348 PMID: 28973175
- Davis, S.A.; Itaman, S.; Khalid-Janney, C.M.; Sherard, J.A.; Dowell, J.A.; Cairns, N.J.; Gitcho, M.A. TDP-43 interacts with mitochondrial proteins critical for mitophagy and mitochondrial dynamics. Neurosci. Lett., 2018, 678, 8-15. doi: 10.1016/j.neulet.2018.04.053 PMID: 29715546
- Chen, J.; Bassot, A.; Giuliani, F.; Simmen, T. Amyotrophic lateral sclerosis (ALS): Stressed by dysfunctional mitochondria-endoplasmic reticulum contacts (MERCs). Cells, 2021, 10(7), 1789. doi: 10.3390/cells10071789 PMID: 34359958
- Wang, T.; Liu, H.; Itoh, K.; Oh, S.; Zhao, L.; Murata, D.; Sesaki, H.; Hartung, T.; Na, C.H.; Wang, J. C9orf72 regulates energy homeostasis by stabilizing mitochondrial complex I assembly. Cell Metab., 2021, 33(3), 531-546.e9. doi: 10.1016/j.cmet.2021.01.005 PMID: 33545050
- Obrador, E.; Salvador, R.; López-Blanch, R.; Jihad-Jebbar, A.; Vallés, S.L.; Estrela, J.M. Oxidative stress, neuroinflammation and mitochondria in the pathophysiology of amyotrophic lateral sclerosis. Antioxidants, 2020, 9(9), 901. doi: 10.3390/antiox9090901 PMID: 32971909
- Smith, E.F.; Shaw, P.J.; De Vos, K.J. The role of mitochondria in amyotrophic lateral sclerosis. Neurosci. Lett., 2019, 710, 132933. doi: 10.1016/j.neulet.2017.06.052 PMID: 28669745
- Kazama, M.; Kato, Y.; Kakita, A.; Noguchi, N.; Urano, Y.; Masui, K.; Niida-Kawaguchi, M.; Yamamoto, T.; Watabe, K.; Kitagawa, K.; Shibata, N. Astrocytes release glutamate via cystine/glutamate antiporter upregulated in response to increased oxidative stress related to sporadic amyotrophic lateral sclerosis. Neuropathology, 2020, 40(6), 587-598. doi: 10.1111/neup.12716 PMID: 33305472
- Pollari, E.; Goldsteins, G.; Bart, G.; Koistinaho, J.; Giniatullin, R. The role of oxidative stress in degeneration of the neuromuscular junction in amyotrophic lateral sclerosis. Front. Cell. Neurosci., 2014, 8, 131. doi: 10.3389/fncel.2014.00131 PMID: 24860432
- Tsang, C.K.; Liu, Y.; Thomas, J.; Zhang, Y.; Zheng, X.F.S. Superoxide dismutase 1 acts as a nuclear transcription factor to regulate oxidative stress resistance. Nat. Commun., 2014, 5(1), 3446. doi: 10.1038/ncomms4446 PMID: 24647101
- Goh, C.W.; Lee, I.C.; Sundaram, J.R.; George, S.E.; Yusoff, P.; Brush, M.H.; Sze, N.S.K.; Shenolikar, S. Chronic oxidative stress promotes GADD34-mediated phosphorylation of the TAR DNA-binding protein TDP-43, a modification linked to neurodegeneration. J. Biol. Chem., 2018, 293(1), 163-176. doi: 10.1074/jbc.M117.814111 PMID: 29109149
- Jagaraj, C.J.; Parakh, S.; Atkin, J.D. Emerging evidence highlighting the importance of redox dysregulation in the pathogenesis of amyotrophic lateral sclerosis (ALS). Front. Cell. Neurosci., 2021, 14, 581950. doi: 10.3389/fncel.2020.581950 PMID: 33679322
- Zala, D.; Hinckelmann, M.V.; Yu, H.; Lyra da Cunha, M.M.; Liot, G.; Cordelières, F.P.; Marco, S.; Saudou, F. Vesicular glycolysis provides on-board energy for fast axonal transport. Cell, 2013, 152(3), 479-491. doi: 10.1016/j.cell.2012.12.029 PMID: 23374344
- Wang, T.; Tian, X.; Kim, H.B.; Jang, Y.; Huang, Z.; Na, C.H.; Wang, J. Intracellular energy controls dynamics of stress-induced ribonucleoprotein granules. Nat. Commun., 2022, 13(1), 5584. doi: 10.1038/s41467-022-33079-1 PMID: 36151083
- Rodriguez-Rodriguez, P.; Fernandez, E.; Almeida, A.; Bolaños, J.P. Excitotoxic stimulus stabilizes PFKFB3 causing pentose-phosphate pathway to glycolysis switch and neurodegeneration. Cell Death Differ., 2012, 19(10), 1582-1589. doi: 10.1038/cdd.2012.33 PMID: 22421967
- Vandoorne, T.; De Bock, K.; Van Den Bosch, L. Energy metabolism in ALS: an underappreciated opportunity? Acta Neuropathol., 2018, 135(4), 489-509. doi: 10.1007/s00401-018-1835-x PMID: 29549424
- Pennetta, G.; Welte, M.A. Emerging links between lipid droplets and motor neuron diseases. Dev. Cell, 2018, 45(4), 427-432. doi: 10.1016/j.devcel.2018.05.002 PMID: 29787708
- Cistaro, A.; Pagani, M.; Montuschi, A.; Calvo, A.; Moglia, C.; Canosa, A.; Restagno, G.; Brunetti, M.; Traynor, B.J.; Nobili, F.; Carrara, G.; Fania, P.; Lopiano, L.; Valentini, M.C.; Chiò, A. The metabolic signature of C9ORF72-related ALS: FDG PET comparison with nonmutated patients. Eur. J. Nucl. Med. Mol. Imaging, 2014, 41(5), 844-852. doi: 10.1007/s00259-013-2667-5 PMID: 24445987
- Marini, C.; Morbelli, S.; Cistaro, A.; Campi, C.; Caponnetto, C.; Bauckneht, M.; Bellini, A.; Buschiazzo, A.; Calamia, I.; Beltrametti, M.C.; Margotti, S.; Fania, P.; Poggi, I.; Cabona, C.; Capitanio, S.; Piva, R.; Calvo, A.; Moglia, C.; Canosa, A.; Massone, A.; Nobili, F.; Mancardi, G.; Chiò, A.; Piana, M.; Sambuceti, G. Interplay between spinal cord and cerebral cortex metabolism in amyotrophic lateral sclerosis. Brain, 2018, 141(8), 2272-2279. doi: 10.1093/brain/awy152 PMID: 30730551
- Bauckneht, M.; Lai, R.; Miceli, A.; Schenone, D.; Cossu, V.; Donegani, M.I.; Raffa, S.; Borra, A.; Marra, S.; Campi, C.; Orengo, A.; Massone, A.M.; Tagliafico, A.; Caponnetto, C.; Cabona, C.; Cistaro, A.; Chiò, A.; Morbelli, S.; Nobili, F.; Sambuceti, G.; Piana, M.; Marini, C. Spinal cord hypermetabolism extends to skeletal muscle in amyotrophic lateral sclerosis: a computational approach to 18F-fluorodeoxyglucose PET/CT images. EJNMMI Res., 2020, 10(1), 23. doi: 10.1186/s13550-020-0607-5 PMID: 32201914
- Miyazaki, K.; Masamoto, K.; Morimoto, N.; Kurata, T.; Mimoto, T.; Obata, T.; Kanno, I.; Abe, K. Early and progressive impairment of spinal blood flow-glucose metabolism coupling in motor neuron degeneration of ALS model mice. J. Cereb. Blood Flow Metab., 2012, 32(3), 456-467. doi: 10.1038/jcbfm.2011.155 PMID: 22068226
- Dodge, J.C.; Treleaven, C.M.; Fidler, J.A.; Tamsett, T.J.; Bao, C.; Searles, M.; Taksir, T.V.; Misra, K.; Sidman, R.L.; Cheng, S.H.; Shihabuddin, L.S. Metabolic signatures of amyotrophic lateral sclerosis reveal insights into disease pathogenesis. Proc. Natl. Acad. Sci. USA, 2013, 110(26), 10812-10817. doi: 10.1073/pnas.1308421110 PMID: 23754387
- Tefera, T.W.; Steyn, F.J.; Ngo, S.T.; Borges, K. CNS glucose metabolism in Amyotrophic Lateral Sclerosis: a therapeutic target? Cell Biosci., 2021, 11(1), 14. doi: 10.1186/s13578-020-00511-2 PMID: 33431046
- Steyn, F.J.; Li, R.; Kirk, S.E.; Tefera, T.W.; Xie, T.Y.; Tracey, T.J.; Kelk, D.; Wimberger, E.; Garton, F.C.; Roberts, L.; Chapman, S.E.; Coombes, J.S.; Leevy, W.M.; Ferri, A.; Valle, C.; René, F.; Loeffler, J.P.; McCombe, P.A.; Henderson, R.D.; Ngo, S.T. Altered skeletal muscle glucose-fatty acid flux in amyotrophic lateral sclerosis. Brain Commun., 2020, 2(2), fcaa154. doi: 10.1093/braincomms/fcaa154 PMID: 33241210
- Tefera, T.W.; Borges, K. Neuronal glucose metabolism is impaired while astrocytic TCA cycling is unaffected at symptomatic stages in the hSOD1 G93A mouse model of amyotrophic lateral sclerosis. J. Cereb. Blood Flow Metab., 2019, 39(9), 1710-1724. doi: 10.1177/0271678X18764775 PMID: 29553298
- Lee, H.; Lee, J.J.; Park, N.Y.; Dubey, S.K.; Kim, T.; Ruan, K.; Lim, S.B.; Park, S.H.; Ha, S.; Kovlyagina, I.; Kim, K.; Kim, S.; Oh, Y.; Kim, H.; Kang, S.U.; Song, M.R.; Lloyd, T.E.; Maragakis, N.J.; Hong, Y.B.; Eoh, H.; Lee, G. Multi-omic analysis of selectively vulnerable motor neuron subtypes implicates altered lipid metabolism in ALS. Nat. Neurosci., 2021, 24(12), 1673-1685. doi: 10.1038/s41593-021-00944-z PMID: 34782793
- Palamiuc, L.; Schlagowski, A.; Ngo, S.T.; Vernay, A.; Dirrig-Grosch, S.; Henriques, A.; Boutillier, A.L.; Zoll, J.; Echaniz-Laguna, A.; Loeffler, J.P.; René, F. A metabolic switch toward lipid use in glycolytic muscle is an early pathologic event in a mouse model of amyotrophic lateral sclerosis. EMBO Mol. Med., 2015, 7(5), 526-546. doi: 10.15252/emmm.201404433 PMID: 25820275
- Yudkoff, M.; Daikhin, Y.; Horyn, O.; Nissim, I.; Nissim, I. Ketosis and brain handling of glutamate, glutamine, and GABA. Epilepsia, 2008, 49(Suppl. 8), 73-75. doi: 10.1111/j.1528-1167.2008.01841.x PMID: 19049594
- Scaricamazza, S.; Salvatori, I.; Giacovazzo, G.; Loeffler, J.P.; Renè, F.; Rosina, M.; Quessada, C.; Proietti, D.; Heil, C.; Rossi, S.; Battistini, S.; Giannini, F.; Volpi, N.; Steyn, F.J.; Ngo, S.T.; Ferraro, E.; Madaro, L.; Coccurello, R.; Valle, C.; Ferri, A. Skeletal-muscle metabolic reprogramming in ALS-SOD1G93A mice predates disease onset and is a promising therapeutic target. iScience, 2020, 23(5), 101087. doi: 10.1016/j.isci.2020.101087 PMID: 32371370
- Szelechowski, M.; Amoedo, N.; Obre, E.; Léger, C.; Allard, L.; Bonneu, M.; Claverol, S.; Lacombe, D.; Oliet, S.; Chevallier, S.; Le Masson, G.; Rossignol, R. Metabolic reprogramming in amyotrophic lateral sclerosis. Sci. Rep., 2018, 8(1), 3953. doi: 10.1038/s41598-018-22318-5 PMID: 29500423
- Dodge, J.C.; Jensen, E.H.; Yu, J.; Sardi, S.P.; Bialas, A.R.; Taksir, T.V.; Bangari, D.S.; Shihabuddin, L.S. Neutral lipid cacostasis contributes to disease pathogenesis in amyotrophic lateral sclerosis. J. Neurosci., 2020, 40(47), 9137-9147. doi: 10.1523/JNEUROSCI.1388-20.2020 PMID: 33051352
- Henriques, A.; Huebecker, M.; Blasco, H.; Keime, C.; Andres, C.R.; Corcia, P.; Priestman, D.A.; Platt, F.M.; Spedding, M.; Loeffler, J.P. Inhibition of β-Glucocerebrosidase activity preserves motor unit integrity in a mouse model of amyotrophic lateral sclerosis. Sci. Rep., 2017, 7(1), 5235. doi: 10.1038/s41598-017-05313-0 PMID: 28701774
- Sipione, S.; Monyror, J.; Galleguillos, D.; Steinberg, N.; Kadam, V. Gangliosides in the brain: Physiology, pathophysiology and therapeutic applications. Front. Neurosci., 2020, 14, 572965. doi: 10.3389/fnins.2020.572965 PMID: 33117120
- Tracey, T.J.; Steyn, F.J.; Wolvetang, E.J.; Ngo, S.T. Neuronal lipid metabolism: multiple pathways driving functional outcomes in health and disease. Front. Mol. Neurosci., 2018, 11, 10. doi: 10.3389/fnmol.2018.00010 PMID: 29410613
- Schmitt, F.; Hussain, G.; Dupuis, L.; Loeffler, J.P.; Henriques, A. A plural role for lipids in motor neuron diseases: Energy, signaling and structure. Front. Cell. Neurosci., 2014, 8, 25. doi: 10.3389/fncel.2014.00025 PMID: 24600344
- Mouzat, K.; Molinari, N.; Kantar, J.; Polge, A.; Corcia, P.; Couratier, P.; Clavelou, P.; Juntas-Morales, R.; Pageot, N.; Lobaccaro, J.M.A.; Raoul, C.; Lumbroso, S.; Camu, W. Liver X receptor genes variants modulate ALS phenotype. Mol. Neurobiol., 2018, 55(3), 1959-1965. doi: 10.1007/s12035-017-0453-2 PMID: 28244008
- Wills, A.M.; Hubbard, J.; Macklin, E.A.; Glass, J.; Tandan, R.; Simpson, E.P.; Brooks, B.; Gelinas, D.; Mitsumoto, H.; Mozaffar, T.; Hanes, G.P.; Ladha, S.S.; Heiman-Patterson, T.; Katz, J.; Lou, J.S.; Mahoney, K.; Grasso, D.; Lawson, R.; Yu, H.; Cudkowicz, M. Hypercaloric enteral nutrition in patients with amyotrophic lateral sclerosis: a randomised, double-blind, placebo-controlled phase 2 trial. Lancet, 2014, 383(9934), 2065-2072. doi: 10.1016/S0140-6736(14)60222-1 PMID: 24582471
- Fang, F.; Ingre, C.; Roos, P.; Kamel, F.; Piehl, F. Risk factors for amyotrophic lateral sclerosis. Clin. Epidemiol., 2015, 7, 181-193. doi: 10.2147/CLEP.S37505 PMID: 25709501
- Goutman, S.A.; Feldman, E.L. Voicing the Need for Amyotrophic Lateral Sclerosis Environmental Research. JAMA Neurol., 2020, 77(5), 543-544. doi: 10.1001/jamaneurol.2020.0051 PMID: 32119032
- Allis, C.D.; Jenuwein, T. The molecular hallmarks of epigenetic control. Nat. Rev. Genet., 2016, 17(8), 487-500. doi: 10.1038/nrg.2016.59 PMID: 27346641
- Worpenberg, L.; Paolantoni, C.; Roignant, J-Y. Functional interplay within the epitranscriptome: Reality or fiction? BioEssays, 2021, e2100174. doi: 10.1002/bies.202100174 PMID: 34873719
- Appleby-Mallinder, C.; Schaber, E.; Kirby, J.; Shaw, P.J.; Cooper-Knock, J.; Heath, P.R.; Highley, J.R. TDP43 proteinopathy is associated with aberrant DNA methylation in human amyotrophic lateral sclerosis. Neuropathol. Appl. Neurobiol., 2021, 47(1), 61-72. doi: 10.1111/nan.12625 PMID: 32365404
- Ozyurt, T.; Gautam, M. Differential epigenetic signature of corticospinal motor neurons in ALS. Brain Sci., 2021, 11(6), 754. doi: 10.3390/brainsci11060754 PMID: 34200232
- Xi, Z.; Zhang, M.; Bruni, A.C.; Maletta, R.G.; Colao, R.; Fratta, P.; Polke, J.M.; Sweeney, M.G.; Mudanohwo, E.; Nacmias, B.; Sorbi, S.; Tartaglia, M.C.; Rainero, I.; Rubino, E.; Pinessi, L.; Galimberti, D.; Surace, E.I.; McGoldrick, P.; McKeever, P.; Moreno, D.; Sato, C.; Liang, Y.; Keith, J.; Zinman, L.; Robertson, J.; Rogaeva, E. The C9orf72 repeat expansion itself is methylated in ALS and FTLD patients. Acta Neuropathol., 2015, 129(5), 715-727. doi: 10.1007/s00401-015-1401-8 PMID: 25716178
- Wong, M.; Gertz, B.; Chestnut, B.A.; Martin, L.J. Mitochondrial DNMT3A and DNA methylation in skeletal muscle and CNS of transgenic mouse models of ALS. Front. Cell. Neurosci., 2013, 7, 279. doi: 10.3389/fncel.2013.00279 PMID: 24399935
- Simpson, C.L.; Lemmens, R.; Miskiewicz, K.; Broom, W.J.; Hansen, V.K.; van Vught, P.W.J.; Landers, J.E.; Sapp, P.; Van Den Bosch, L.; Knight, J.; Neale, B.M.; Turner, M.R.; Veldink, J.H.; Ophoff, R.A.; Tripathi, V.B.; Beleza, A.; Shah, M.N.; Proitsi, P.; Van Hoecke, A.; Carmeliet, P.; Horvitz, H.R.; Leigh, P.N.; Shaw, C.E.; van den Berg, L.H.; Sham, P.C.; Powell, J.F.; Verstreken, P.; Brown, R.H., Jr; Robberecht, W.; Al-Chalabi, A. Variants of the elongator protein 3 (ELP3) gene are associated with motor neuron degeneration. Hum. Mol. Genet., 2009, 18(3), 472-481. doi: 10.1093/hmg/ddn375 PMID: 18996918
- Taes, I.; Timmers, M.; Hersmus, N.; Bento-Abreu, A.; Van Den Bosch, L.; Van Damme, P.; Auwerx, J.; Robberecht, W. Hdac6 deletion delays disease progression in the SOD1G93A mouse model of ALS. Hum. Mol. Genet., 2013, 22(9), 1783-1790. doi: 10.1093/hmg/ddt028 PMID: 23364049
- Chen, S.; Zhang, X.J.; Li, L.X.; Wang, Y.; Zhong, R.J.; Le, W. Histone deacetylase 6 delays motor neuron degeneration by ameliorating the autophagic flux defect in a transgenic mouse model of amyotrophic lateral sclerosis. Neurosci. Bull., 2015, 31(4), 459-468. doi: 10.1007/s12264-015-1539-3 PMID: 26164555
- Pigna, E.; Simonazzi, E.; Sanna, K.; Bernadzki, K.M.; Proszynski, T.; Heil, C.; Palacios, D.; Adamo, S.; Moresi, V. Histone deacetylase 4 protects from denervation and skeletal muscle atrophy in a murine model of amyotrophic lateral sclerosis. EBioMedicine, 2019, 40, 717-732. doi: 10.1016/j.ebiom.2019.01.038 PMID: 30713114
- Tibshirani, M.; Tradewell, M.L.; Mattina, K.R.; Minotti, S.; Yang, W.; Zhou, H.; Strong, M.J.; Hayward, L.J.; Durham, H.D. Cytoplasmic sequestration of FUS/TLS associated with ALS alters histone marks through loss of nuclear protein arginine methyltransferase 1. Hum. Mol. Genet., 2015, 24(3), 773-786. doi: 10.1093/hmg/ddu494 PMID: 25274782
- Masala, A.; Sanna, S.; Esposito, S.; Rassu, M.; Galioto, M.; Zinellu, A.; Carru, C.; Carrì, M.T.; Iaccarino, C.; Crosio, C. Epigenetic changes associated with the expression of amyotrophic lateral sclerosis (ALS) causing genes. Neuroscience, 2018, 390, 1-11. doi: 10.1016/j.neuroscience.2018.08.009 PMID: 30134203
- Vijayakumar, U.G.; Milla, V.; Cynthia Stafford, M.Y.; Bjourson, A.J.; Duddy, W.; Duguez, S.M.R. A systematic review of suggested molecular strata, biomarkers and their tissue sources in ALS. Front. Neurol., 2019, 10, 400. doi: 10.3389/fneur.2019.00400 PMID: 31139131
- Foggin, S.; Mesquita-Ribeiro, R.; Dajas-Bailador, F.; Layfield, R. Biological significance of microRNA biomarkers in ALS-innocent bystanders or disease culprits? Front. Neurol., 2019, 10, 578. doi: 10.3389/fneur.2019.00578 PMID: 31244752
- Ravnik-Glavač, M.; Glavač, D. Circulating RNAs as potential Biomarkers in amyotrophic lateral sclerosis. Int. J. Mol. Sci., 2020, 21(5), 1714. doi: 10.3390/ijms21051714 PMID: 32138249
- Angelova, M.T.; Dimitrova, D.G.; Dinges, N.; Lence, T.; Worpenberg, L.; Carré, C.; Roignant, J.Y. The emerging field of epitranscriptomics in neurodevelopmental and neuronal disorders. Front. Bioeng. Biotechnol., 2018, 6, 46. doi: 10.3389/fbioe.2018.00046 PMID: 29707539
- Hosaka, T.; Tsuji, H.; Tamaoka, A. Biomolecular modifications linked to oxidative stress in amyotrophic lateral sclerosis: determining promising biomarkers related to oxidative stress. Processes (Basel), 2021, 9(9), 1667. doi: 10.3390/pr9091667
- Hideyama, T.; Yamashita, T.; Aizawa, H.; Tsuji, S.; Kakita, A.; Takahashi, H.; Kwak, S. Profound downregulation of the RNA editing enzyme ADAR2 in ALS spinal motor neurons. Neurobiol. Dis., 2012, 45(3), 1121-1128. doi: 10.1016/j.nbd.2011.12.033 PMID: 22226999
- Sasaki, S.; Yamashita, T.; Shin, K. Autophagy in spinal motor neurons of conditional ADAR2-knockout mice: An implication for a role of calcium in increased autophagy flux in ALS. Neurosci. Lett., 2015, 598, 79-84. doi: 10.1016/j.neulet.2015.05.025 PMID: 25980994
- Moore, S.; Alsop, E.; Lorenzini, I.; Starr, A.; Rabichow, B.E.; Mendez, E.; Levy, J.L.; Burciu, C.; Reiman, R.; Chew, J.; Belzil, V.V.; W. Dickson, D. Robertson, J.; Staats, K.A.; Ichida, J.K.; Petrucelli, L.; Van Keuren-Jensen, K.; Sattler, R. ADAR2 mislocalization and widespread RNA editing aberrations in C9orf72-mediated ALS/FTD. Acta Neuropathol., 2019, 138(1), 49-65. doi: 10.1007/s00401-019-01999-w PMID: 30945056
- Quoibion, A. m6A RNA Methylation and TARDBP, a Gene Implicated in Amyotrophic Lateral Sclerosis. McGill University: Montréal, 2017. Thesis.
- Kim, H.J.; Kim, N.C.; Wang, Y.D.; Scarborough, E.A.; Moore, J.; Diaz, Z.; MacLea, K.S.; Freibaum, B.; Li, S.; Molliex, A.; Kanagaraj, A.P.; Carter, R.; Boylan, K.B.; Wojtas, A.M.; Rademakers, R.; Pinkus, J.L.; Greenberg, S.A.; Trojanowski, J.Q.; Traynor, B.J.; Smith, B.N.; Topp, S.; Gkazi, A.S.; Miller, J.; Shaw, C.E.; Kottlors, M.; Kirschner, J.; Pestronk, A.; Li, Y.R.; Ford, A.F.; Gitler, A.D.; Benatar, M.; King, O.D.; Kimonis, V.E.; Ross, E.D.; Weihl, C.C.; Shorter, J.; Taylor, J.P. Mutations in prion-like domains in hnRNPA2B1 and hnRNPA1 cause multisystem proteinopathy and ALS. Nature, 2013, 495(7442), 467-473. doi: 10.1038/nature11922 PMID: 23455423
- Mitropoulos, K.; Merkouri, P.E.; Xiromerisiou, G.; Balasopoulou, A.; Charalampidou, K.; Galani, V.; Zafeiri, K.V.; Dardiotis, E.; Ralli, S.; Deretzi, G.; John, A.; Kydonopoulou, K.; Papadopoulou, E.; di Pardo, A.; Akcimen, F.; Loizedda, A.; Dobričić, V.; Novaković, I.; Kostić, V.S.; Mizzi, C.; Peters, B.A.; Basak, N.; Orrù, S.; Kiskinis, E.; Cooper, D.N.; Gerou, S.; Drmanac, R.; Bartsakoulia, M.; Tsermpini, E.E.; Hadjigeorgiou, G.M.; Ali, B.R.; Katsila, T.; Patrinos, G.P. Genomic variants in the FTO gene are associated with sporadic amyotrophic lateral sclerosis in Greek patients. Hum. Genomics, 2017, 11(1), 30. doi: 10.1186/s40246-017-0126-2 PMID: 29216901
- Blanco, S.; Dietmann, S.; Flores, J.V.; Hussain, S.; Kutter, C.; Humphreys, P.; Lukk, M.; Lombard, P.; Treps, L.; Popis, M.; Kellner, S.; Hölter, S.M.; Garrett, L.; Wurst, W.; Becker, L.; Klopstock, T.; Fuchs, H.; Gailus-Durner, V.; Hrabĕ de Angelis, M.; Káradóttir, R.T.; Helm, M.; Ule, J.; Gleeson, J.G.; Odom, D.T.; Frye, M. Aberrant methylation of t RNA s links cellular stress to neuro‐developmental disorders. EMBO J., 2014, 33(18), 2020-2039. doi: 10.15252/embj.201489282 PMID: 25063673
- Hartung, T.; Rhein, M.; Kalmbach, N.; Thau-Habermann, N.; Naujock, M.; Müschen, L.; Frieling, H.; Sterneckert, J.; Hermann, A.; Wegner, F.; Petri, S. Methylation and expression of mutant FUS in motor neurons differentiated from induced pluripotent stem cells from ALS patients. Front. Cell Dev. Biol., 2021, 9, 774751. doi: 10.3389/fcell.2021.774751 PMID: 34869374
- Hogg, M.C.; Rayner, M.; Susdalzew, S.; Monsefi, N.; Crivello, M.; Woods, I.; Resler, A.; Blackbourn, L.; Fabbrizio, P.; Trolese, M.C.; Nardo, G.; Bendotti, C.; van den Berg, L.H.; van Es, M.A.; Prehn, J.H.M. 5′ValCAC tRNA fragment generated as part of a protective angiogenin response provides prognostic value in amyotrophic lateral sclerosis. Brain Commun., 2020, 2(2), fcaa138. doi: 10.1093/braincomms/fcaa138 PMID: 33543130
- Taylor, R.; Hamid, F.; Fielding, T.; Gordon, P.M.; Maloney, M.; Makeyev, E.V.; Houart, C. Prematurely terminated intron-retaining mRNAs invade axons in SFPQ null-driven neurodegeneration and are a hallmark of ALS. Nat. Commun., 2022, 13(1), 6994. doi: 10.1038/s41467-022-34331-4 PMID: 36414621
- Mead, R.J.; Shan, N.; Reiser, H.J.; Marshall, F.; Shaw, P.J. Amyotrophic lateral sclerosis: a neurodegenerative disorder poised for successful therapeutic translation. Nat. Rev. Drug Discov., 2023, 22(3), 185-212. doi: 10.1038/s41573-022-00612-2 PMID: 36543887
- Corcia, P.; Beltran, S.; Bakkouche, S.E.; Couratier, P. Therapeutic news in ALS. Rev. Neurol., 2021, 177(5), 544-549. doi: 10.1016/j.neurol.2020.12.003
- Ketabforoush, A.H.M.E.; Chegini, R.; Barati, S.; Tahmasebi, F.; Moghisseh, B.; Joghataei, M.T.; Faghihi, F.; Azedi, F. Masitinib: The promising actor in the next season of the amyotrophic lateral sclerosis treatment series. Biomed. Pharmacother., 2023, 160, 114378. doi: 10.1016/j.biopha.2023.114378 PMID: 36774721
- Eisen, A.; Kim, S.; Pant, B. Amyotrophic lateral sclerosis (ALS): A phylogenetic disease of the corticomotoneuron? Muscle Nerve, 1992, 15(2), 219-224. doi: 10.1002/mus.880150215 PMID: 1549143
- Marques, C.; Burg, T.; Scekic-Zahirovic, J.; Fischer, M.; Rouaux, C. Upper and lower motor neuron degenerations are somatotopically related and temporally ordered in the Sod1 mouse model of amyotrophic lateral sclerosis. Brain Sci., 2021, 11(3), 369. doi: 10.3390/brainsci11030369 PMID: 33805792
- Lu, S.; Hu, J.; Arogundade, O.A.; Goginashvili, A.; Vazquez-Sanchez, S.; Diedrich, J.K.; Gu, J.; Blum, J.; Oung, S.; Ye, Q.; Yu, H.; Ravits, J.; Liu, C.; Yates, J.R., III; Cleveland, D.W. Heat-shock chaperone HSPB1 regulates cytoplasmic TDP-43 phase separation and liquid-to-gel transition. Nat. Cell Biol., 2022, 24(9), 1378-1393. doi: 10.1038/s41556-022-00988-8 PMID: 36075972
- Pradhan, J.; Noakes, P.G.; Bellingham, M.C. The role of altered BDNF/TrkB signaling in amyotrophic lateral sclerosis. Front. Cell. Neurosci., 2019, 13, 368. doi: 10.3389/fncel.2019.00368 PMID: 31456666
- Paganoni, S.; Berry, J.D.; Quintana, M.; Macklin, E.; Saville, B.R.; Detry, M.A.; Chase, M.; Sherman, A.V.; Yu, H.; Drake, K.; Andrews, J.; Shefner, J.; Chibnik, L.B.; Vestrucci, M.; Cudkowicz, M.E. Adaptive platform trials to transform amyotrophic lateral sclerosis therapy development. Ann. Neurol., 2022, 91(2), 165-175. doi: 10.1002/ana.26285 PMID: 34935174
- Jacquez, G.M.; Sabel, C.E.; Shi, C. Genetic GIScience: toward a place-based synthesis of the genome, exposome, and behavome. Ann. Assoc. Am. Geogr., 2015, 105(3), 454-472. doi: 10.1080/00045608.2015.1018777 PMID: 26339073
- Fidler, J.A.; Treleaven, C.M.; Frakes, A.; Tamsett, T.J.; McCrate, M.; Cheng, S.H.; Shihabuddin, L.S.; Kaspar, B.K.; Dodge, J.C. Disease progression in a mouse model of amyotrophic lateral sclerosis: the influence of chronic stress and corticosterone. FASEB J., 2011, 25(12), 4369-4377. doi: 10.1096/fj.11-190819 PMID: 21876068
- Calabrese, V.; Mancuso, C.; Calvani, M.; Rizzarelli, E.; Butterfield, D.A.; Giuffrida Stella, A.M. Nitric oxide in the central nervous system: neuroprotection versus neurotoxicity. Nat. Rev. Neurosci., 2007, 8(10), 766-775. doi: 10.1038/nrn2214 PMID: 17882254
- Calabrese, V.; Cornelius, C.; Dinkova-Kostova, A.T.; Calabrese, E.J.; Mattson, M.P. Cellular stress responses, the hormesis paradigm, and vitagenes: novel targets for therapeutic intervention in neurodegenerative disorders. Antioxid. Redox Signal., 2010, 13(11), 1763-1811. doi: 10.1089/ars.2009.3074 PMID: 20446769
- Calabrese, V.; Cornelius, C.; Dinkova-Kostova, A.T.; Calabrese, E.J. Vitagenes, cellular stress response, and acetylcarnitine: Relevance to hormesis. Biofactors, 2009, 35(2), 146-160. doi: 10.1002/biof.22 PMID: 19449442
- Anzilotti, S.; Brancaccio, P.; Simeone, G.; Valsecchi, V.; Vinciguerra, A.; Secondo, A.; Petrozziello, T.; Guida, N.; Sirabella, R.; Cuomo, O.; Cepparulo, P.; Herchuelz, A.; Amoroso, S.; Di Renzo, G.; Annunziato, L.; Pignataro, G. Preconditioning, induced by sub-toxic dose of the neurotoxin L-BMAA, delays ALS progression in mice and prevents Na+/Ca2+ exchanger 3 downregulation. Cell Death Dis., 2018, 9(2), 206. doi: 10.1038/s41419-017-0227-9 PMID: 29434186
- Siracusa, R.; Scuto, M.; Fusco, R.; Trovato, A.; Ontario, M.L.; Crea, R.; Di Paola, R.; Cuzzocrea, S.; Calabrese, V. Anti-inflammatory and anti-oxidant activity of Hidrox® in rotenone-induced Parkinsons disease in mice. Antioxidants, 2020, 9(9), 824. doi: 10.3390/antiox9090824 PMID: 32899274
- Kim, D.; Nguyen, M.D.; Dobbin, M.M.; Fischer, A.; Sananbenesi, F.; Rodgers, J.T.; Delalle, I.; Baur, J.A.; Sui, G.; Armour, S.M.; Puigserver, P.; Sinclair, D.A.; Tsai, L.H. SIRT1 deacetylase protects against neurodegeneration in models for Alzheimers disease and amyotrophic lateral sclerosis. EMBO J., 2007, 26(13), 3169-3179. doi: 10.1038/sj.emboj.7601758 PMID: 17581637
- Calabrese, E.J.; Calabrese, V.; Giordano, J. Brain health promotion: Tactics within a strategic approach based upon valid, yet evolving scientific evidence. Mech. Ageing Dev., 2022, 201, 111605. doi: 10.1016/j.mad.2021.111605 PMID: 34798081
- Bauer, P.O. Methylation of C9orf72 expansion reduces RNA foci formation and dipeptide-repeat proteins expression in cells. Neurosci. Lett., 2016, 612, 204-209. doi: 10.1016/j.neulet.2015.12.018 PMID: 26690922
- Lam, F.; Chu, J.; Choi, J.S.; Cao, C.; Hitchens, T.K.; Silverman, S.K. Epigenetic MRI: noninvasive imaging of DNA methylation in the brain. BioRxiv, 2021, 2021.08.20.457113. doi: 10.1101/2021.08.20.457113
- Choi, S.Y.; Lee, J.H.; Chung, A.Y.; Jo, Y.; Shin, J.; Park, H.C.; Kim, H.; Lopez-Gonzalez, R.; Ryu, J.R.; Sun, W. Prevention of mitochondrial impairment by inhibition of protein phosphatase 1 activity in amyotrophic lateral sclerosis. Cell Death Dis., 2020, 11(10), 888. doi: 10.1038/s41419-020-03102-8 PMID: 33087694
- Paganoni, S.; Hendrix, S.; Dickson, S.P.; Knowlton, N.; Berry, J.D.; Elliott, M.A. Effect of sodium phenylbutyrate/taurursodiol on tracheostomy/ventilation-free survival and hospitalisation in amyotrophic lateral sclerosis: Long-term results from the Centaur trial. J Neurol. Neurosurg. Amp. Psychiatry, 2022, 93, 871. doi: 10.1136/jnnp-2022-329024
- Klingl, Y.E.; Pakravan, D.; Van Den, B.L. Opportunities for histone deacetylase inhibition in amyotrophic lateral sclerosis. Br. J. Pharmacol., 2020, 178(6), 1353-1372. doi: 10.1111/bph.15217
- Xia, Z.; Tang, M.; Ma, J.; Zhang, H.; Gimple, R.C.; Prager, B.C.; Tang, H.; Sun, C.; Liu, F.; Lin, P.; Mei, Y.; Du, R.; Rich, J.N.; Xie, Q. Epitranscriptomic editing of the RNA N6-methyladenosine modification by dCasRx conjugated methyltransferase and demethylase. Nucleic Acids Res., 2021, 49(13), 7361-7374. doi: 10.1093/nar/gkab517 PMID: 34181729
- Batra, R.; Nelles, D.A.; Pirie, E.; Blue, S.M.; Marina, R.J.; Wang, H.; Chaim, I.A.; Thomas, J.D.; Zhang, N.; Nguyen, V.; Aigner, S.; Markmiller, S.; Xia, G.; Corbett, K.D.; Swanson, M.S.; Yeo, G.W. Elimination of toxic microsatellite repeat expansion RNA by RNA-targeting Cas9. Cell, 2017, 170(5), 899-912.e10. doi: 10.1016/j.cell.2017.07.010 PMID: 28803727
- Keogh, M.J.; Wei, W.; Aryaman, J.; Wilson, I.; Talbot, K.; Turner, M.R.; McKenzie, C.A.; Troakes, C.; Attems, J.; Smith, C.; Al Sarraj, S.; Morris, C.M.; Ansorge, O.; Pickering-Brown, S.; Jones, N.; Ironside, J.W.; Chinnery, P.F. Oligogenic genetic variation of neurodegenerative disease genes in 980 postmortem human brains. J. Neurol. Neurosurg. Psychiatry, 2018, 89(8), 813-816. doi: 10.1136/jnnp-2017-317234 PMID: 29332010
- Chiò, A.; Mazzini, L.; DAlfonso, S.; Corrado, L.; Canosa, A.; Moglia, C.; Manera, U.; Bersano, E.; Brunetti, M.; Barberis, M.; Veldink, J.H.; van den Berg, L.H.; Pearce, N.; Sproviero, W.; McLaughlin, R.; Vajda, A.; Hardiman, O.; Rooney, J.; Mora, G.; Calvo, A.; Al-Chalabi, A. The multistep hypothesis of ALS revisited. Neurology, 2018, 91(7), e635-e642. doi: 10.1212/WNL.0000000000005996 PMID: 30045958
Supplementary files
