Modulating Mitochondrial Dynamics Mitigates Cognitive Impairment in Rats with Myocardial Infarction
- Authors: Jinawong K.1, Piamsiri C.1, Apaijai N.1, Maneechote C.1, Arunsak B.1, Nawara W.1, Thonusin C.1, Pintana H.1, Chattipakorn N.1, Chattipakorn S.1
-
Affiliations:
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University
- Issue: Vol 22, No 10 (2024)
- Pages: 1749-1760
- Section: Neurology
- URL: https://rjsocmed.com/1570-159X/article/view/644353
- DOI: https://doi.org/10.2174/1570159X22666240131114913
- ID: 644353
Cite item
Full Text
Abstract
Background:We have previously demonstrated that oxidative stress and brain mitochondrial dysfunction are key mediators of brain pathology during myocardial infarction (MI).
Objective:To investigate the beneficial effects of mitochondrial dynamic modulators, including mitochondrial fission inhibitor (Mdivi-1) and mitochondrial fusion promotor (M1), on cognitive function and molecular signaling in the brain of MI rats in comparison with the effect of enalapril.
Methods:Male rats were assigned to either sham or MI operation. In the MI group, rats with an ejection Fraction less than 50% were included, and then they received one of the following treatments for 5 weeks: vehicle, enalapril, Mdivi-1, or M1. Cognitive function was tested, and the brains were used for molecular study.
Results:MI rats exhibited cardiac dysfunction with systemic oxidative stress. Cognitive impairment was found in MI rats, along with dendritic spine loss, blood-brain barrier (BBB) breakdown, brain mitochondrial dysfunction, and decreased mitochondrial and increased glycolysis metabolism, without the alteration of APP, BACE-1, Tau and p-Tau proteins. Treatment with Mdivi-1, M1, and enalapril equally improved cognitive function in MI rats. All treatments decreased dendritic spine loss, brain mitochondrial oxidative stress, and restored mitochondrial metabolism. Brain mitochondrial fusion was recovered only in the Mdivi-1-treated group.
Conclusion:Mitochondrial dynamics modulators improved cognitive function in MI rats through a reduction of systemic oxidative stress and brain mitochondrial dysfunction and the enhancement of mitochondrial metabolism. In addition, this mitochondrial fission inhibitor increased mitochondrial fusion in MI rats.
About the authors
Kewarin Jinawong
Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University
Email: info@benthamscience.net
Chanon Piamsiri
Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University
Email: info@benthamscience.net
Nattayaporn Apaijai
Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University
Email: info@benthamscience.net
Chayodom Maneechote
Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University
Email: info@benthamscience.net
Busarin Arunsak
Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University
Email: info@benthamscience.net
Wichwara Nawara
Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University
Email: info@benthamscience.net
Chanisa Thonusin
Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University
Email: info@benthamscience.net
Hiranya Pintana
Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University
Email: info@benthamscience.net
Nipon Chattipakorn
Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University
Email: info@benthamscience.net
Siriporn Chattipakorn
Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University
Author for correspondence.
Email: info@benthamscience.net
References
- Virani, S.S.; Alonso, A.; Aparicio, H.J.; Benjamin, E.J.; Bittencourt, M.S.; Callaway, C.W.; Carson, A.P.; Chamberlain, A.M.; Cheng, S.; Delling, F.N.; Elkind, M.S.V.; Evenson, K.R.; Ferguson, J.F.; Gupta, D.K.; Khan, S.S.; Kissela, B.M.; Knutson, K.L.; Lee, C.D.; Lewis, T.T.; Liu, J.; Loop, M.S.; Lutsey, P.L.; Ma, J.; Mackey, J.; Martin, S.S.; Matchar, D.B.; Mussolino, M.E.; Navaneethan, S.D.; Perak, A.M.; Roth, G.A.; Samad, Z.; Satou, G.M.; Schroeder, E.B.; Shah, S.H.; Shay, C.M.; Stokes, A.; VanWagner, L.B.; Wang, N.Y.; Tsao, C.W. Heart disease and stroke statistics-2021 update. Circulation, 2021, 143(8), e254-e743. doi: 10.1161/CIR.0000000000000950 PMID: 33501848
- Severino, P.; DAmato, A.; Pucci, M.; Infusino, F.; Adamo, F.; Birtolo, L.I.; Netti, L.; Montefusco, G.; Chimenti, C.; Lavalle, C.; Maestrini, V.; Mancone, M.; Chilian, W.M.; Fedele, F. Ischemic heart disease pathophysiology paradigms overview: From plaque activation to microvascular dysfunction. Int. J. Mol. Sci., 2020, 21(21), 8118. doi: 10.3390/ijms21218118 PMID: 33143256
- Jinawong, K.; Apaijai, N.; Piamsiri, C.; Maneechote, C.; Arunsak, B.; Chunchai, T.; Pintana, H.; Nawara, W.; Chattipakorn, N.; Chattipakorn, S.C. Mild cognitive impairment occurs in rats during the early remodeling phase of myocardial infarction. Neuroscience, 2022, 493, 31-40. doi: 10.1016/j.neuroscience.2022.04.018 PMID: 35487300
- Chung, T.D.; Linville, R.M.; Guo, Z.; Ye, R.; Jha, R.; Grifno, G.N.; Searson, P.C. Effects of acute and chronic oxidative stress on the blood-brain barrier in 2D and 3D in vitro models. Fluids Barriers CNS, 2022, 19(1), 33. doi: 10.1186/s12987-022-00327-x PMID: 35551622
- Benjanuwattra, J.; Apaijai, N.; Chunchai, T.; Kerdphoo, S.; Jaiwongkam, T.; Arunsak, B.; Wongsuchai, S.; Chattipakorn, N.; Chattipakorn, S.C. Metformin preferentially provides neuroprotection following cardiac ischemia/reperfusion in non-diabetic rats. Biochim. Biophys. Acta Mol. Basis Dis., 2020, 1866(10), 165893. doi: 10.1016/j.bbadis.2020.165893 PMID: 32621957
- Jinawong, K.; Apaijai, N.; Wongsuchai, S.; Pratchayasakul, W.; Chattipakorn, N.; Chattipakorn, S.C. Necrostatin-1 mitigates cognitive dysfunction in prediabetic rats with no alteration in insulin sensitivity. Diabetes, 2020, 69(7), 1411-1423. doi: 10.2337/db19-1128 PMID: 32345751
- Leech, T.; Apaijai, N.; Palee, S.; Higgins, L.A.; Maneechote, C.; Chattipakorn, N.; Chattipakorn, S.C. Acute administration of metformin prior to cardiac ischemia/reperfusion injury protects brain injury. Eur. J. Pharmacol., 2020, 885, 173418. doi: 10.1016/j.ejphar.2020.173418 PMID: 32750367
- Perez Ortiz, J.M.; Swerdlow, R.H. Mitochondrial dysfunction in Alzheimers disease: Role in pathogenesis and novel therapeutic opportunities. Br. J. Pharmacol., 2019, 176(18), 3489-3507. doi: 10.1111/bph.14585 PMID: 30675901
- Apaijai, N.; Inthachai, T.; Lekawanvijit, S.; Chattipakorn, S.C.; Chattipakorn, N. Effects of dipeptidyl peptidase-4 inhibitor in insulin-resistant rats with myocardial infarction. J. Endocrinol., 2016, 229(3), 245-258. doi: 10.1530/JOE-16-0096 PMID: 27044778
- Althammer, F.; Ferreira-Neto, H.C.; Rubaharan, M.; Roy, R.K.; Patel, A.A.; Murphy, A.; Cox, D.N.; Stern, J.E. Three-dimensional morphometric analysis reveals time-dependent structural changes in microglia and astrocytes in the central amygdala and hypothalamic paraventricular nucleus of heart failure rats. J. Neuroinflammation, 2020, 17(1), 221. doi: 10.1186/s12974-020-01892-4 PMID: 32703230
- Surinkaew, P.; Apaijai, N.; Sawaddiruk, P.; Jaiwongkam, T.; Kerdphoo, S.; Chattipakorn, N.; Chattipakorn, S.C. Mitochondrial fusion promoter alleviates brain damage in rats with cardiac ischemia/reperfusion injury. J. Alzheimers Dis., 2020, 77(3), 993-1003. doi: 10.3233/JAD-200495 PMID: 32804148
- Cassidy-Stone, A.; Chipuk, J.E.; Ingerman, E.; Song, C.; Yoo, C.; Kuwana, T.; Kurth, M.J.; Shaw, J.T.; Hinshaw, J.E.; Green, D.R.; Nunnari, J. Chemical inhibition of the mitochondrial division dynamin reveals its role in Bax/Bak-dependent mitochondrial outer membrane permeabilization. Dev. Cell, 2008, 14(2), 193-204. doi: 10.1016/j.devcel.2007.11.019 PMID: 18267088
- Ongnok, B.; Maneechote, C.; Chunchai, T.; Pantiya, P.; Arunsak, B.; Nawara, W.; Chattipakorn, N.; Chattipakorn, S.C. Modulation of mitochondrial dynamics rescues cognitive function in rats with doxorubicin‐induced chemobrain via mitigation of mitochondrial dysfunction and neuroinflammation. FEBS J., 2022, 289(20), 6435-6455. doi: 10.1111/febs.16474 PMID: 35514149
- Faria-Pereira, A.; Morais, V.A. Synapses: The brains energy-demanding sites. Int. J. Mol. Sci., 2022, 23(7), 3627. doi: 10.3390/ijms23073627 PMID: 35408993
- Mergenthaler, P.; Lindauer, U.; Dienel, G.A.; Meisel, A. Sugar for the brain: The role of glucose in physiological and pathological brain function. Trends Neurosci., 2013, 36(10), 587-597. doi: 10.1016/j.tins.2013.07.001 PMID: 23968694
- Shah, K.; DeSilva, S.; Abbruscato, T. The role of glucose transporters in brain disease: Diabetes and Alzheimers Disease. Int. J. Mol. Sci., 2012, 13(12), 12629-12655. doi: 10.3390/ijms131012629 PMID: 23202918
- Zhang, X.; Alshakhshir, N.; Zhao, L. Glycolytic metabolism, brain resilience, and Alzheimers disease. Front. Neurosci., 2021, 15, 662242. doi: 10.3389/fnins.2021.662242 PMID: 33994936
- Ponikowski, P.; Voors, A.A.; Anker, S.D.; Bueno, H.; Cleland, J.G.F.; Coats, A.J.S.; Falk, V.; González-Juanatey, J.R.; Harjola, V.P.; Jankowska, E.A.; Jessup, M.; Linde, C.; Nihoyannopoulos, P.; Parissis, J.T.; Pieske, B.; Riley, J.P.; Rosano, G.M.C.; Ruilope, L.M.; Ruschitzka, F.; Rutten, F.H.; van der Meer, P. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur. Heart J., 2016, 37(27), 2129-2200. doi: 10.1093/eurheartj/ehw128 PMID: 27206819
- Inthachai, T.; Lekawanvijit, S.; Kumfu, S.; Apaijai, N.; Pongkan, W.; Chattipakorn, S.C.; Chattipakorn, N. Dipeptidyl peptidase-4 inhibitor improves cardiac function by attenuating adverse cardiac remodelling in rats with chronic myocardial infarction. Exp. Physiol., 2015, 100(6), 667-679. doi: 10.1113/EP085108 PMID: 25823534
- Borchert, T.; Hess, A.; Lukačević, M.; Ross, T.L.; Bengel, F.M.; Thackeray, J.T. Angiotensin-converting enzyme inhibitor treatment early after myocardial infarction attenuates acute cardiac and neuroinflammation without effect on chronic neuroinflammation. Eur. J. Nucl. Med. Mol. Imaging, 2020, 47(7), 1757-1768. doi: 10.1007/s00259-020-04736-8 PMID: 32125488
- Cha, K.; Jeong, W.J.; Kim, H.M.; So, B.H. Intravenous zoletil administration for the purpose of suicide. Clin. Exp. Emerg. Med., 2021, 8(2), 149-151. doi: 10.15441/ceem.20.050 PMID: 34237821
- Lin, H.C.; Thurmon, J.C.; Benson, G.J.; Tranquilli, W.J. Review: Telazol - A review of its pharmacology and use in veterinary medicine. J. Vet. Pharmacol. Ther., 1993, 16(4), 383-418. doi: 10.1111/j.1365-2885.1993.tb00206.x PMID: 8126757
- Joint FAO/WHO Expert Committee on Food Additives. Evaluation of certain veterinary drug residues in food: Forty-seventh report of the Joint FAO/WHO Expert Committee on Food Additives; World Health Organization: Geneva, 1998.
- Vogel-Ciernia, A; Wood, MA Examining object location and object recognition memory in mice. Curr. Protoc. Neurosci., 2014, 69, 8.31-1.17. doi: 10.1002/0471142301.ns0831s69
- Pintana, H.; Apaijai, N.; Pratchayasakul, W.; Chattipakorn, N.; Chattipakorn, S.C. Effects of metformin on learning and memory behaviors and brain mitochondrial functions in high fat diet induced insulin resistant rats. Life Sci., 2012, 91(11-12), 409-414. doi: 10.1016/j.lfs.2012.08.017 PMID: 22925597
- Ongnok, B.; Khuanjing, T.; Chunchai, T.; Pantiya, P.; Kerdphoo, S.; Arunsak, B.; Nawara, W.; Jaiwongkam, T.; Apaijai, N.; Chattipakorn, N.; Chattipakorn, S.C. Donepezil protects against doxorubicin-induced chemobrain in rats via attenuation of inflammation and oxidative stress without interfering with doxorubicin efficacy. Neurotherapeutics, 2021, 18(3), 2107-2125. doi: 10.1007/s13311-021-01092-9 PMID: 34312765
- Thonusin, C.; IglayReger, H.B.; Soni, T.; Rothberg, A.E.; Burant, C.F.; Evans, C.R. Evaluation of intensity drift correction strategies using MetaboDrift, a normalization tool for multi-batch metabolomics data. J. Chromatogr. A, 2017, 1523, 265-274. doi: 10.1016/j.chroma.2017.09.023 PMID: 28927937
- Halling, J.F.; Pilegaard, H. PGC-1α-mediated regulation of mitochondrial function and physiological implications. Appl. Physiol. Nutr. Metab., 2020, 45(9), 927-936. doi: 10.1139/apnm-2020-0005 PMID: 32516539
- Chen, L.; Qin, Y.; Liu, B.; Gao, M.; Li, A.; Li, X.; Gong, G. PGC-1α-mediated mitochondrial quality control: Molecular mechanisms and implications for heart failure. Front. Cell Dev. Biol., 2022, 10, 871357. doi: 10.3389/fcell.2022.871357 PMID: 35721484
- Huijts, M.; van Oostenbrugge, R.J.; Duits, A.; Burkard, T.; Muzzarelli, S.; Maeder, M.T.; Schindler, R.; Pfisterer, M.E.; Brunner-La Rocca, H.P. Cognitive impairment in heart failure: Results from the Trial of Intensified versus standard Medical therapy in Elderly patients with Congestive Heart Failure (TIME-CHF) randomized trial. Eur. J. Heart Fail., 2013, 15(6), 699-707. doi: 10.1093/eurjhf/hft020 PMID: 23384944
- Wei, B.; Wu, S.; Wang, Z.; Song, W.; Zhu, J. Comparison of cognitive performance and cardiac function between three different rat models of vascular dementia. Neuropsychiatr. Dis. Treat., 2022, 18, 19-28. doi: 10.2147/NDT.S338226 PMID: 35018098
- Chouchani, E.T.; Pell, V.R.; Gaude, E.; Aksentijević, D.; Sundier, S.Y.; Robb, E.L.; Logan, A.; Nadtochiy, S.M.; Ord, E.N.J.; Smith, A.C.; Eyassu, F.; Shirley, R.; Hu, C.H.; Dare, A.J.; James, A.M.; Rogatti, S.; Hartley, R.C.; Eaton, S.; Costa, A.S.H.; Brookes, P.S.; Davidson, S.M.; Duchen, M.R.; Saeb-Parsy, K.; Shattock, M.J.; Robinson, A.J.; Work, L.M.; Frezza, C.; Krieg, T.; Murphy, M.P. Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS. Nature, 2014, 515(7527), 431-435. doi: 10.1038/nature13909 PMID: 25383517
- Yu, T.; Robotham, J.L.; Yoon, Y. Increased production of reactive oxygen species in hyperglycemic conditions requires dynamic change of mitochondrial morphology. Proc. Natl. Acad. Sci., 2006, 103(8), 2653-2658. doi: 10.1073/pnas.0511154103 PMID: 16477035
- Addington, C.P.; Roussas, A.; Dutta, D.; Stabenfeldt, S.E. Endogenous repair signaling after brain injury and complementary bioengineering approaches to enhance neural regeneration. Biomark. Insights, 2015, 10s1(Suppl. 1), BMI.S20062. doi: 10.4137/BMI.S20062 PMID: 25983552
- Cobbs, C.S.; Fenoy, A.; Bredt, D.S.; Noble, L.J. Expression of nitric oxide synthase in the cerebral microvasculature after traumatic brain injury in the rat. Brain Res., 1997, 751(2), 336-338. doi: 10.1016/S0006-8993(96)01429-1 PMID: 9099824
- Kaplan, A.; Yabluchanskiy, A.; Ghali, R.; Altara, R.; Booz, G.W.; Zouein, F.A. Cerebral blood flow alteration following acute myocardial infarction in mice. Biosci. Rep., 2018, 38(5), BSR20180382. doi: 10.1042/BSR20180382 PMID: 30061176
- Dewanjee, S.; Chakraborty, P.; Bhattacharya, H.; Chacko, L.; Singh, B.; Chaudhary, A.; Javvaji, K.; Pradhan, S.R.; Vallamkondu, J.; Dey, A.; Kalra, R.S.; Jha, N.K.; Jha, S.K.; Reddy, P.H.; Kandimalla, R. Altered glucose metabolism in Alzheimers disease: Role of mitochondrial dysfunction and oxidative stress. Free Radic. Biol. Med., 2022, 193(Pt 1), 134-157. doi: 10.1016/j.freeradbiomed.2022.09.032 PMID: 36206930
- Fukumitsu, K.; Fujishima, K.; Yoshimura, A.; Wu, Y.K.; Heuser, J.; Kengaku, M. Synergistic action of dendritic mitochondria and creatine kinase maintains ATP homeostasis and actin dynamics in growing neuronal dendrites. J. Neurosci., 2015, 35(14), 5707-5723. doi: 10.1523/JNEUROSCI.4115-14.2015 PMID: 25855183
- Satoh, J.; Yamamoto, Y.; Asahina, N.; Kitano, S.; Kino, Y. RNA-Seq data mining: Downregulation of NeuroD6 serves as a possible biomarker for Alzheimers disease brains. Dis. Markers, 2014, 2014, 1-10. doi: 10.1155/2014/123165 PMID: 25548427
- Deng, S.; Ai, Y.; Gong, H.; Feng, Q.; Li, X.; Chen, C.; Liu, Z.; Wang, Y.; Peng, Q.; Zhang, L. Mitochondrial dynamics and protective effects of a mitochondrial division inhibitor, Mdivi-1, in lipopolysaccharide-induced brain damage. Biochem. Biophys. Res. Commun., 2018, 496(3), 865-871. doi: 10.1016/j.bbrc.2018.01.136 PMID: 29395086
- Maneechote, C.; Chunchai, T.; Apaijai, N.; Chattipakorn, N.; Chattipakorn, S.C. Pharmacological targeting of mitochondrial fission and fusion alleviates cognitive impairment and brain pathologies in pre-diabetic rats. Mol. Neurobiol., 2022, 59(6), 3690-3702. doi: 10.1007/s12035-022-02813-7 PMID: 35364801
- Bordt, E.A.; Zhang, N.; Waddell, J.; Polster, B.M. The non-specific Drp1 inhibitor mdivi-1 has modest biochemical antioxidant activity. Antioxidants, 2022, 11(3), 450. doi: 10.3390/antiox11030450 PMID: 35326100
- Maneechote, C.; Palee, S.; Kerdphoo, S.; Jaiwongkam, T.; Chattipakorn, S.C.; Chattipakorn, N. Balancing mitochondrial dynamics via increasing mitochondrial fusion attenuates infarct size and left ventricular dysfunction in rats with cardiac ischemia/reperfusion injury. Clin. Sci., 2019, 133(3), 497-513. doi: 10.1042/CS20190014 PMID: 30705107
- Guo, C.; Sun, L.; Chen, X.; Zhang, D. Oxidative stress, mitochondrial damage and neurodegenerative diseases. Neural Regen. Res., 2013, 8(21), 2003-2014. PMID: 25206509
- Yao, C.H.; Wang, R.; Wang, Y.; Kung, C.P.; Weber, J.D.; Patti, G.J. Mitochondrial fusion supports increased oxidative phosphorylation during cell proliferation. eLife, 2019, 8, e41351. doi: 10.7554/eLife.41351 PMID: 30694178
- Dabrowska, A.; Venero, J.L.; Iwasawa, R.; Hankir, M.; Rahman, S.; Boobis, A.; Hajji, N. PGC-1α controls mitochondrial biogenesis and dynamics in lead-induced neurotoxicity. Aging, 2015, 7(9), 629-643. doi: 10.18632/aging.100790 PMID: 26363853
- Picca, A.; Lezza, A.M.S. Regulation of mitochondrial biogenesis through TFAM-mitochondrial DNA interactions. Mitochondrion, 2015, 25, 67-75. doi: 10.1016/j.mito.2015.10.001 PMID: 26437364
- Kang, I.; Chu, C.T.; Kaufman, B.A. The mitochondrial transcription factor TFAM in neurodegeneration: Emerging evidence and mechanisms. FEBS Lett., 2018, 592(5), 793-811. doi: 10.1002/1873-3468.12989 PMID: 29364506
- Zuccalà, G.; Onder, G.; Marzetti, E.; Monaco, M.R.L.; Cesari, M.; Cocchi, A.; Carbonin, P.; Bernabei, R. Use of angiotensin-converting enzyme inhibitors and variations in cognitive performance among patients with heart failure. Eur. Heart J., 2005, 26(3), 226-233. doi: 10.1093/eurheartj/ehi058 PMID: 15618043
- Maneechote, C.; Palee, S.; Kerdphoo, S.; Jaiwongkam, T.; Chattipakorn, S.C.; Chattipakorn, N. Modulating mitochondrial dynamics attenuates cardiac ischemia-reperfusion injury in prediabetic rats. Acta Pharmacol. Sin., 2022, 43(1), 26-38. doi: 10.1038/s41401-021-00626-3 PMID: 33712720
- Maneechote, C.; Pintana, H.; Kerdphoo, S.; Janjek, S.; Chattipakorn, N.; Chattipakorn, S.C. Differential temporal therapies with pharmacologically targeted mitochondrial fission/fusion protect the brain against acute myocardial ischemia-reperfusion injury in prediabetic rats: The crosstalk between mitochondrial apoptosis and inflammation. Eur. J. Pharmacol., 2023, 956, 175939. doi: 10.1016/j.ejphar.2023.175939 PMID: 37536625
- Thong, E.H.E.; Quek, E.J.W.; Loo, J.H.; Yun, C.Y.; Teo, Y.N.; Teo, Y.H.; Leow, A.S.T.; Li, T.Y.W.; Sharma, V.K.; Tan, B.Y.Q.; Yeo, L.L.L.; Chong, Y.F.; Chan, M.Y.; Sia, C.H. Acute myocardial infarction and risk of cognitive impairment and dementia: A review. Biology, 2023, 12(8), 1154. doi: 10.3390/biology12081154 PMID: 37627038
Supplementary files
