Future Directions for Developing Non-dopaminergic Strategies for the Treatment of Parkinson’s Disease


Cite item

Full Text

Abstract

The symptomatic treatment of Parkinson’s disease (PD) has been dominated by the use of dopaminergic medication, but significant unmet need remains, much of which is related to non-motor symptoms and the involvement of non-dopaminergic transmitter systems. As such, little has changed in the past decades that has led to milestone advances in therapy and significantly improved treatment paradigms and patient outcomes, particularly in relation to symptoms unresponsive to levodopa. This review has looked at how pharmacological approaches to treatment are likely to develop in the near and distant future and will focus on two areas: 1) novel non-dopaminergic pharmacological strategies to control motor symptoms; and 2) novel non-dopaminergic approaches for the treatment of non-motor symptoms. The overall objective of this review is to use a ‘crystal ball’ approach to the future of drug discovery in PD and move away from the more traditional dopamine-based treatments. Here, we discuss promising non-dopaminergic and ‘dirty drugs’ that have the potential to become new key players in the field of Parkinson’s disease treatment.

About the authors

Daniel Wamelen

Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience,, King’s College London

Author for correspondence.
Email: info@benthamscience.net

Valentina Leta

Department of Basic & Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience,, King’s College London

Email: info@benthamscience.net

K. Ray Chaudhuri

Department of Basic & Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience, King’s College London

Email: info@benthamscience.net

Peter Jenner

School of Cancer & Pharmaceutical Sciences, Institute of Pharmaceutical Science, King’s College London

Email: info@benthamscience.net

References

  1. Parkinson, J. An essay on the shaking palsy. J. Neuropsychiatry Clin. Neurosci., 2002, 14(2), 223-236. doi: 10.1176/jnp.14.2.223 PMID: 11983801
  2. Yahr, M.D.; Duvoisin, R.C.; Schear, M.J.; Barrett, R.E.; Hoehn, M.M. Treatment of parkinsonism with levodopa. Arch. Neurol., 1969, 21(4), 343-354. doi: 10.1001/archneur.1969.00480160015001 PMID: 5820999
  3. Schwab, R.S.; England, A.C., Jr; Amantadine, H.C.L. Amantadine HCL (Symmetrel) and its relation to Levo-Dopa in the treatment of Parkinson’s disease. Trans. Am. Neurol. Assoc., 1969, 94, 85-90. PMID: 4907453
  4. Birchfield, R.I. Levodopa: Problems, promise, patience and persistence. Northwest Med., 1970, 69(8), 561-563. PMID: 5459300
  5. LeWitt, P.A.; Chaudhuri, K.R. Unmet needs in Parkinson disease: Motor and non-motor. Parkinsonism Relat. Disord., 2020, 80(Suppl. 1), S7-S12. doi: 10.1016/j.parkreldis.2020.09.024 PMID: 33349582
  6. Politis, M.; Wu, K.; Molloy, S.; G Bain, P.; Chaudhuri, K.R.; Piccini, P. Parkinson’s disease symptoms: The patient’s perspective. Mov. Disord., 2010, 25(11), 1646-1651. doi: 10.1002/mds.23135 PMID: 20629164
  7. Lane, E.L. L-DOPA for Parkinson’s disease-a bittersweet pill. Eur. J. Neurosci., 2019, 49(3), 384-398. doi: 10.1111/ejn.14119 PMID: 30118169
  8. Chaudhuri, K.R.; Jenner, P.; Antonini, A. Dyskinesia Matters: But not as much as it used to. Mov. Disord., 2020, 35(5), 900-901. doi: 10.1002/mds.28047 PMID: 32415717
  9. Leta, V.; Jenner, P.; Chaudhuri, K.R.; Antonini, A. Can therapeutic strategies prevent and manage dyskinesia in Parkinson’s disease? An update. Expert Opin. Drug Saf., 2019, 18(12), 1203-1218. doi: 10.1080/14740338.2019.1681966 PMID: 31619083
  10. Goetz, C.G. The history of Parkinson’s disease: Early clinical descriptions and neurological therapies. Cold Spring Harb. Perspect. Med., 2011, 1(1), a008862. doi: 10.1101/cshperspect.a008862 PMID: 22229124
  11. van Wamelen, D.J.; Sauerbier, A.; Leta, V.; Rodriguez-Blazquez, C.; Falup-Pecurariu, C.; Rodriguez-Violante, M.; Rizos, A.; Tsuboi, Y.; Metta, V.; Bhidayasiri, R.; Bhattacharya, K.; Borgohain, R.; Prashanth, L.K.; Rosales, R.; Lewis, S.; Fung, V.; Behari, M.; Goyal, V.; Kishore, A.; Lloret, S.P.; Martinez-Martin, P.; Chaudhuri, K.R. Cross-sectional analysis of the Parkinson’s disease non-motor international longitudinal Study baseline non-motor characteristics, geographical distribution and impact on quality of life. Sci. Rep., 2021, 11(1), 9611. doi: 10.1038/s41598-021-88651-4 PMID: 33953218
  12. Martinez-Martin, P.; Schrag, A.; Weintraub, D.; Rizos, A.; Rodriguez-Blazquez, C.; Chaudhuri, K.R. Pilot study of the international parkinson and movement disorder society-sponsored Non-motor Rating Scale (MDS-NMS). Mov. Disord. Clin. Pract., 2019, 6(3), 227-234. doi: 10.1002/mdc3.12728 PMID: 30949554
  13. Rosqvist, K.; Odin, P.; Hagell, P.; Iwarsson, S.; Nilsson, M.H.; Storch, A. Dopaminergic effect on non-motor symptoms in late stage Parkinson’s Disease. J. Parkinsons Dis., 2018, 8(3), 409-420. doi: 10.3233/JPD-181380 PMID: 30056433
  14. Wamelen, D.J.V.; Rukavina, K.; Podlewska, A.M.; Chaudhuri, K.R. Advances in the pharmacological and non-pharmacological management of non-motor symptoms in Parkinson’s disease: An update since 2017. Curr. Neuropharmacol., 2023, 21(8), 1786-1805. doi: 10.2174/1570159X20666220315163856 PMID: 35293295
  15. Rota, S.; Urso, D.; van Wamelen, D.J.; Leta, V.; Boura, I.; Odin, P.; Espay, A.J.; Jenner, P.; Chaudhuri, K.R. Why do ‘OFF’ periods still occur during continuous drug delivery in Parkinson’s disease? Transl. Neurodegener., 2022, 11(1), 43. doi: 10.1186/s40035-022-00317-x PMID: 36229860
  16. Brotchie, J.M. Nondopaminergic mechanisms in levodopa-induced dyskinesia. Mov. Disord., 2005, 20(8), 919-931. doi: 10.1002/mds.20612 PMID: 16007614
  17. Jenner, P. Pathophysiology and biochemistry of dyskinesia: Clues for the development of non-dopaminergic treatments. J. Neurol., 2000, 247(S2), II43-II50. doi: 10.1007/PL00007760 PMID: 10991665
  18. Stayte, S.; Vissel, B. Advances in non-dopaminergic treatments for Parkinson’s disease. Front. Neurosci., 2014, 8, 113. doi: 10.3389/fnins.2014.00113 PMID: 24904259
  19. Schapira, A.H.V.; Chaudhuri, K.R.; Jenner, P. Erratum: Non-motor features of Parkinson disease. Nat. Rev. Neurosci., 2017, 18(8), 509. doi: 10.1038/nrn.2017.91 PMID: 28720825
  20. Seppi, K.; Ray Chaudhuri, K.; Coelho, M.; Fox, S.H.; Katzenschlager, R.; Perez Lloret, S.; Weintraub, D.; Sampaio, C.; Chahine, L.; Hametner, E-M.; Heim, B.; Lim, S-Y.; Poewe, W.; Djamshidian-Tehrani, A. Update on treatments for nonmotor symptoms of Parkinson’s disease-an evidence-based medicine review. Mov. Disord., 2019, 34(2), 180-198. doi: 10.1002/mds.27602 PMID: 30653247
  21. Dafsari, H.S.; Martinez-Martin, P.; Rizos, A.; Trost, M.; Santos Ghilardi, M.G.; Reddy, P.; Sauerbier, A.; Petry-Schmelzer, J.N.; Kramberger, M.; Borgemeester, R.W.K.; Barbe, M.T.; Ashkan, K.; Silverdale, M.; Evans, J.; Odin, P.; Fonoff, E.T.; Fink, G.R.; Henriksen, T.; Ebersbach, G.; Pirtošek, Z.; Visser-Vandewalle, V.; Antonini, A.; Timmermann, L.; Ray Chaudhuri, K. EuroInf 2: Subthalamic stimulation, apomorphine, and levodopa infusion in Parkinson’s disease. Mov. Disord., 2019, 34(3), 353-365. doi: 10.1002/mds.27626 PMID: 30719763
  22. Martinez-Martin, P.; Reddy, P.; Katzenschlager, R.; Antonini, A.; Todorova, A.; Odin, P.; Henriksen, T.; Martin, A.; Calandrella, D.; Rizos, A.; Bryndum, N.; Glad, A.; Dafsari, H.S.; Timmermann, L.; Ebersbach, G.; Kramberger, M.G.; Samuel, M.; Wenzel, K.; Tomantschger, V.; Storch, A.; Reichmann, H.; Pirtosek, Z.; Trost, M.; Svenningsson, P.; Palhagen, S.; Volkmann, J.; Chaudhuri, K.R. EuroInf: A multicenter comparative observational study of apomorphine and levodopa infusion in Parkinson’s disease. Mov. Disord., 2015, 30(4), 510-516. doi: 10.1002/mds.26067 PMID: 25382161
  23. Leta, V.; Dafsari, H.S.; Sauerbier, A.; Metta, V.; Titova, N.; Timmermann, L.; Ashkan, K.; Samuel, M.; Pekkonen, E.; Odin, P.; Antonini, A.; Martinez-Martin, P.; Parry, M.; van Wamelen, D.J.; Ray Chaudhuri, K. Personalised advanced therapies in parkinson’s disease: The role of non-motor symptoms profile. J. Pers. Med., 2021, 11(8), 773. doi: 10.3390/jpm11080773 PMID: 34442417
  24. Mantovani, E.; Zucchella, C.; Argyriou, A.A.; Tamburin, S. Treatment for cognitive and neuropsychiatric non-motor symptoms in Parkinson’s disease: current evidence and future perspectives. Expert Rev. Neurother., 2023, 23(1), 25-43. doi: 10.1080/14737175.2023.2173576 PMID: 36701529
  25. Titova, N.; Chaudhuri, K.R. Non-motor Parkinson disease: New concepts and personalised management. Med. J. Aust., 2018, 208(9), 404-409. doi: 10.5694/mja17.00993 PMID: 29764353
  26. Sauerbier, A.; Violante, M.R.; Arriaga, A.C.; Rizos, A.; Trivedi, D.; Martinez-Martin, P.; Parry, M.; Rosa-Grilo, M.; Brown, R.; Chaudhuri, K. Parkinson’s disease phenotype across different ethnic groups: comparison of non-motor symptoms in patients living in the United Kingdom and Mexico. Mov. Disord., 2017, 32.
  27. Jenner, P. The treatment of levodopa-induced dyskinesias: Surfing the serotoninergic wave. Mov. Disord., 2018, 33(11), 1670-1672. doi: 10.1002/mds.27525 PMID: 30485909
  28. Sun, C.; Armstrong, M.J. Treatment of Parkinson’s Disease with cognitive impairment: Current approaches and future directions. Behav. Sci., 2021, 11(4), 54. doi: 10.3390/bs11040054 PMID: 33920698
  29. Cenci, M.A.; Skovgård, K.; Odin, P. Non-dopaminergic approaches to the treatment of motor complications in Parkinson’s disease. Neuropharmacology, 2022, 210, 109027. doi: 10.1016/j.neuropharm.2022.109027 PMID: 35292330
  30. Takashima, H.; Terada, T.; Bunai, T.; Matsudaira, T.; Obi, T.; Ouchi, Y. In vivo illustration of altered dopaminergic and GABAergic systems in early Parkinson’s Disease. Front. Neurol., 2022, 13, 880407. doi: 10.3389/fneur.2022.880407 PMID: 35655619
  31. Qamar, M.A.; Sauerbier, A.; Politis, M.; Carr, H.; Loehrer, P.A.; Chaudhuri, K.R. Presynaptic dopaminergic terminal imaging and non-motor symptoms assessment of Parkinson’s disease: Evidence for dopaminergic basis? NPJ Parkinsons Dis., 2017, 3(1), 5. doi: 10.1038/s41531-016-0006-9 PMID: 28649605
  32. Altwal, F.; Moon, C.; West, A.R.; Steiner, H. The multimodal serotonergic agent vilazodone inhibits L-DOPA-induced gene regulation in striatal projection neurons and associated dyskinesia in an animal model of Parkinson’s disease. Cells, 2020, 9(10), 2265. doi: 10.3390/cells9102265 PMID: 33050305
  33. Mestre, T.A.; Fereshtehnejad, S.M.; Berg, D.; Bohnen, N.I.; Dujardin, K.; Erro, R.; Espay, A.J.; Halliday, G.; van Hilten, J.J.; Hu, M.T.; Jeon, B.; Klein, C.; Leentjens, A.F.G.; Marinus, J.; Mollenhauer, B.; Postuma, R.; Rajalingam, R.; Rodríguez-Violante, M.; Simuni, T.; Surmeier, D.J.; Weintraub, D.; McDermott, M.P.; Lawton, M.; Marras, C. Parkinson’s Disease subtypes: Critical appraisal and recommendations. J. Parkinsons Dis., 2021, 11(2), 395-404. doi: 10.3233/JPD-202472 PMID: 33682731
  34. Mu, J.; Chaudhuri, K.R.; Bielza, C.; de Pedro-Cuesta, J.; Larrañaga, P.; Martinez-Martin, P. Parkinson’s Disease subtypes identified from cluster analysis of motor and non-motor symptoms. Front. Aging Neurosci., 2017, 9, 301. doi: 10.3389/fnagi.2017.00301 PMID: 28979203
  35. Fereshtehnejad, S.M.; Zeighami, Y.; Dagher, A.; Postuma, R.B. Clinical criteria for subtyping Parkinson’s disease: Biomarkers and longitudinal progression. Brain, 2017, 140(7), 1959-1976. doi: 10.1093/brain/awx118 PMID: 28549077
  36. Sauerbier, A.; Jenner, P.; Todorova, A.; Chaudhuri, K.R. Non motor subtypes and Parkinson’s disease. Parkinsonism Relat. Disord., 2016, 22(Suppl. 1), S41-S46. doi: 10.1016/j.parkreldis.2015.09.027 PMID: 26459660
  37. Classen, J.; Koschel, J.; Oehlwein, C.; Seppi, K.; Urban, P.; Winkler, C.; Wüllner, U.; Storch, A. Nonmotor fluctuations: Phenotypes, pathophysiology, management, and open issues. J. Neural Transm., 2017, 124(8), 1029-1036. doi: 10.1007/s00702-017-1757-0 PMID: 28702850
  38. Nemade, D.; Subramanian, T.; Shivkumar, V. An update on medical and surgical treatments of Parkinson’s Disease. Aging Dis., 2021, 12(4), 1021-1035. doi: 10.14336/AD.2020.1225 PMID: 34221546
  39. Latif, S.; Jahangeer, M.; Maknoon Razia, D.; Ashiq, M.; Ghaffar, A.; Akram, M.; El Allam, A.; Bouyahya, A.; Garipova, L.; Ali Shariati, M.; Thiruvengadam, M.; Azam Ansari, M. Dopamine in Parkinson’s disease. Clin. Chim. Acta, 2021, 522, 114-126. doi: 10.1016/j.cca.2021.08.009 PMID: 34389279
  40. Svensson, K.A.; Hao, J.; Bruns, R.F. Positive allosteric modulators of the dopamine D1 receptor: A new mechanism for the treatment of neuropsychiatric disorders. Adv. Pharmacol., 2019, 86, 273-305. doi: 10.1016/bs.apha.2019.06.001 PMID: 31378255
  41. Marino, R.A.; Levy, R. Differential effects of D1 and D2 dopamine agonists on memory, motivation, learning and response time in non-human primates. Eur. J. Neurosci., 2019, 49(2), 199-214. doi: 10.1111/ejn.14208 PMID: 30326151
  42. Lanza, K.; Meadows, S.M.; Chambers, N.E.; Nuss, E.; Deak, M.M.; Ferré, S.; Bishop, C. Behavioral and cellular dopamine D1 and D3 receptor-mediated synergy: Implications for L-DOPA-induced dyskinesia. Neuropharmacology, 2018, 138, 304-314. doi: 10.1016/j.neuropharm.2018.06.024 PMID: 29936243
  43. Sugiyama, K.; Kuroiwa, M.; Shuto, T.; Ohnishi, Y.N.; Kawahara, Y.; Miyamoto, Y.; Fukuda, T.; Nishi, A. Subregion-specific regulation of dopamine D1 receptor signaling in the striatum: Implication for L-DOPA-induced dyskinesia. J. Neurosci., 2021, 41(30), 6388-6414. doi: 10.1523/JNEUROSCI.0373-21.2021 PMID: 34131032
  44. Cerri, S.; Blandini, F. An update on the use of non-ergot dopamine agonists for the treatment of Parkinson’s disease. Expert Opin. Pharmacother., 2020, 21(18), 2279-2291. doi: 10.1080/14656566.2020.1805432 PMID: 32804544
  45. Garcia-Ruiz, P.J. Impulse control disorders and dopamine-related creativity: Pathogenesis and mechanism, short review, and hypothesis. Front. Neurol., 2018, 9, 1041. doi: 10.3389/fneur.2018.01041 PMID: 30574117
  46. Barbosa, P.; Hapuarachchi, B.; Djamshidian, A.; Strand, K.; Lees, A.J.; de Silva, R.; Holton, J.L.; Warner, T.T. Lower nucleus accumbens α-synuclein load and D3 receptor levels in Parkinson’s disease with impulsive compulsive behaviours. Brain, 2019, 142(11), 3580-3591. doi: 10.1093/brain/awz298 PMID: 31603207
  47. Paudel, P.; Seong, S.H.; Jung, H.A.; Choi, J.S. Characterizing fucoxanthin as a selective dopamine D3/D4 receptor agonist: Relevance to Parkinson’s disease. Chem. Biol. Interact., 2019, 310, 108757. doi: 10.1016/j.cbi.2019.108757 PMID: 31323226
  48. Paudel, P.; Seong, S.H.; Wu, S.; Park, S.; Jung, H.A.; Choi, J.S. Eckol as a potential therapeutic against neurodegenerative diseases targeting dopamine D3/D4 receptors. Mar. Drugs, 2019, 17(2), 108. doi: 10.3390/md17020108 PMID: 30744179
  49. Hui, Y.; Du, C.; Xu, T.; Zhang, Q.; Tan, H.; Liu, J. Dopamine D4 receptors in the lateral habenula regulate depression-related behaviors via a pre-synaptic mechanism in experimental Parkinson’s disease. Neurochem. Int., 2020, 140, 104844. doi: 10.1016/j.neuint.2020.104844 PMID: 32891683
  50. Allen, N.E.; Canning, C.G.; Almeida, L.R.S.; Bloem, B.R.; Keus, S.H.; Löfgren, N.; Nieuwboer, A.; Verheyden, G.S.; Yamato, T.P.; Sherrington, C. Interventions for preventing falls in Parkinson’s disease. Cochrane Database Syst. Rev., 2022, 6(6), CD011574. PMID: 35665915
  51. Titova, N.; Qamar, M.A.; Chaudhuri, K.R. The nonmotor features of Parkinson’s Disease. Int. Rev. Neurobiol., 2017, 132, 33-54. doi: 10.1016/bs.irn.2017.02.016 PMID: 28554413
  52. Lange, K.W.; Wells, F.R.; Jenner, P.; Marsden, C.D. Altered muscarinic and nicotinic receptor densities in cortical and subcortical brain regions in Parkinson’s disease. J. Neurochem., 1993, 60(1), 197-203. doi: 10.1111/j.1471-4159.1993.tb05838.x PMID: 8417140
  53. Bohnen, N.I.; Albin, R.L. The cholinergic system and Parkinson disease. Behav. Brain Res., 2011, 221(2), 564-573. doi: 10.1016/j.bbr.2009.12.048 PMID: 20060022
  54. Calabresi, P.; Picconi, B.; Parnetti, L.; Di Filippo, M. A convergent model for cognitive dysfunctions in Parkinson’s disease: The critical dopamine–acetylcholine synaptic balance. Lancet Neurol., 2006, 5(11), 974-983. doi: 10.1016/S1474-4422(06)70600-7 PMID: 17052664
  55. Quik, M.; O’Leary, K.; Tanner, C.M. Nicotine and Parkinson’s disease: Implications for therapy. Mov. Disord., 2008, 23(12), 1641-1652. doi: 10.1002/mds.21900 PMID: 18683238
  56. Moran, S.P.; Maksymetz, J.; Conn, P.J. Targeting muscarinic acetylcholine receptors for the treatment of psychiatric and neurological disorders. Trends Pharmacol. Sci., 2019, 40(12), 1006-1020. doi: 10.1016/j.tips.2019.10.007 PMID: 31711626
  57. Melani, R.; Tritsch, N.X. Inhibitory co-transmission from midbrain dopamine neurons relies on presynaptic GABA uptake. Cell Rep., 2022, 39(3), 110716. doi: 10.1016/j.celrep.2022.110716 PMID: 35443174
  58. Shetty, A.K.; Bates, A. Potential of GABA-ergic cell therapy for schizophrenia, neuropathic pain, and Alzheimer's and Parkinson's diseases. Brain Res., 2016, 1638(Pt A), 74-87. doi: 10.1016/j.brainres.2015.09.019 PMID: 26423935
  59. Ziegler, M.; Fournier, V.; Bathien, N.; Morselli, P.L.; Rondot, P. Therapeutic response to progabide in neuroleptic- and L-dopa-induced dyskinesias. Clin. Neuropharmacol., 1987, 10(3), 238-246. doi: 10.1097/00002826-198706000-00005 PMID: 2900682
  60. Tyagi, R.K.; Bisht, R.; Pant, J.; kumar, P.; Majeed, A.B.A.; Prakash, A. Possible role of GABA-B receptor modulation in MPTP induced Parkinson’s disease in rats. Exp. Toxicol. Pathol., 2015, 67(2), 211-217. doi: 10.1016/j.etp.2014.12.001 PMID: 25547370
  61. Sgambato-Faure, V.; Cenci, M.A. Glutamatergic mechanisms in the dyskinesias induced by pharmacological dopamine replacement and deep brain stimulation for the treatment of Parkinson’s disease. Prog. Neurobiol., 2012, 96(1), 69-86. doi: 10.1016/j.pneurobio.2011.10.005 PMID: 22075179
  62. O’Gorman Tuura, R.L.; Baumann, C.R.; Baumann-Vogel, H. Beyond dopamine: GABA, glutamate, and the axial symptoms of Parkinson disease. Front. Neurol., 2018, 9, 806. doi: 10.3389/fneur.2018.00806 PMID: 30319535
  63. Duty, S. Targeting glutamate receptors to tackle the pathogenesis, clinical symptoms and levodopa-induced dyskinesia associated with Parkinson’s disease. CNS Drugs, 2012, 26(12), 1017-1032. doi: 10.1007/s40263-012-0016-z PMID: 23114872
  64. Ahmed, I.; Bose, S.K.; Pavese, N.; Ramlackhansingh, A.; Turkheimer, F.; Hotton, G.; Hammers, A.; Brooks, D.J. Glutamate NMDA receptor dysregulation in Parkinson’s disease with dyskinesias. Brain, 2011, 134(4), 979-986. doi: 10.1093/brain/awr028 PMID: 21371994
  65. Dimatteo, V.; Pierucci, M.; Esposito, E.; Crescimanno, G.; Benigno, A.; Digiovanni, G. Serotonin modulation of the basal ganglia circuitry: Therapeutic implication for Parkinson’s disease and other motor disorders. Prog. Brain Res., 2008, 172, 423-463. doi: 10.1016/S0079-6123(08)00921-7 PMID: 18772045
  66. Daubert, E.A.; Condron, B.G. Serotonin: A regulator of neuronal morphology and circuitry. Trends Neurosci., 2010, 33(9), 424-434. doi: 10.1016/j.tins.2010.05.005 PMID: 20561690
  67. Carta, M.; Tronci, E. Serotonin system implication in L-DOPA-induced dyskinesia: From animal models to clinical investigations. Front. Neurol., 2014, 5, 78. doi: 10.3389/fneur.2014.00078 PMID: 24904522
  68. Carta, M.; Carlsson, T.; Muñoz, A.; Kirik, D.; Björklund, A. Involvement of the serotonin system in l-dopa-induced dyskinesias. Parkinsonism Relat. Disord., 2008, 14(Suppl. 2), S154-S158. doi: 10.1016/j.parkreldis.2008.04.021 PMID: 18579429
  69. Politis, M.; Niccolini, F. Serotonin in Parkinson’s disease. Behav. Brain Res., 2015, 277, 136-145. doi: 10.1016/j.bbr.2014.07.037 PMID: 25086269
  70. Politis, M.; Wu, K.; Loane, C.; Brooks, D.J.; Kiferle, L.; Turkheimer, F.E.; Bain, P.; Molloy, S.; Piccini, P. Serotonergic mechanisms responsible for levodopa-induced dyskinesias in Parkinson’s disease patients. J. Clin. Invest., 2014, 124(3), 1340-1349. doi: 10.1172/JCI71640 PMID: 24531549
  71. Conti, M.M.; Ostock, C.Y.; Lindenbach, D.; Goldenberg, A.A.; Kampton, E.; Dell’isola, R.; Katzman, A.C.; Bishop, C. Effects of prolonged selective serotonin reuptake inhibition on the development and expression of l-DOPA-induced dyskinesia in hemi-parkinsonian rats. Neuropharmacology, 2014, 77, 1-8. doi: 10.1016/j.neuropharm.2013.09.017 PMID: 24067924
  72. Bezard, E.; Carta, M. Could the serotonin theory give rise to a treatment for levodopa-induced dyskinesia in Parkinson’s disease? Brain, 2015, 138(4), 829-830. doi: 10.1093/brain/awu407 PMID: 25669729
  73. Isaacson, S.H.; Ballard, C.G.; Kreitzman, D.L.; Coate, B.; Norton, J.C.; Fernandez, H.H.; Ilic, T.V.; Azulay, J.P.; Ferreira, J.J.; Abler, V.; Stankovic, S. Efficacy results of pimavanserin from a multi-center, open-label extension study in Parkinson’s disease psychosis patients. Parkinsonism Relat. Disord., 2021, 87, 25-31. doi: 10.1016/j.parkreldis.2021.04.012 PMID: 33933853
  74. Isaacson, S.H.; Coate, B.; Norton, J.; Stankovic, S. Blinded SAPS-PD assessment after 10 weeks of pimavanserin treatment for Parkinson’s disease psychosis. J. Parkinsons Dis., 2020, 10(4), 1389-1396. doi: 10.3233/JPD-202047 PMID: 32716320
  75. DeKarske, D.; Alva, G.; Aldred, J.L.; Coate, B.; Cantillon, M.; Jacobi, L.; Nunez, R.; Norton, J.C.; Abler, V. An Open-Label, 8-week study of safety and efficacy of pimavanserin treatment in adults with Parkinson’s Disease and depression. J. Parkinsons Dis., 2020, 10(4), 1751-1761. doi: 10.3233/JPD-202058 PMID: 32804101
  76. Espay, A.J.; Guskey, M.T.; Norton, J.C.; Coate, B.; Vizcarra, J.A.; Ballard, C.; Factor, S.A.; Friedman, J.H.; Lang, A.E.; Larsen, N.J.; Andersson, C.; Fredericks, D.; Weintraub, D. Pimavanserin for Parkinson’s Disease psychosis: Effects stratified by baseline cognition and use of cognitive-enhancing medications. Mov. Disord., 2018, 33(11), 1769-1776. doi: 10.1002/mds.27488 PMID: 30387904
  77. Haskó, G.; Pacher, P.; Sylvester Vizi, E.; Illes, P. Adenosine receptor signaling in the brain immune system. Trends Pharmacol. Sci., 2005, 26(10), 511-516. doi: 10.1016/j.tips.2005.08.004 PMID: 16125796
  78. Jenner, P.; Mori, A.; Kanda, T. Can adenosine A2A receptor antagonists be used to treat cognitive impairment, depression or excessive sleepiness in Parkinson’s disease? Parkinsonism Relat. Disord., 2020, 80(Suppl. 1), S28-S36. doi: 10.1016/j.parkreldis.2020.09.022 PMID: 33349577
  79. Kanda, T.; Jenner, P. Can adenosine A2A receptor antagonists modify motor behavior and dyskinesia in experimental models of Parkinson’s disease? Parkinsonism Relat. Disord., 2020, 80(Suppl. 1), S21-S27. doi: 10.1016/j.parkreldis.2020.09.026 PMID: 33349576
  80. Pinna, A. Adenosine A2A receptor antagonists in Parkinson’s disease: Progress in clinical trials from the newly approved istradefylline to drugs in early development and those already discontinued. CNS Drugs, 2014, 28(5), 455-474. doi: 10.1007/s40263-014-0161-7 PMID: 24687255
  81. Hodgson, R.A.; Bertorelli, R.; Varty, G.B.; Lachowicz, J.E.; Forlani, A.; Fredduzzi, S.; Cohen-Williams, M.E.; Higgins, G.A.; Impagnatiello, F.; Nicolussi, E.; Parra, L.E.; Foster, C.; Zhai, Y.; Neustadt, B.R.; Stamford, A.W.; Parker, E.M.; Reggiani, A.; Hunter, J.C. Characterization of the potent and highly selective A2A receptor antagonists preladenant and SCH 412348 7-2-4-2,4-difluorophenyl-1-piperazinylethyl-2-(2-furanyl)-7H-pyrazolo4, 3-e1,2,4triazolo1,5-cpyrimidin-5-amine in rodent models of movement disorders and depression. J. Pharmacol. Exp. Ther., 2009, 330(1), 294-303. doi: 10.1124/jpet.108.149617 PMID: 19332567
  82. Hattori, N.; Kikuchi, M.; Adachi, N.; Hewitt, D.; Huyck, S.; Saito, T. Adjunctive preladenant: A placebo-controlled, dose-finding study in Japanese patients with Parkinson’s disease. Parkinsonism Relat. Disord., 2016, 32, 73-79. doi: 10.1016/j.parkreldis.2016.08.020 PMID: 27632893
  83. Stocchi, F.; Rascol, O.; Hauser, R.A.; Huyck, S.; Tzontcheva, A.; Capece, R.; Ho, T.W.; Sklar, P.; Lines, C.; Michelson, D.; Hewitt, D.J. Randomized trial of preladenant, given as monotherapy, in patients with early Parkinson disease. Neurology, 2017, 88(23), 2198-2206. doi: 10.1212/WNL.0000000000004003 PMID: 28490648
  84. Hauser, R.A.; Stocchi, F.; Rascol, O.; Huyck, S.B.; Capece, R.; Ho, T.W.; Sklar, P.; Lines, C.; Michelson, D.; Hewitt, D. Preladenant as an adjunctive therapy with levodopa in Parkinson disease: Two randomized clinical trials and lessons learned. JAMA Neurol., 2015, 72(12), 1491-1500. doi: 10.1001/jamaneurol.2015.2268 PMID: 26523919
  85. LeWitt, P.A.; Aradi, S.D.; Hauser, R.A.; Rascol, O. The challenge of developing adenosine A2A antagonists for Parkinson disease: Istradefylline, preladenant, and tozadenant. Parkinsonism Relat. Disord., 2020, 80(Suppl. 1), S54-S63. doi: 10.1016/j.parkreldis.2020.10.027 PMID: 33349581
  86. Fabbri, M.; Perez-Lloret, S.; Rascol, O. Therapeutic strategies for Parkinson’s disease: Promising agents in early clinical development. Expert Opin. Investig. Drugs, 2020, 29(11), 1249-1267. doi: 10.1080/13543784.2020.1814252 PMID: 32853086
  87. Charvin, D.; Medori, R.; Hauser, R.A.; Rascol, O. Therapeutic strategies for Parkinson disease: Beyond dopaminergic drugs. Nat. Rev. Drug Discov., 2018, 17(11), 804-822. doi: 10.1038/nrd.2018.136 PMID: 30262889
  88. Frantz, S. Playing dirty. Nature, 2005, 437(7061), 942-943. doi: 10.1038/437942a PMID: 16222266
  89. Van der Schyf, C.J.; Geldenhuys, W.J. Multimodal drugs and their future for Alzheimer’s and Parkinson’s disease. Int. Rev. Neurobiol., 2011, 100, 107-125. doi: 10.1016/B978-0-12-386467-3.00006-6 PMID: 21971005
  90. Paul, J.; Nandhu, M.S.; Kuruvilla, K.P.; Paulose, C.S.; Dopamine, D. Dopamine D1 and D2 receptor subtypes functional regulation in corpus striatum of unilateral rotenone lesioned Parkinson’s rat model: Effect of serotonin, dopamine and norepinephrine. Neurol. Res., 2010, 32(9), 918-924. doi: 10.1179/016164110X12700393823417 PMID: 20887679
  91. Factor, S.A. Dopamine agonists. Med. Clin. North Am., 1999, 83(2), 415-443, vi-vii. doi: 10.1016/S0025-7125(05)70112-7 PMID: 10093586
  92. Yan, R.; Cai, H.; Cui, Y.; Su, D.; Cai, G.; Lin, F.; Feng, T. Comparative efficacy and safety of monoamine oxidase type B inhibitors plus channel blockers and monoamine oxidase type B inhibitors as adjuvant therapy to levodopa in the treatment of Parkinson’s disease: A network meta-analysis of randomized controlled trials. Eur. J. Neurol., 2023, 30(4), 1118-1134. PMID: 36437702
  93. Stocchi, F.; Antonini, A.; Berg, D.; Bergmans, B.; Jost, W.; Katzenschlager, R.; Kulisevsky, J.; Odin, P.; Valldeoriola, F.; Ray Chaudhuri, K. Safinamide in the treatment pathway of Parkinson’s Disease: A European Delphi Consensus. NPJ Parkinsons Dis., 2022, 8(1), 17. doi: 10.1038/s41531-022-00277-z PMID: 35190544
  94. Abbruzzese, G.; Barone, P.; Lopiano, L.; Stocchi, F. The current evidence for the use of safinamide for the treatment of Parkinson’s disease. Drug Des. Devel. Ther., 2021, 15, 2507-2517. doi: 10.2147/DDDT.S302673 PMID: 34140766
  95. Gardoni, F.; Morari, M.; Kulisevsky, J.; Brugnoli, A.; Novello, S.; Pisanò, C.A.; Caccia, C.; Mellone, M.; Melloni, E.; Padoani, G.; Sosti, V.; Vailati, S.; Keywood, C. Safinamide modulates striatal glutamatergic signaling in a rat model of levodopa-induced dyskinesia. J. Pharmacol. Exp. Ther., 2018, 367(3), 442-451. doi: 10.1124/jpet.118.251645 PMID: 30291173
  96. Pisanò, C.A.; Brugnoli, A.; Novello, S.; Caccia, C.; Keywood, C.; Melloni, E.; Vailati, S.; Padoani, G.; Morari, M. Safinamide inhibits in vivo glutamate release in a rat model of Parkinson’s disease. Neuropharmacology, 2020, 167, 108006. doi: 10.1016/j.neuropharm.2020.108006 PMID: 32086070
  97. Sciaccaluga, M.; Mazzocchetti, P.; Bastioli, G.; Ghiglieri, V.; Cardinale, A.; Mosci, P.; Caccia, C.; Keywood, C.; Melloni, E.; Padoani, G.; Vailati, S.; Picconi, B.; Calabresi, P.; Tozzi, A. Effects of safinamide on the glutamatergic striatal network in experimental Parkinson’s disease. Neuropharmacology, 2020, 170, 108024. doi: 10.1016/j.neuropharm.2020.108024 PMID: 32142791
  98. Grégoire, L.; Jourdain, V.A.; Townsend, M.; Roach, A.; Di Paolo, T. Safinamide reduces dyskinesias and prolongs l-DOPA antiparkinsonian effect in parkinsonian monkeys. Parkinsonism Relat. Disord., 2013, 19(5), 508-514. doi: 10.1016/j.parkreldis.2013.01.009 PMID: 23402994
  99. Grigoriou, S.; Martínez-Martín, P.; Ray Chaudhuri, K.; Rukavina, K.; Leta, V.; Hausbrand, D.; Falkenburger, B.; Odin, P.; Reichmann, H. Effects of safinamide on pain in patients with fluctuating Parkinson’s disease. Brain Behav., 2021, 11(10), e2336. doi: 10.1002/brb3.2336 PMID: 34478245
  100. Li, C.; Xue, L.; Liu, Y.; Yang, Z.; Chi, S.; Xie, A. Zonisamide for the treatment of Parkinson disease: A current update. Front. Neurosci., 2020, 14, 574652. doi: 10.3389/fnins.2020.574652 PMID: 33408605
  101. Oki, M.; Kaneko, S.; Morise, S.; Takenouchi, N.; Hashizume, T.; Tsuge, A.; Nakamura, M.; Wate, R.; Kusaka, H. Zonisamide ameliorates levodopa-induced dyskinesia and reduces expression of striatal genes in Parkinson model rats. Neurosci. Res., 2017, 122, 45-50. doi: 10.1016/j.neures.2017.04.003 PMID: 28577977
  102. Murata, M.; Hasegawa, K.; Kanazawa, I.; Fukasaka, J.; Kochi, K.; Shimazu, R. Zonisamide improves wearing-off in Parkinson’s disease: A randomized, double-blind study. Mov. Disord., 2015, 30(10), 1343-1350. doi: 10.1002/mds.26286 PMID: 26094993
  103. Chang, C.; Ramphul, K. Amantadine. In: StatPearls; StatPearls Publishing: Treasure Island, FL, 2023.
  104. Hauser, R.A.; Lytle, J.; Formella, A.E.; Tanner, C.M. Amantadine delayed release/extended release capsules significantly reduce OFF time in Parkinson’s disease. NPJ Parkinsons Dis., 2022, 8(1), 29. doi: 10.1038/s41531-022-00291-1 PMID: 35304480
  105. Araújo, R.; Aranda-Martínez, J.D.; Aranda-Abreu, G.E. Amantadine treatment for people with COVID-19. Arch. Med. Res., 2020, 51(7), 739-740. doi: 10.1016/j.arcmed.2020.06.009 PMID: 32571606
  106. Wesnes, K.A.; Aarsland, D.; Ballard, C.; Londos, E. Memantine improves attention and episodic memory in Parkinson’s disease dementia and dementia with Lewy bodies. Int. J. Geriatr. Psychiatry, 2015, 30(1), 46-54. doi: 10.1002/gps.4109 PMID: 24737460
  107. Wang, H.F.; Yu, J.T.; Tang, S.W.; Jiang, T.; Tan, C.C.; Meng, X.F.; Wang, C.; Tan, M.S.; Tan, L. Efficacy and safety of cholinesterase inhibitors and memantine in cognitive impairment in Parkinson’s disease, Parkinson’s disease dementia, and dementia with Lewy bodies: Systematic review with meta-analysis and trial sequential analysis. J. Neurol. Neurosurg. Psychiatry, 2015, 86(2), 135-143. doi: 10.1136/jnnp-2014-307659 PMID: 24828899
  108. Seppi, K.; Weintraub, D.; Coelho, M.; Perez-Lloret, S.; Fox, S.H.; Katzenschlager, R.; Hametner, E.M.; Poewe, W.; Rascol, O.; Goetz, C.G.; Sampaio, C. The movement disorder society evidence-based medicine review update: Treatments for the non-motor symptoms of Parkinson’s disease. Mov. Disord., 2011, 26(S3), S42-S80. doi: 10.1002/mds.23884 PMID: 22021174
  109. Trifonova, O.P.; Maslov, D.L.; Balashova, E.E.; Urazgildeeva, G.R.; Abaimov, D.A.; Fedotova, E.Y.; Poleschuk, V.V.; Illarioshkin, S.N.; Lokhov, P.G. Parkinson’s Disease: Available clinical and promising omics tests for diagnostics, disease risk assessment, and pharmacotherapy personalization. Diagnostics, 2020, 10(5), 339. doi: 10.3390/diagnostics10050339 PMID: 32466249
  110. Teshuva, I.; Hillel, I.; Gazit, E.; Giladi, N.; Mirelman, A.; Hausdorff, J.M. Using wearables to assess bradykinesia and rigidity in patients with Parkinson’s disease: A focused, narrative review of the literature. J. Neural Transm., 2019, 126(6), 699-710. doi: 10.1007/s00702-019-02017-9 PMID: 31115669
  111. van Wamelen, D.J.; Sringean, J.; Trivedi, D.; Carroll, C.B.; Schrag, A.E.; Odin, P.; Antonini, A.; Bloem, B.R.; Bhidayasiri, R.; Chaudhuri, K.R. Digital health technology for non-motor symptoms in people with Parkinson’s disease: Futile or future? Parkinsonism Relat. Disord., 2021, 89, 186-194. doi: 10.1016/j.parkreldis.2021.07.032 PMID: 34362670
  112. van Wamelen, D.J.; Martinez-Martin, P.; Weintraub, D.; Schrag, A.; Antonini, A.; Falup-Pecurariu, C.; Odin, P.; Ray Chaudhuri, K. The Non‐Motor Symptoms Scale in Parkinson’s disease: Validation and use. Acta Neurol. Scand., 2021, 143(1), 3-12. doi: 10.1111/ane.13336 PMID: 32813911
  113. Qureshi, A.R.; Rana, A.Q.; Malik, S.H.; Rizvi, S.F.H.; Akhter, S.; Vannabouathong, C.; Sarfraz, Z.; Rana, R. Comprehensive examination of therapies for pain in Parkinson’s disease: A systematic review and meta-analysis. Neuroepidemiology, 2018, 51(3-4), 190-206. doi: 10.1159/000492221 PMID: 30153669
  114. Sharaf, J.; Williams, K.A.D.; Tariq, M.; Acharekar, M.V.; Guerrero Saldivia, S.E.; Unnikrishnan, S.; Chavarria, Y.Y.; Akindele, A.O.; Jalkh, A.P.; Eastmond, A.K.; Shetty, C.; Rizvi, S.M.H.A.; Mohammed, L. The efficacy of safinamide in the management of Parkinson’s disease: A systematic review. Cureus, 2022, 14(9), e29118. doi: 10.7759/cureus.29118 PMID: 36259026
  115. Dulski, J.; Uitti, R.J.; Ross, O.A.; Wszolek, Z.K. Genetic architecture of Parkinson’s disease subtypes-review of the literature. Front. Aging Neurosci., 2022, 14, 1023574. doi: 10.3389/fnagi.2022.1023574 PMID: 36337703
  116. Rodriguez-Sanchez, F.; Rodriguez-Blazquez, C.; Bielza, C.; Larrañaga, P.; Weintraub, D.; Martinez-Martin, P.; Rizos, A.; Schrag, A.; Chaudhuri, K.R. Identifying Parkinson’s disease subtypes with motor and non-motor symptoms via model-based multi-partition clustering. Sci. Rep., 2021, 11(1), 23645. doi: 10.1038/s41598-021-03118-w PMID: 34880345
  117. Huang, X.; Ng, S.Y.E.; Chia, N.S.Y.; Setiawan, F.; Tay, K.Y.; Au, W.L.; Tan, E.K.; Tan, L.C.S. Non-motor symptoms in early Parkinson’s disease with different motor subtypes and their associations with quality of life. Eur. J. Neurol., 2019, 26(3), 400-406. doi: 10.1111/ene.13803 PMID: 30175887
  118. Zhang, X.; Chou, J.; Liang, J.; Xiao, C.; Zhao, Y.; Sarva, H.; Henchcliffe, C.; Wang, F. Data-driven subtyping of parkinson’s disease using longitudinal clinical records: A cohort study. Sci. Rep., 2019, 9(1), 797. doi: 10.1038/s41598-018-37545-z PMID: 30692568
  119. Marras, C.; Chaudhuri, K.R.; Titova, N.; Mestre, T.A. Therapy of Parkinson’s disease subtypes. Neurotherapeutics, 2020, 17(4), 1366-1377. doi: 10.1007/s13311-020-00894-7 PMID: 32749651
  120. Langston, J.W. The parkinson’s complex: Parkinsonism is just the tip of the iceberg. Ann. Neurol., 2006, 59(4), 591-596. doi: 10.1002/ana.20834 PMID: 16566021
  121. Titova, N.; Padmakumar, C.; Lewis, S.J.G.; Chaudhuri, K.R. Parkinson’s: A syndrome rather than a disease? J. Neural Transm., 2017, 124(8), 907-914. doi: 10.1007/s00702-016-1667-6 PMID: 28028643
  122. Hirsch, E.C.; Graybiel, A.M.; Duyckaerts, C.; Javoy-Agid, F. Neuronal loss in the pedunculopontine tegmental nucleus in Parkinson disease and in progressive supranuclear palsy. Proc. Natl. Acad. Sci. USA, 1987, 84(16), 5976-5980. doi: 10.1073/pnas.84.16.5976 PMID: 3475716
  123. Jellinger, K. Overview of morphological changes in Parkinson’s disease. Adv. Neurol., 1987, 45, 1-18. PMID: 3825687
  124. Halliday, G.M.; Blumbergs, P.C.; Cotton, R.G.H.; Blessing, W.W.; Geffen, L.B. Loss of brainstem serotonin- and substance P-containing neurons in Parkinson’s disease. Brain Res., 1990, 510(1), 104-107. doi: 10.1016/0006-8993(90)90733-R PMID: 1691042
  125. Weintraub, D.; Simuni, T.; Caspell-Garcia, C.; Coffey, C.; Lasch, S.; Siderowf, A.; Aarsland, D.; Barone, P.; Burn, D.; Chahine, L.M.; Eberling, J.; Espay, A.J.; Foster, E.D.; Leverenz, J.B.; Litvan, I.; Richard, I.; Troyer, M.D.; Hawkins, K.A. Cognitive performance and neuropsychiatric symptoms in early, untreated Parkinson’s disease. Mov. Disord., 2015, 30(7), 919-927. doi: 10.1002/mds.26170 PMID: 25737166
  126. Gjerløff, T.; Fedorova, T.; Knudsen, K.; Munk, O.L.; Nahimi, A.; Jacobsen, S.; Danielsen, E.H.; Terkelsen, A.J.; Hansen, J.; Pavese, N.; Brooks, D.J.; Borghammer, P. Imaging acetylcholinesterase density in peripheral organs in Parkinson’s disease with 11C-donepezil PET. Brain, 2015, 138(3), 653-663. doi: 10.1093/brain/awu369 PMID: 25539902
  127. O’Callaghan, C.; Lewis, S.J.G. Cognition in Parkinson’s disease. Int. Rev. Neurobiol., 2017, 133, 557-583. doi: 10.1016/bs.irn.2017.05.002 PMID: 28802933
  128. Pavese, N.; Metta, V.; Bose, S.K.; Chaudhuri, K.R.; Brooks, D.J. Fatigue in Parkinson’s disease is linked to striatal and limbic serotonergic dysfunction. Brain, 2010, 133(11), 3434-3443. doi: 10.1093/brain/awq268 PMID: 20884645
  129. Svenningsson, P.; Odin, P.; Dizdar, N.; Johansson, A.; Grigoriou, S.; Tsitsi, P.; Wictorin, K.; Bergquist, F.; Nyholm, D.; Rinne, J.; Hansson, F.; Sonesson, C.; Tedroff, J.; Andersson, K.; Sundgren, M.; Duzynski, W.; Carlström, C. A phase 2a trial investigating the safety and tolerability of the novel cortical enhancer IRL752 in Parkinson’s disease dementia. Mov. Disord., 2020, 35(6), 1046-1054. doi: 10.1002/mds.28020 PMID: 32198802
  130. Horsager, J.; Okkels, N.; Hansen, A.K.; Damholdt, M.F.; Andersen, K.H.; Fedorova, T.D.; Munk, O.L.; Danielsen, E.H.; Pavese, N.; Brooks, D.J.; Borghammer, P. Mapping cholinergic synaptic loss in Parkinson’s Disease: An 18FFEOBV PET case-control study. J. Parkinsons Dis., 2022, 12(8), 2493-2506. doi: 10.3233/JPD-223489 PMID: 36336941
  131. Wang, X.L.; Feng, S.T.; Wang, Y.T.; Chen, B.; Wang, Z.Z.; Chen, N.H.; Zhang, Y. Comparative efficacy and acceptability of drug treatments for Parkinson’s disease with depression: A systematic review with network meta-analysis. Eur. J. Pharmacol., 2022, 927, 175070. doi: 10.1016/j.ejphar.2022.175070 PMID: 35659968
  132. Bara-Jimenez, W.; Bibbiani, F.; Morris, M.J.; Dimitrova, T.; Sherzai, A.; Mouradian, M.M.; Chase, T.N. Effects of serotonin 5-HT1A agonist in advanced Parkinson’s disease. Mov. Disord., 2005, 20(8), 932-936. doi: 10.1002/mds.20370 PMID: 15791634
  133. Bibbiani, F.; Oh, J.D.; Chase, T.N. Serotonin 5-HT1A agonist improves motor complications in rodent and primate parkinsonian models. Neurology, 2001, 57(10), 1829-1834. doi: 10.1212/WNL.57.10.1829 PMID: 11723272
  134. Bonifati, V.; Fabrizio, E.; Cipriani, R.; Vanacore, N.; Meco, G. Buspirone in levodopa-induced dyskinesias. Clin. Neuropharmacol., 1994, 17(1), 73-82. doi: 10.1097/00002826-199402000-00008 PMID: 8149361
  135. Hsam, O.; Kohl, Z. Serotonin in synucleinopathies. Behav. Brain Res., 2023, 445, 114367. doi: 10.1016/j.bbr.2023.114367 PMID: 36863462
  136. Shan, L.; Hofman, M.A.; van Wamelen, D.J.; Van Someren, E.J.W.; Bao, A.M.; Swaab, D.F. Diurnal fluctuation in histidine decarboxylase expression, the rate limiting enzyme for histamine production, and its disorder in neurodegenerative diseases. Sleep, 2012, 35(5), 713-715. doi: 10.5665/sleep.1838 PMID: 22547898
  137. van Wamelen, D.J.; Shan, L.; Aziz, N.A.; Anink, J.J.; Bao, A.M.; Roos, R.A.C.; Swaab, D.F. Functional increase of brain histaminergic signaling in Huntington’s disease. Brain Pathol., 2011, 21(4), 419-427. doi: 10.1111/j.1750-3639.2010.00465.x PMID: 21106039
  138. Alhusaini, M.; Eissa, N.; Saad, A.K.; Beiram, R.; Sadek, B. Revisiting preclinical observations of several Histamine H3 Receptor antagonists/inverse agonists in cognitive impairment, anxiety, depression, and sleep-wake cycle disorder. Front. Pharmacol., 2022, 13, 861094. doi: 10.3389/fphar.2022.861094 PMID: 35721194
  139. Nowak, P.; Noras, Ł.; Jochem, J.; Szkilnik, R.; Brus, H.; Körőssy, E.; Drab, J.; Kostrzewa, R.M.; Brus, R. Histaminergic activity in a rodent model of Parkinson’s disease. Neurotox. Res., 2009, 15(3), 246-251. doi: 10.1007/s12640-009-9025-1 PMID: 19384597
  140. Masini, D.; Lopes-Aguiar, C.; Bonito-Oliva, A.; Papadia, D.; Andersson, R.; Fisahn, A.; Fisone, G. The histamine H3 receptor antagonist thioperamide rescues circadian rhythm and memory function in experimental parkinsonism. Transl. Psychiatry, 2017, 7(4), e1088. doi: 10.1038/tp.2017.58 PMID: 28398338
  141. Rekha, K.R.; Selvakumar, G.P.; Santha, K.; Inmozhi Sivakamasundari, R. Geraniol attenuates α-synuclein expression and neuromuscular impairment through increase dopamine content in MPTP intoxicated mice by dose dependent manner. Biochem. Biophys. Res. Commun., 2013, 440(4), 664-670. doi: 10.1016/j.bbrc.2013.09.122 PMID: 24103762
  142. Rekha, K.R.; Selvakumar, G.P.; Sethupathy, S.; Santha, K.; Sivakamasundari, R.I. Geraniol ameliorates the motor behavior and neurotrophic factors inadequacy in MPTP-induced mice model of Parkinson’s disease. J. Mol. Neurosci., 2013, 51(3), 851-862. doi: 10.1007/s12031-013-0074-9 PMID: 23943375
  143. Titova, N.; Chaudhuri, K.R. Nonmotor parkinson’s and future directions. Int. Rev. Neurobiol., 2017, 134, 1493-1505. doi: 10.1016/bs.irn.2017.05.017 PMID: 28805581
  144. Zetusky, W.J.; Jankovic, J.; Pirozzolo, F.J. The heterogeneity of Parkinson’s disease: Clinical and prognostic implications. Neurology, 1985, 35(4), 522-526. doi: 10.1212/WNL.35.4.522 PMID: 3982637
  145. Jankovic, J.; McDermott, M.; Carter, J.; Gauthier, S.; Goetz, C.; Golbe, L.; Huber, S.; Koller, W.; Olanow, C.; Shoulson, I.; Stern, M.; Tanner, C.; Weiner, W. Variable expression of Parkinson’s disease: A base-line analysis of the DAT ATOP cohort. Neurology, 1990, 40(10), 1529-1534. doi: 10.1212/WNL.40.10.1529 PMID: 2215943
  146. Schiess, M.C.; Zheng, H.; Soukup, V.M.; Bonnen, J.G.; Nauta, H.J.W. Parkinson’s disease subtypes: Clinical classification and ventricular cerebrospinal fluid analysis. Parkinsonism Relat. Disord., 2000, 6(2), 69-76. doi: 10.1016/S1353-8020(99)00051-6 PMID: 10699387
  147. Korchounov, A.; Schipper, H.I.; Preobrazhenskaya, I.S.; Kessler, K.R.; Yakhno, N.N. Differences in age at onset and familial aggregation between clinical types of idiopathic Parkinson’s disease. Mov. Disord., 2004, 19(9), 1059-1064. doi: 10.1002/mds.20061 PMID: 15372596
  148. Kang, G.A.; Bronstein, J.M.; Masterman, D.L.; Redelings, M.; Crum, J.A.; Ritz, B. Clinical characteristics in early Parkinson’s disease in a central California population-based study. Mov. Disord., 2005, 20(9), 1133-1142. doi: 10.1002/mds.20513 PMID: 15954133
  149. Konno, T.; Deutschländer, A.; Heckman, M.G.; Ossi, M.; Vargas, E.R.; Strongosky, A.J.; van Gerpen, J.A.; Uitti, R.J.; Ross, O.A.; Wszolek, Z.K. Comparison of clinical features among Parkinson’s disease subtypes: A large retrospective study in a single center. J. Neurol. Sci., 2018, 386, 39-45. doi: 10.1016/j.jns.2018.01.013 PMID: 29406964
  150. Lawton, M.; Ben-Shlomo, Y.; May, M.T.; Baig, F.; Barber, T.R.; Klein, J.C.; Swallow, D.M.A.; Malek, N.; Grosset, K.A.; Bajaj, N.; Barker, R.A.; Williams, N.; Burn, D.J.; Foltynie, T.; Morris, H.R.; Wood, N.W.; Grosset, D.G.; Hu, M.T.M. Developing and validating Parkinson’s disease subtypes and their motor and cognitive progression. J. Neurol. Neurosurg. Psychiatry, 2018, 89(12), 1279-1287. doi: 10.1136/jnnp-2018-318337 PMID: 30464029

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers